Chapter 38

C h a pte r Photon, The Quantum of Light

Photons Have Momentum
3 8 (Schrodinger's equation)

Photons and
Matter Waves



38.1: The Photon, the Quantum of Light:

In 1905, Einstein proposed that electromagnetic radiation (or simply /ight) 1s quantized
and exists in elementary amounts (quanta) that we now call photons.

According to that proposal, the quantum of a light wave of frequency f has the energy

E = hf (photon energy).

Here / 1s the Planck constant, which has the value

h=663X10"*J-s =414 X 10" % eV s,

The smallest amount of energy a light wave of frequency f can have is Af, the
energy of a single photon. If the wave has more energy, its total energy must be
an integer multiple of /f. The light cannot have an energy of, say, 0.6/f or 75.5hf.



IZ[ Checkpoint 1

Rank the following radiations according to their associated photon energies, greatest
first: (a) yellow light from a sodium vapor lamp, (b) a gamma ray emitted by a
radioactive nucleus, (c¢) a radio wave emitted by the antenna of a commercial radio
station, (d) a microwave beam emitted by airport traffic control radar.
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Example, Emission and absorption of light as photons:

Sample Problem 38.01

A sodium vapor lamp is placed at the center of a large
sphere that absorbs all the light reaching it. The rate at
which the lamp emits energy is 100 W; assume that the
emission is entirely at a wavelength of 590 nm. At what rate
are photons absorbed by the sphere?

KEY IDEAS

The light is emitted and absorbed as photons. We assume
that all the light emitted by the lamp reaches (and thus is
absorbed by) the sphere. So, the rate R at which photons are
absorbed by the sphere i1s equal to the rate R.,; at which
photons are emitted by the lamp.
Calculations: That rate is

rate of energy emission P .

R 3 = = .
‘™ energy per emitted photon E

Emission and absorption of light as photons

Next, into this we can substitute from Eq. 38-2 (E = hf).
Einstein’s proposal about the energy £ of each quantum of
light (which we here call a photon in modern language). We
can then write the absorption rate as

}Demit

hf
Using Eq. 38-1 (f = ¢/A) to substitute for f and then enter-
ing known data, we obtain

P. A
R — emit
he
(100 W)(590 X 10~ m)

~ (6.63 X 10-37J-5)(2.998 X 10°m/s)
= 2.97 X 10% photons/s. (Answer)

R - Remit -




38.2: The Photoelectric Effect:

Let us analyze two basic photoelectric experiments, each using the apparatus Vacuum 8,‘]‘2{0‘1
of Fig. 38-1, in which light of frequency f is directed onto target T and ejects / -
electrons from it. A potential difference V' is maintained between target T and —

collector cup C to sweep up these electrons, said to be photoelectrons. This col- N

Incident
lection produces a photoelectric current i that is measured with meter A.

light

Fig. 38-1 Anapparatus used to study
the photoelectric effect. The incident light
shines on target T, ejecting electrons, which
are collected by collector cup C. The elec-
trons move in the circuit in a direction
opposite the conventional current arrows. - || - |
The batteries and the variable resistor are I

used to produce and adjust the electric

potential difference between T and C.

I- First Photoelectric Experiment:

We then vary V until it reaches a certain value, called the stopping potential V,,,, at which
point the reading of meter A has just dropped to zero. When V' =V, the most energetic

ejected electrons are turned back just before reaching the collector. Then K., the kinetic
energy of these most energetic electrons, is

K max . € V

stop»

Measurements show that for light of a given frequency, K., does not depend
on the intensity of the light source. Whether the source is dazzling bright or so
feeble that you can scarcely detect it (or has some intermediate brightness), the
maximum Kinetic energy of the ejected electrons always has the same value.



lI- Second Photoelectric Experiment: Electrons can escape only ~ The escaping electron’s

if the light frequency kinetic energy is greater
exceeds a certain value. for a greater light frequency.

If the frequency f of the incident
light is vgried aynd the associated kLT
stopping potential V,, is
measured, then the plot of V,,
versus f as shown in the figure is
obtained. The photoelectric effect
does not occur if the frequency is
below a certain cutoff frequency
fo . This is so no matter how
intense the incident light is.
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Figure 38-2 The stopping po-

tential Vi, as a function of

the frequency f of the inci-

dent light for a sodium target

T in the apparatus of Fig. 38-

1. (Data reported by R.A.

Millikan in 1916.)
The electrons within the target are held there by electric forces. To just escape from
the target, an electron must pick up a certain minimum energy ¢, where gis a
property of the target material called its work function. If the energy hf transferred to
an electron by a photon exceeds the work function of the material (if hf >¢), the
electron can escape the taraet.



