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Why Complex Numbers in Quantum Computing?

The Foundation of Quantum Mechanics

• Quantum amplitudes: State |ω→ = ε|0→+ ϑ|1→ where ε,ϑ ↑ C
• Probability: P (0) = |ε|2, P (1) = |ϑ|2 with |ε|2 + |ϑ|2 = 1

• Phase matters: |+→ = 1→
2
(|0→+ |1→) vs |↓→ = 1→

2
(|0→ ↓ |1→)

• Unitary operations: Quantum gates preserve normalization via complex rotations

Basic Operations

Core Complex Arithmetic

Let z = a+ bi where i
2
= ↓1

Operation Formula

Addition (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

Multiplication (a+ bi)(c+ di) = (ac↓ bd) + (ad+ bc)i

Conjugate a+ bi = a↓ bi

Modulus |a+ bi| =
↔
a2 + b2

Division
z1
z2

=
z1·z2
|z2|2

QC Example: For ε =
1→
2
+

i→
2
, we have |ε|2 =

1
2 +

1
2 = 1 (normalized)

Euler’s Formula and Polar Form

Euler’s Formula

e
iω

= cos ϖ + i sin ϖ

Key Values:

e
i0

= 1 e
iε/2

= i

e
iε

= ↓1 e
i3ε/2

= ↓i

e
i2ε

= 1 e
iε/4

=
1+i→

2

Polar Form

z = re
iω

= r(cos ϖ + i sin ϖ)

Conversions:

• r = |z| =
↔
a2 + b2

• ϖ = arg(z) = atan2(b, a)

• a = r cos ϖ, b = r sin ϖ

Multiplication in polar form: z1 · z2 = r1r2e
i(ω1+ω2) (multiply magnitudes, add phases)

Quantum Gates as Complex Operations

Common Gate Phases

Gate Action Phase

X Bit flip Real (±1)

Y Bit + phase flip ±i

Z Phase flip ±1

S
↔
Z e

iε/2
= i

T
↔
S e

iε/4

H Superposition
1→
2

Bloch Sphere

General qubit state:

|ω→ = cos
ϖ

2
|0→+ e

iϑ
sin

ϖ

2
|1→

• ϖ: polar angle (0 to ϱ)

• ς: azimuthal angle (0 to 2ϱ)

• Poles: |0→ (north), |1→ (south)

• Equator: equal superpositions
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II. SUPERCONDUCTING QUANTUM CIRCUITS

Circuit components with spatial dimensions that are
small compared to the relevant wavelength can be treated
as lumped elements (Devoret, 1997), and we start this
section with a particularly simple lumped-element cir-
cuit: the quantum LC oscillator. We subsequently discuss
the closely related two- and three-dimensional microwave
resonators that play a central role in circuit QED experi-
ments and which can be thought of as distributed versions
of the LC oscillator with a set of harmonic frequencies.
Finally, we move on to nonlinear quantum circuits with
Josephson junctions as the source of nonlinearity, and
discuss how such circuits can behave as artificial atoms.
We put special emphasis on the transmon qubit (Koch
et al., 2007), which is the most widely used artificial atom
design in current circuit QED experiments.

A. The quantum LC resonator

An LC oscillator is characterized by its inductance
L and capacitance C or, equivalently, by its angular
frequency !r = 1/

p
LC and characteristic impedance

Zr =
p
L/C. The total energy of this oscillator is given

by the sum of its charging and inductive energy

HLC =
Q2

2C
+

�2

2L
, (1)

where Q is the charge on the capacitor and � the flux
threading the inductor, see Fig. 1. Charge is related to cur-
rent, I, from charge conservation by Q(t) =

R t
t0
dt0 I(t0),

and flux to voltage from Faraday’s induction law by
�(t) =

R t
t0
dt0 V (t0), where we have assumed that the

voltage and current are zero at an initial time t0, often
taken to be in the distant past (Vool and Devoret, 2017).

