
Q5: (10 pts)

(b) Ho

ar tongo

$$I_{1} = \frac{I_{2}}{2}$$

$$I_{2} = I_{1} \cos^{2}(50)$$

$$I_{2} = \frac{I_{2} \cos^{2}(50)}{2}$$

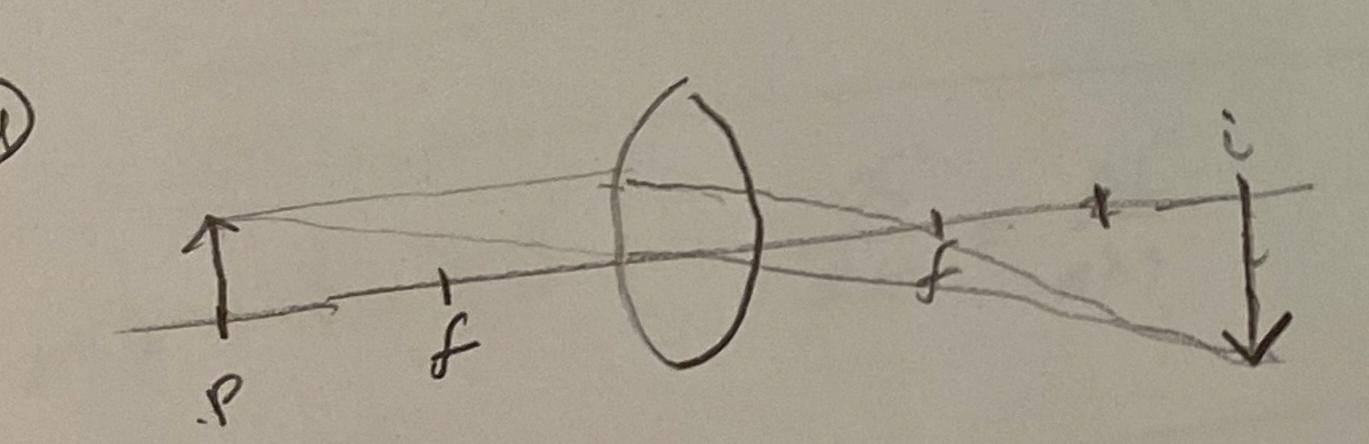
$$I_{2} = \frac{I_{2} \cos^{2}(50)}{2}$$

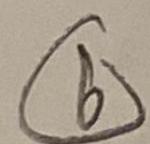
$$J_0 = \frac{2J_2}{\cos^2(50)} = 193.62 \text{ W/m}^2$$

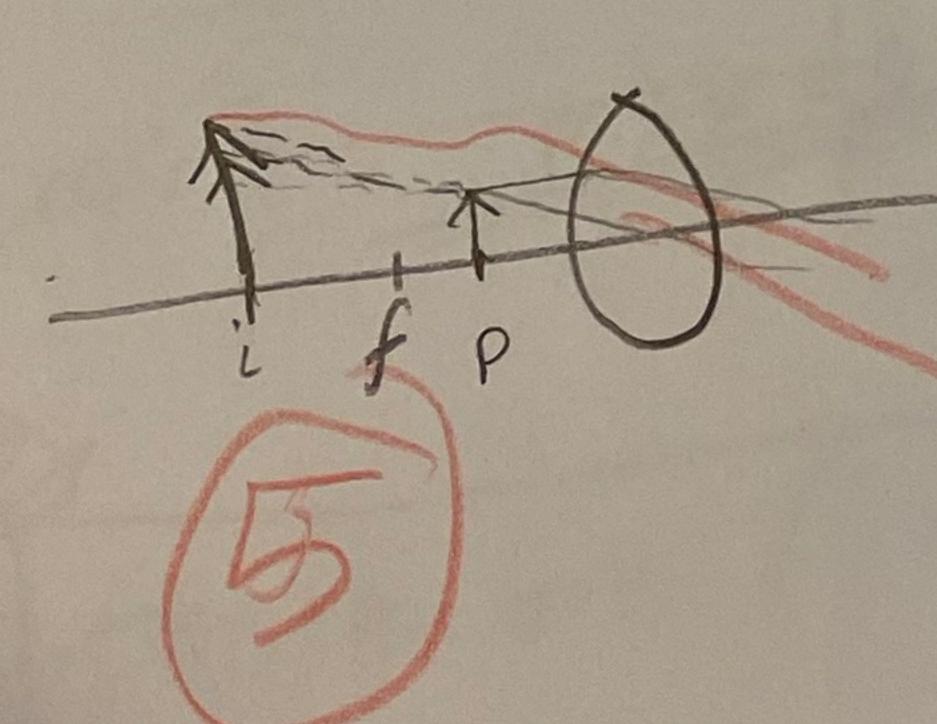
$$i_{d} = \epsilon_{0} \cdot A$$

Q6: (10 pts)

