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38.1: The Photon, the Quantum of Light:

In 1905, Einstein proposed that electromagnetic radiation (or simply light) is quantized 
and exists in elementary amounts (quanta) that we now call photons.

According to that proposal, the quantum of a light wave of frequency f  has the energy

Here h is the Planck constant, which has the value





Example, Emission and absorption of light as photons:



38.2: The Photoelectric Effect:

We then vary V until it reaches a certain value, called the stopping potential Vstop , at which 
point the reading of meter A has just dropped to zero. When V =Vstop, the most energetic 
ejected electrons are turned back just before reaching the collector. Then Kmax , the kinetic 
energy of these most energetic electrons, is

I- First Photoelectric Experiment:



II- Second Photoelectric Experiment:

If the frequency f of the incident 
light is varied and the associated 
stopping potential Vstop is 
measured, then the plot of Vstop 
versus f as shown in the figure is 
obtained. The photoelectric effect 
does not occur if the frequency is 
below a certain cutoff frequency 
f0 . This is so no matter how 
intense the incident light is.

The electrons within the target are held there by electric forces. To just escape from 
the target, an electron must pick up a certain minimum energy f, where f is a 
property of the target material called its work function. If the energy hf  transferred to 
an electron by a photon exceeds the work function of the material (if hf >f), the 
electron can escape the target.







38.3: Photons Have Momentum: Compton Effect:



Fig. 38-4 Compton’s 
results for four values of 
the scattering angle f. 
Note that the Compton 
shift Dl increases as the 
scattering angle increases.

38.3: Photons Have Momentum, Compton Effect:



As a result of the collision, an x ray of wavelength ĺ  moves off at an angle f and the 
electron moves off at an angle q, as shown. Conservation of energy then gives us

38.3: Photons Have Momentum, Compton Effect:



Here hf  is the energy of the incident x-ray photon, hf’ is the energy of the scattered x-ray 
photon, and K is the kinetic energy of the recoiling electron. Since the electron may recoil 
with a speed comparable to that of light,

The quantity h/mc in Eq. 38-11 is a constant called the Compton wavelength.



Example, Compton Scattering of Light by Electrons:





The probabilistic description of a light 
wave is another way to view light. It is 
not only an electromagnetic wave but 
also a probability wave. That is, to 
every point in a light wave we can 
attach a numerical probability (per unit 
time interval) that a photon can be 
detected in any small volume centered 
on that point. This probability is directly 
related to the square of the amplitude 
electric field vector at that point. 



Consider the double-slit experiment again. Since an interference pattern eventually builds 
up on the screen, we can speculate that each photon travels from source to screen as a 
wave that fills up the space between source and screen and then vanishes in a photon 
absorption at some point on the screen, with a transfer of energy and momentum to the 
screen at that point.

We cannot predict where this transfer will occur (where a photon will be detected) for any 
given photon originating at the source. 

However, we can predict the probability that a transfer will occur at any given point on the 
screen.

Transfers will tend to occur (and thus photons will tend to be absorbed) in the regions of 
the bright fringes in the interference pattern that builds up on the screen. Transfers will 
tend not to occur (and thus photons will tend not to be absorbed) in the regions of the 
dark fringes in the built-up pattern.

Thus, we can say that the wave traveling from the source to the screen is a probability 
wave, which produces a pattern of “probability fringes” on the screen.



When a molecule in the source emits a 
single photon, does that photon travel
along path 1 or path 2 in the figure (or along 
any other path)? Or can it move in both 
directions at once? 

To answer, we assume that when a molecule 
emits a photon, a probability wave radiates 
in all directions from it. The experiment 
samples this wave in two of those 
directions, chosen to be nearly opposite 
each other.

We see that we can interpret all three 
versions of the double-slit experiment
if we assume that (1) light is generated in 
the source as photons, (2) light is absorbed 
in the detector as photons, and (3) light 
travels between source and detector as a 
probability wave.



38.4: The Birth of Quantum Physics

A debate among scientists started in 
the 1900 on discrepancy between 
theory and experiment of black body 
radiation that led to the birth 
Quantum Physics.







38.5: Electrons and Matter Waves:

de Broglie suggested that p =h/l might apply not only
to photons but also to electrons



38.5: Electrons and Matter Waves:





38.6: Schrödinger’s Equation:

If a wave function, y(x, y, z, t), can be used to describe matter waves, then its space and 
time variables can be grouped separately and  can be written in the form

where w=( 2p f ) is the angular frequency of the matter wave.