The Photoelectric Equation

Einstein summed up the results of such photoelectric experiments in the equation

hf = K.x T @ (photoelectric equation). (38-5)

Let us rewrite Eq. 38-5 by substituting for K, from Eq. 38-4 (K ,.x = ¢Viop)-
After a little rearranging we get

h D

Vstop - (?)f _ e (38'6)
The ratios h/e and ®/e are constants, and so we would expect a plot of the mea-
sured stopping potential V,, versus the frequency f of the light to be a straight
line, as it 1s in Fig. 38-2. Further, the slope of that straight line should be //e. As a
check, we measure ab and bc in Fig. 38-2 and write

h  ab 235V - 0.72V
e bc (112 % 10" — 72 x 10" Hz
= 41 X 1075 V-s.

Multiplying this result by the elementary charge e, we find
h=(41XxX10"PV:s)(1.6 X107 C) = 6.6 X 107* ] -5,

which agrees with values measured by many other methods.



IZ Checkpoint 2

The figure shows data like those of Fig. 38-2 for targets of cesium,

potassium, sodium, and lithium. The plots are parallel. (a) Rank the targets
according to their work functions, greatest first. (b) Rank the plots accord- I

ing to the value of / they yield, greatest first.

(a) lithium, sodium, potassium, cesium; (b) all tie

Sample Problem 38.02 Photoelectric effect and work function

Find the work function ® of sodium from Fig. 38-2.

KEY IDEAS

We can find the work function ® from the cutoff frequency
fo (which we can measure on the plot). The reasoning is this:
At the cutoff frequency, the kinetic energy K, iIn Eq. 38-5
is zero. Thus, all the energy Af that is transferred from a
photon to an electron goes into the electron’s escape, which
requires an energy of d.

Electrons can escape only
if the light frequency
exceeds a certain value.

=

Ultraviolet

b

Calculations: From that last idea, Eq. 38-5 then gives us, with
f=r
hfy =0+ & = @,

In Fig. 38-2, the cutoff frequency f is the frequency at which
the plotted line intercepts the horizontal frequency axis,
about 5.5 X 10'* Hz. We then have

® = hf, = (6.63 X 10~*J-5)(5.5 X 10" Hz)

=36X1077] =23¢eV. (Answer)

The escaping electron’s
kinetic energy is greater
for a greater light frequency.

2 4 6 8

10
ney of incident light £ (10" H

12
z)



38.3: Photons Have Momentum: Compton Effect:

Photons Have Momentum

In 1916, Einstein extended his concept of light quanta (photons) by proposing
that a quantum of light has linear momentum. For a photon with energy Af, the
magnitude of that momentum is

P = = A (photon momentum) Detector

Incident
X rays Y

I I Scattered
A - ¢  xrays

1 1 T

Collimating

slits
Fig. 38-3 Compton’s apparatus. A beam
of x rays of wavelength A = 71.1 pm is di-
rected onto a carbon target T. The x rays
scattered from the target are observed at
various angles ¢ to the direction of the inci-
dent beam. The detector measures both the
intensity of the scattered x rays and their
wavelength.




38.3: Photons Have Momentum, Compton Effect:

Figure 38-4 shows his results. Although there is only a single wavelength
(A =71.1 pm) in the incident x-ray beam, we see that the scattered x rays con-
tain a range of wavelengths with two prominent intensity peaks. One peak is
centered about the incident wavelength A, the other about a wavelength A’ that
1s longer than A by an amount AA, which is called the Compton shift. The value
of the Compton shift varies with the angle at which the scattered x rays are de-
tected and is greater for a greater angle.

0=0° : o=45°
S . % Fig. 38-4 Compton’s
E E results for four values of
= a the scattering angle .
JIA7 Note that the Compton
70 75 70 75 shift A increases as the
Wavelength (pm) Wavelength (pm)

scattering angle increases.

Intensity
Intensity

70 75 70 75
Wavelength (pm) Wavelength (pm)



38.3: Photons Have Momentum, Compton Effect:

The x ray can bypass No energy is
An x ray heads toward y the electron at scattering transferred
a target electron. angle ¢ = 0. to the electron.
X ray ) Electron X ray
A E_l}lectlon . o O A > x
A v=20 A
(a) (b)
Intermediate Or it can backscatter Maximum
Or it can scatter at some energy is at the maximum angle energy is
intermediate angle ¢. y  transferred. ¢ = 180°. y transferred.
X ray -
!M ' X ray Electron
- - '.(P x __4_\//'\\//\ o——x
Vo A v
Y}ilectron
(¢) v (d)

Fig. 38-5 (a)Anxray approaches a stationary electron. The x ray can (b) bypass the electron (forward scat-
ter) with no energy or momentum transfer, (¢) scatter at some intermediate angle with an intermediate energy
and momentum transfer, or (d) backscatter with the maximum energy and momentum transfer.

As a result of the collision, an x ray of wavelength " moves off at an angle ¢ and the
electron moves off at an angle ¢, as shown. Conservation of energy then gives us

hf = hf' + K



hf =hf"+ K

Here /f 1s the energy of the incident x-ray photon, /f”1s the energy of the scattered x-ray
photon, and K is the kinetic energy of the recoiling electron. Since the electron may recoil

with a speed comparable to that of light, l

K = I”Cz('y_ l). L ,\‘l'l _ (V/(’)z '
‘ hf = hf' + mc?(y — 1).
h h
‘ Py + mc(y — 1).
-% = /(I, Cos ¢ + ymv cos 6 (x axis)
h . : .
0= X sin ¢ — ymv sin 6 (y axis).
— AN = (1 — cos ¢p) (Compton shift).