Oraw a diagram

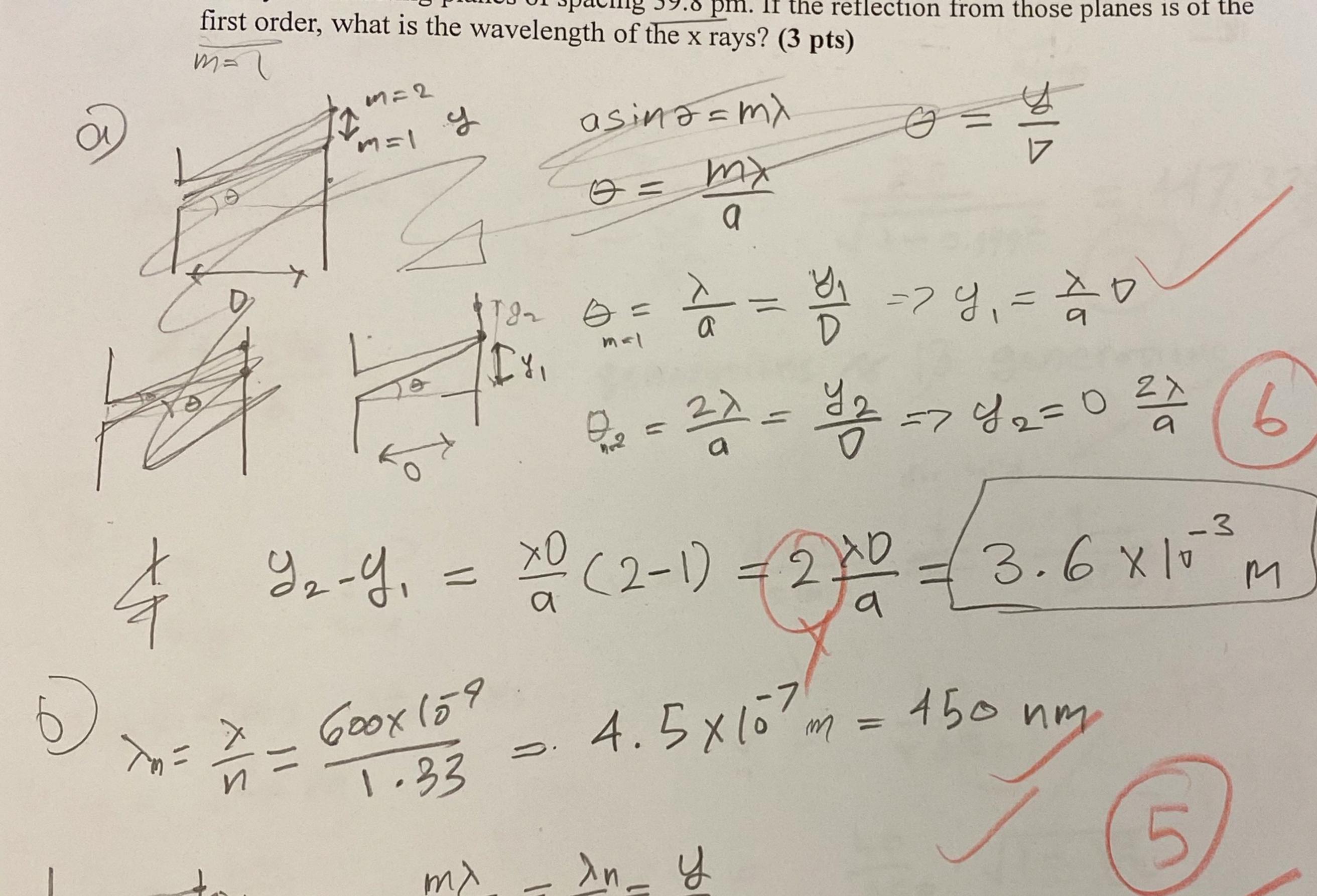

A converging lens with a focal distance f = 10 cm is used to get an image of a given object at a distance p from its center. Find the size (compared to the object) and nature (real/virtual) of the image when,