Suppose that a matter wave reaches a particle detector; then the probability that a particle 
will be detected in a specified time interval is proportional to |y|2, where |y| is the absolute 
value of the wave function at the location of the detector.

|y|2 is always both real and positive, and it is called the probability density,



38.6: Schrödinger’s Equation:
Matter waves are described by Schrödinger’s Equation.

Suppose a particle traveling in the x direction through a region in which forces acting on 
the particle cause it to have a potential energy U(x). In this special case, Schrödinger’s 
equation can be written as:

For a free particle, U(x) is zero, that equation describes a free particle where a moving 
particle on which no net force acting on it. The particle’s total energy in this case is all 
kinetic, and the equation becomes:

Using the concept of de Broglie wavelength and the definition of wave number,  

The solution to this is:

Here A and B are constants. 



38.6: Schrödinger’s Equation, Finding the Probability Density:

Consider a free particle that travels only 
in the positive direction of x. Let the 
arbitrary constant B be zero. At the same 
time, let us relabel the constant A as y0.



38.7: Heisenberg’s Uncertainty Principle

Heisenberg’s Uncertainty Principle states that measured values cannot be assigned to 
the position and the momentum of a particle simultaneously with unlimited precision.

Here Dx and Dpx represent the intrinsic uncertainties in the measurements of the x 
components of r and p, with parallel meanings for the y and z terms. Even with the 
best measuring instruments, each product of a position uncertainty and a momentum
uncertainty will be greater than ħ, never less.



Example, Uncertainty Principle, position and momentum:



38.8: Reflection from a Potential Step



For the case that  E>Ub



For  E< Ub



For  E>Ub For  E< Ub

Quantum mechanics

Classical mechanics



38.9: Tunneling Through a Potential Barrier:

As the puck climbs the hill, kinetic energy K is transformed into gravitational
potential energy U. If the puck reaches the top, its potential energy is
Ub. Thus, the puck can pass over the top only if its initial mechanical energy
E >Ub.

The hill acts as a potential energy barrier (or, for short, a potential barrier).



There is a potential barrier for a nonrelativistic electron 
traveling along an idealized wire of negligible thickness 
(Figure 38-14). The electron, with mechanical energy E, 
approaches a region (the barrier) in which the electric 
potential Vb is negative.

The electron, being negatively charged, will have a 
positive potential energy Ub (=qVb) in that region (Fig. 
38-15). If E >Ub, we expect the electron to pass through 
the barrier region and come out to the right of x =L in 
Fig. 38-14. If E <Ub, we expect the electron to be unable 
to pass through the barrier region.

Fig. 38-15 An electron’s mechanical energy E is plotted when the 
electron is at any coordinate x<0. 
The electron’s electric potential energy U is plotted as a function of 
the electron’s position x, assuming that the electron can reach any 
value of x. The nonzero part of the plot (the potential barrier) has 
height Ub and thickness L.



0 a



Something astounding can happen to the electron when E <Ub.

Since it is a matter wave, the electron has a finite probability of leaking (or, tunneling) 
through the barrier and materializing on the other side, moving rightward with energy E 
as though nothing had happened in the region of 0 ≤ x ≤ L.

The wave function y(x) describing the 
electron can be found by solving 
Schrödinger’s equation separately for the 
three regions: (1) to the left of the barrier, (2) 
within the barrier, and (3) to the right of the 
barrier.

The arbitrary constants that appear in the 
solutions can then be chosen so that the 
values of y(x) and its derivative with respect 
to x join smoothly at x =0 and at x =L. 
Squaring the absolute value of y(x) then
yields the probability density.



qWithin the barrier the probability density 
decreases exponentially with x.
qTo the right of the barrier, the probability 
density plot describes a transmitted (through the 
barrier) wave with low but constant amplitude.

qWe can assign a transmission coefficient T to 
the incident matter wave and the barrier. This 
coefficient gives the probability with which an 
approaching electron will be transmitted through 
the barrier—that is, that tunneling will occur. For 
example if T  = 0.020, then for every 1000 
electrons fired at the barrier, 20 will tunnel 
through and 980 will be reflected back.

Approximately, 



Barrier Tunneling, The Scanning Tunneling Microscope (STM):



Iron atoms on the surface of Cu(111)