It is instructive to rewrite HLC as

HLC =
Q2

2C
+

1

2
C!2

r�
2. (2)

This form emphasizes the analogy of the LC oscillator
with a mechanical oscillator of coordinate �, conjugate
momentum Q, and mass C. With this analogy in mind,
quantization proceeds in a manner that should be well
known to the reader: The charge and flux variables are
promoted to non-commuting observables satisfying the
commutation relation

[�̂, Q̂] = i~. (3)

It is further useful to introduce the standard annihilation
â and creation â† operators of the harmonic oscillator.
With the above mechanical analogy in mind, we choose
these operators as

�̂ = �zpf(â
† + â), Q̂ = iQzpf(â

† � â), (4)

0 �5 0 5

�/

|0

|1

|2

V
(�

)
(a

rb
.

u
n
it
s)



L C

R
es

p
on

se
(a

rb
.

u
n
it
s)

!r

�/�0

FIG. 1 (Left) Harmonic potential versus flux of the LC circuit
with �0 = h/2e the flux quantum. (Right) Response of the
oscillator to an external perturbation as a function of the
detuning � of the perturbation from the oscillator frequency.
Here  = !r/Q, with Q the oscillator’s quality factor, is the
full width at half maximum (FWHM) of the oscillator response.
Equivalently, 1/ is the average lifetime of the single-photon
state |1i before it decays to |0i. (Inset) Lumped-element LC
oscillator of inductance L and capacitace C.

with �zpf =
p

~/2!rC =
p

~Zr/2 and Qzpf =p
~!rC/2 =

p
~/2Zr the characteristic magnitude of

the zero-point fluctuations of the flux and the charge, re-
spectively. With these definitions, the above Hamiltonian
takes the usual form

ĤLC = ~!r(â
†â + 1/2), (5)

with eigenstates that satisfy â†â|ni = n|ni for n =
0, 1, 2, . . . In the rest of this review, we follow the con-
vention of dropping from the Hamiltonian the factor of
1/2 corresponding to zero-point energy. The action of
â† =

p
1/2~Zr(�̂ � iZrQ̂) is to create a quantized exci-

tation of the flux and charge degrees of freedom of the
oscillator or, equivalently of the magnetic and electric
fields. In other words, â† creates a photon of frequency
!r stored in the circuit.

While formally correct, one can wonder if this quanti-
zation procedure is relevant in practice. In other words,
is it possible to operate LC oscillators in a regime where
quantum e↵ects are important? For this to be the case, at
least two conditions must be satisfied. First, the oscillator
should be su�ciently well decoupled from uncontrolled
degrees of freedom such that its energy levels are consid-
erably less broad than their separation. In other words,
we require the oscillator’s quality factor Q = !r/, with
 the oscillator linewidth or equivalently the photon loss
rate, to be large. An approach to treat the environment
of a quantum system is described in Sec. IV. Because
losses are at the origin of level broadening, superconduc-
tors are ideal to reach the quantum regime. In practice,
most circuit QED devices are made of thin aluminum
films evaporated on low-loss dielectric substrates such as
sapphire or high-resistivity silicon wafers. Mainly for its

10

ference ' is related to the voltage across the junction
according to d'/dt = 2⇡V/�0, with �0 = h/2e the flux
quantum. It is useful to write this expression as '(t) =
2⇡�(t)/�0 (mod 2⇡) = 2⇡

R
dt0 V (t0)/�0 (mod 2⇡), with

�(t) the flux variable already introduced in Sec. II.A.
The mod 2⇡ in the previous equalities takes into account
the fact that the superconducting phase ' is a compact
variable on the unit circle, ' = ' + 2⇡, while � can take
arbitrary real values.

Taken together, the two Josephson relations make it
clear that a Josephson junction relates current I to flux �.
This is akin to a geometric inductance whose constitutive
relation � = LI also links these two quantities. For this
reason, it is useful to define the Josephson inductance

LJ(�) =

✓
@I

@�

◆�1

=
�0

2⇡Ic

1

cos(2⇡�/�0)
. (18)

In contrast to geometric inductances, LJ depends on the
flux. As a result, when operated below the critical current,
the Josephson junction can be thought of as a nonlinear
inductor.

Replacing the geometric inductance L of the LC os-
cillator discussed in Sec. II.A by a Josephson junction,
as in Fig. 5(b), therefore renders the circuit nonlinear.
In this situation, the energy levels of the circuit are no
longer equidistant. If the nonlinearity and the quality
factor of the junction are large enough, the energy spec-
trum resembles that of an atom, with well-resolved and
nonuniformly spread spectral lines. We therefore often
refer to this circuit as an artificial atom (Clarke et al.,
1988). In many situations, and as is the focus of much
of this review, we can furthermore restrict our attention
to only two energy levels, typically the ground and first
excited states, forming a qubit.