- Object distance p = 15 cm (5 pts)
- b) Object distance p = 7.0 cm (5 pts)


since the sign is Prostive the image is Reall

$$m' = -\frac{1}{6} = -2$$

$$m_2 = -\frac{i}{5} = 3.33$$


Q7: (20 pts) In the double-slit interference experiment (shown in figure), the Incident electric fields of the waves arriving at point P are given by wave $E_1 = (2.00 \,\mu\text{V/m}) \, sin[(1.26 \times 10^{15})t + 1.3 \times 10^7 x]$ $E_2 = (2.00 \,\mu\text{V/m}) \, sin[(1.26 \times 10^{15})t + 1.3 \times 10^7 x + 39.6 \, rad],$ where time t is in seconds and x is in meters (a) What is the intensity of light at point P? (5 pts) (b) How many minima are there between P and the central of the axis. (5 pts) (c) What is the angle θ if the slit separation is 2.00 mm? (5 pts) I=4 Io cos(B) B= = 19.7 rab $E_{\rm h} = 2 + 2\cos(39.6) = 1.35$ uV/m $E_{\nu} = 0 + 2 \sin(39.6) = 1.89 \text{ uV/m}$ ER = JEh2+E2 = 2.32 W/m I=4Io. C052(19.7) = \$C7.14x159) cos2(19.7) 1 = 2# = 483 nm $m\lambda = dsin\theta$

A A: d-Term Exam

Q8: (15 pts)

In a single slit diffraction experiment, a slit 1.00 mm wide is illuminated by light of wavelength 600 nm. We see a diffraction pattern on a screen 3.00 m away.

- a) What is the distance between the first diffraction minimum and the second diffraction minimum? (Assume the diffraction angle is very small) (7 pts)
- b) If the whole experimental set up is emerged into a water (n = 1.33) find the difference between the central maximum and the first minimum (5 pts)
- c) An x-ray beam of a certain wavelength is incident on a NaCl crystal, at 30.0° to a certain family of reflecting planes of spacing 39.8 pm. If the reflection from those planes is of the

$$y = 0 = \frac{1.35 \times 10^{-3} \text{ m}}{1.35 \times 10^{-3} \text{ m}}$$

$$2 d \sin \theta = m \lambda$$

 $\lambda = 2(39.8 \times 10^{-12}) \sin 30^{\circ}$
 $= 3.98 \times 10^{\circ} m$

- a) Your starship passes Earth with a relative speed of 0.9990c. After traveling 10.0 y (your relative speed. The trip back takes another 10.0 y (your time). If 25 years is the average generation time, which generation of your family will you meet? (5 pts)
- b) Sally noticed that Sam's spaceship (of proper length $L_0 = 250$ m) pass each other with constant relative speed v. If Sally measures a time interval of 4.00 ms for the ship to pass her, find the value of v. (5 pts)

a) $\Delta t_0 = 20$ years $\Delta t = ?$

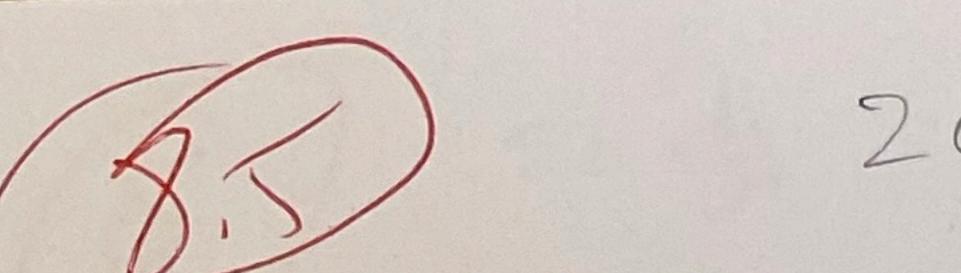
 $\Delta t = T \Delta to = \frac{\Delta to}{\sqrt{1 - \frac{2}{C^2}}} = \frac{20}{\sqrt{1 - 0.999^2}} = \frac{44}{\sqrt{1 - 0.999^2}}$

147.325 = 17.89 generations & 18 generations

bosally sally

Trom Sto= 4ms

1= 100 x 103 m/s


1= 62.5 x 103 m/s

 $V = 62.5 \times 10^{3} \text{ m/s}$ $V = 62 \times 10^{3} \text{ m/s}$ $V = 62 \times 10^{3} \text{ m/s}$

 $\frac{1}{\sqrt{2}} \left(1 + \frac{10^2}{\sqrt{2}} \right) = \frac{10^2}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right)^2 = \frac{10^2}{\sqrt{2}$

V = \[\frac{1}{\Doldownormal} \\ \fraccolon \\ \frac{1}{\Doldownormal} \\ \frac{1}{\Doldownormal} \\

carth

- a) A loop antenna of area 2.00 cm² and resistance $5.00 \text{ m}\Omega$ is perpendicular to a uniform magnetic field of magnitude 15.0 mT. The field magnitude drops to zero in 3.00 ms. How much thermal energy is produced in the loop by the change in field? (5 pts)
- b) At time t = 0, a 60 V potential difference is suddenly applied to the leads of a coil with inductance L=50 mH and resistance $R=200~\Omega$. At what rate is the current through the coil increasing at t = 2.0 ms? (5 pts)

Continereasing at
$$t = 2.0$$
 ms. (a pus)
$$C = -\frac{dD}{dt}$$

$$C = -\frac{dB}{dt}$$

$$\frac{di}{dt}\Big|_{t=2ms}=?$$

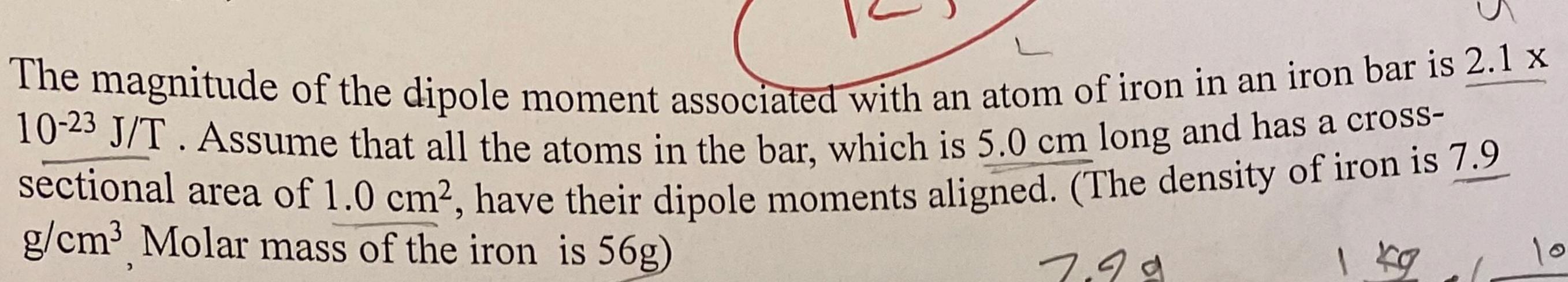
$$i = \frac{c}{R} c_1 - e^{-c_1/\kappa_1}$$

$$\frac{di}{dt} = \frac{c}{R} \left(e^{-t/\epsilon_L} \cdot \frac{1}{\epsilon_L} \right)$$

$$= \frac{c}{R} \left(e^{-t/\epsilon_L} \right)$$

$$= \frac{c}{R} \left(e^{-t/\epsilon_L} \right)$$

$$= \frac{c}{R} \left(e^{-t/\epsilon_L} \right)$$


$$\frac{di}{dt} = 2ms$$

$$\frac{dt}{dt} = 2ms = 2$$

$$= \frac{60}{50 \times 10^3} \left(e^{\frac{2 \times 10^3}{2.5 \times 10^4}} \right)$$

$$= \frac{60}{50 \times 10^3} \left(e^{\frac{2 \times 10^3}{2.5 \times 10^4}} \right)$$

$$= 0.403 A/s$$

(a) What is the dipole moment of the bar? (7 pts)

- (b) How much work is required to flip the magnetic moment of the magnet from parallel to = 79 kg antiparallel orientation in the presence of the external field of 1.5 T. (5 pts)
- (c) What torque must be exerted to hold this magnet perpendicular to an external field of V= LA = 5x102 (1x10+) magnitude 1.5 T? (3 pts)

M = 119

y = 2

 $=(6.81\times10^{17})(2.1\times16^{-23})$

 $=5 \times 16^6 \text{ m}^3 = V$ $\rho = \frac{m}{7} \chi S = \frac{1}{m} / m = \frac{1}{9} = \frac{5 \times 10^{-6}}{79} = 6.33 \times 10^{-8}$

 $M = M = M = \frac{C.33 \times 10^8}{56 \times 10^3}$ M= 1.13×10 moles

M= N/NA = 6.81 X.10 atoms

N=AUB = Vartific - Uporticle

= -4 B COS(180) - (-4BCKE COS CO))

= 2018

= 2(1.43×10=5)(1.5)

- 4.29 X 10-5

= (1.43×105)(1.5)