To make this discussion more precise, it is useful to see
how the Hamiltonian of the circuit of Fig. 5(b) is modified
by the presence of the Josephson junction taking the place
of the linear inductor. While the energy stored in a linear
inductor is E =

R
dt V (t)I(t) =

R
dt (d�/dt)I = �2/2L,

where we have used � = LI in the last equality, the
energy of the nonlinear inductance rather takes the form

E = Ic

Z
dt

✓
d�

dt

◆
sin

✓
2⇡

�0
�

◆
= �EJ cos

✓
2⇡

�0
�

◆
,

(19)
with EJ = �0Ic/2⇡ the Josephson energy. This quantity
is proportional the rate of tunnelling of Cooper pairs
across the junction. Taking into account this contribution,
the quantized Hamiltonian of the capacitively shunted
Josephson junction therefore reads (see Appendix A)

ĤT =
(Q̂�Qg)2

2C⌃
� EJ cos

✓
2⇡

�0
�̂

◆

= 4EC(n̂� ng)
2 � EJ cos '̂.

(20)

In this expression, C⌃ = CJ +CS is the total capacitance,
including the junction’s capacitance CJ and the shunt
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FIG. 5 (a) Cosine potential well of the transmon qubit (full
line) compared to the quadratic potential of the LC oscillator
(dashed lines). The spectrum of the former as eigenstates
labelled {|gi, |ei, |fi, |hi . . .} and is characterized by an anhar-
monicity �EC . (b) Circuit for the fixed-frequency transmon
qubit. The square with a cross represents a Josephson junction
with Josephson energy EJ and junction capacitance CJ . (c)
By using a SQUID rather than a single junction, the frequency
of the transmon qubit becomes flux tunable.

capacitance CS . In the second line, we have defined the
charge number operator n̂ = Q̂/2e, the phase operator
'̂ = (2⇡/�0)�̂ (mod 2⇡) and the charging energy EC =
e2/2C⌃. We have also included a possible o↵set charge
ng = Qg/2e due to capacitive coupling of the transmon
to external charges. The o↵set charge can arise from
spurious unwanted degrees of freedom in the transmon’s
environment or from an external gate voltage Vg = Qg/Cg.
As we show below, the choice of EJ and EC is crucial in
determining the system’s sensitivity to the o↵set charge.

The spectrum of ĤT is controlled by the ratio EJ/EC ,
with di↵erent values of this ratio corresponding to dif-
ferent types of superconducting qubits; see for example
the reviews (Clarke and Wilhelm, 2008; Kjaergaard et al.,
2019; Makhlin et al., 2001; Zagoskin and Blais, 2007). Re-
gardless of the parameter regime, one can always express
the Hamiltonian in the diagonal form Ĥ =

P
j ~!j |jihj|

in terms of its eigenfrequencies !j and eigenstates |ji.
In the literature, two notations are commonly used to
label these eigenstates: {|gi, |ei, |fi, |hi . . .} and, when
there is not risk of confusion with resonator Fock states,
{|0i, |1i, |2i . . .}. Depending on the context, we will use
both notation in this review. Figure 6 shows the energy
di↵erence !j � !0 for the three lowest energy levels for
di↵erent ratios EJ/EC as obtained from numerical diago-
nalization of Eq. (20). If the charging energy dominates,
EJ/EC < 1, the eigenstates of the Hamiltonian are ap-
proximately given by eigenstates of the charge operator,
|ji ' |ni, with n̂|ni = n|ni. In this situation, a change
in gate charge ng has a large impact on the transition
frequency of the device. As a result, unavoidable charge
fluctuations in the circuit’s environment lead to corre-
sponding fluctuations in the qubit transition frequency

Resonator Transmon
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the driving Hamiltonian in the rotating frame takes the
form

ÂHd = �V0s(t) (I sin(Êdt) ≠ Q cos(Êdt))
◊ (cos(Êqt)‡y ≠ sin(Êqt)‡x) (89)

Performing the multiplication and dropping fast rotating
terms that will average to zero (i.e. terms with Êq + Êd),
known as the rotating wave approximation (RWA), we
are left with

ÂHd = 1
2�V0s(t)

5
(≠I cos(”Êt) + Q sin(”Êt)) ‡x

+ (I sin(”Êt) ≠ Q cos(”Êt)) ‡y

6
(90)

where ”Ê = Êq ≠ Êd. Finally, by re-using the definitions
from Eq. (86), the driving Hamiltonian in the rotating
frame using the RWA can be written as

ÂHd = ≠
�
2 V0s(t)

3
0 ei(”Êt+„)

e≠i(”Êt+„) 0

4
. (91)

Equation (91) is a powerful tool for understanding single-
qubit gates in superconducting qubits. As a concrete
example, assume that we apply a pulse at the qubit fre-
quency, so that ”Ê = 0, then

ÂHd = ≠
�
2 V0s(t) (I‡x + Q‡y) , (92)

showing that an in-phase pulse („ = 0, i.e. the I-
component) corresponds to rotations around the x-axis,
while an out-of-phase pulse („ = fi/2, i.e. the Q-
component), corresponds to rotations about the y-axis.
As a concrete example of an in-phase pulse, writing out
the unitary operator yields

U„=0
rf,d (t) = exp

35
i

2�V0

⁄
t

0
s(tÕ)dtÕ

6
‡x

4
, (93)

which depends only on the macroscopic design parame-
ters of the circuit as well as the envelope of the baseband
pulse s(t) and amplitude V0, which can both be controlled
using arbitrary waveform generators (AWGs). Equation
(93) is known as Rabi driving and can serve as a use-
ful tool for engineering the circuit parameters needed for
e�cient gate operation (subject to the available output
voltage V0). To see this we define the shorthand

�(t) = ≠�V0

⁄
t

0
s(tÕ)dtÕ (94)

which is the angle by which a state is rotated given the
capacitive couplings, the impedance of the circuit, the
magnitude V0, and the waveform envelope, s(t). This
means that to implement a fi-pulse on the x-axis one
would solve the equation �(t) = fi and output the sig-
nal in-phase with the qubit drive. In this language, a

(a) (b)

to qubits

I Q
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x(I)

-x(-I)

II QQ
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pulses

RF
time
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-y(-Q)

AWGLO

ωLO ωAWG

Vd(t)

s(t)

s(t)

ωd=ωLO+ωAWG 

(c)

FIG. 13. (a) Schematic of a typical qubit drive setup. A mi-
crowave source supplies a high-frequency signal (ÊLO), while
an arbitrary waveform generator (AWG) supplies a pulse-
envelope (s(t)), sometimes with a low frequency component,
ÊAWG, generated by the AWG. The IQ-mixer combines the two
signals to generate a shaped waveform Vd(t) with a frequency
Êd = ÊLO ± ÊAWG, typically resonant with the qubit. (b) Ex-
ample of how a gate sequence is translated into a waveform
generated by the AWG. Colors indicate I and Q components.
(c) The action of a Xfi/2 pulse on a |0Í state to produce the
|≠iÍ = 1Ô

2 (|0Í ≠ i|1Í) state.

sequence of pulses (see Fig. 13(a)) �k, �k≠1, ...�0 is con-
verted to a sequence of gates operating on a qubit as

Uk · · · U1U0 = T

kŸ

n=0
e[≠ i

2
�n(t)(In‡x+Qn‡y)], (95)

where T is an operator that ensures the pulses are gen-
erated in the time-ordered sequence corresponding to
Uk · · · U1U0.

In Fig. 13 we outline the typical IQ modulation setup
used to generate the pulses used in Eq. (95). Fig. 13(a)
shows how a pulse at frequency Êd is generated using a
low phase-noise microwave generator (typically denoted
‘the local oscillator (LO)’), while the pulse is shaped by
combining the LO signal in an IQ mixer with pulses gen-
erated in an AWG. To allow for frequency multiplexing,
the AWG signal will typically be generated with a low-
frequency component, ÊAWG, and the LO signal will be
o�set, so that ÊLO+ÊAWG = Êd. By mixing in more than
one frequency ÊAWG1, ÊAWG2, ... it is possible to address
multiple qubits (or readout resonators) simultaneously,
via the superposition of individual drives.

The I (Q) input of the IQ mixer will multiply the base-
band signal to the in-phase (out-of-phase) component of
the LO. In Fig. 13(b) we schematically show the com-
parison between XY gates in a quantum circuit and the
corresponding waveforms generated in the AWG (omit-
ting for clarity the frequency ÊAWG component). The
inset in Fig. 13(b) shows an example of a gate on the
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