The quantity #/mc in Eq. 38-11 is a constant called the Compton wavelength.



Example, Compton Scattering of Light by Electrons:

X rays of wavelength A = 22 pm (photon energy = 56 keV)
are scattered from a carbon target, and the scattered rays
are detected at 857 to the incident beam.

(a) Whatis the Compton shift of the scattered rays?

KEY IDEA

The Compton shift is the wavelength change of the x rays
due to scattering from loosely bound electrons in a target.
Further, that shift depends on the angle at which the scat-
tered x rays are detected, according to Eq. 38-11. The shift is
zero for forward scattering at angle ¢ = 0°, and it is maximum
for back scattering at angle ¢ = 180°. Here we have an inter-
mediate situation at angle ¢ = 85°.

Calculation: Substituting 85° for that angle and 9.11 X
1073 kg for the electron mass (because the scattering is
from electrons) in Eq. 38-11 gives us

h
AX = —— (1 — cos ¢)
mc
(663 X 107 J-s)(1 — cos 85°)
~(9.11 X 10731 kg)(3.00 X 108 m/s)

=221 X 1072 m =~ 2.2 pm.

(Answer)

(b) What percentage of the initial x-ray photon energy is
transferred to an electron in such scattering?

KEY IDEA

We need to find the fractional energy loss (let us call it frac) for
photons that scatter from the electrons:

energy loss  E — E'
initial energy E

frac =

Calculations: From Eq. 38-2 (E = hf), we can substitute for
the initial energy E and the detected energy E’ of the X rays
in terms of frequencies. Then, from Eq. 38-1 (f = ¢/A), we can
substitute for those frequencies in terms of the wavelengths.
We find

frac = MBI A= N X =
T T T e X
AA
=24 38-12
A+ AA (38-12)
Substitution of data yields
221
frac — P 0.091.0r9.1%.  (Answer)

22 pm + 2.21 pm

Although the Compton shift A is independent of the wave-
length A of the incident x rays (see Eq. 38-11), the fractional
photon energy loss of the x rays does depend on A, increas-
ing as the wavelength of the incident radiation decreases, as
indicated by Eq. 38-12.



M Checkpoint 3

Compare Compton scattering for x rays (A = 20 pm) and visible light (A = 500 nm) at a
particular angle of scattering. Which has the greater (a) Compton shift, (b) fractional
wavelength shift, (c) fractional energy loss, and (d) energy imparted to the electron?

(a) same: (b)—(d) xrays

h
AX = —— (1 — cos ¢) (Compton shift).
mc



Light as a Probability Wave

A fundamental mystery in physics is how light can be a wave (which spreads out
over a region) in classical physics but be emitted and absorbed as photons (which
originate and vanish at points) in quantum physics. The double-slit experiment of
Module 35-2 lies at the heart of this mystery. Let us discuss three versions of it.

The Standard Version

The probabilistic description of a light
wave 1s another way to view light. It is
not only an electromagnetic wave but
also a probability wave. That is, to
every point in a light wave we can
attach a numerical probability (per unit
time interval) that a photon can be
detected in any small volume centered
on that point. This probability is directly
related to the square of the amplitude
electric field vector at that point.

Interference

fringes
Incident __
.
=
B | C

Fig. 38-6 Lightisdirected onto screen
B, which contains two parallel slits. Light
emerging from these slits spreads out by
diffraction. The two diffracted waves over-
lap at screen C and form a pattern of inter-
ference fringes. A small photon detector D
in the plane of screen C generates a sharp
click for each photon that it absorbs.



Consider the double-slit experiment again. Since an interference pattern eventually builds
up on the screen, we can speculate that each photon travels from source to screen as a
wave that fills up the space between source and screen and then vanishes in a photon
absorption at some point on the screen, with a transfer of energy and momentum to the
screen at that point.

We cannot predict where this transfer will occur (where a photon will be detected) for any
given photon originating at the source.

However, we can predict the probability that a transfer will occur at any given point on the
screen.

Transfers will tend to occur (and thus photons will tend to be absorbed) in the regions of
the bright fringes in the interference pattern that builds up on the screen. Transfers will
tend not to occur (and thus photons will tend not to be absorbed) in the regions of the
dark fringes in the built-up pattern.

Thus, we can say that the wave traveling from the source to the screen 1s a probability
wave, which produces a pattern of “probability fringes” on the screen.



The Single-Photon, Wide-Angle Version

A single photon can take
widely different paths and
still interfere with itself.

A single molecule

Pc l 1 - e, Pc l 2
atn 1\’"‘\“?-/[ atn
' *s,

- ‘e,
M, I—,: | [ i
-Jd ‘l..,.-'

Fig. 38-7 The light from a single photon
emission in source S travels over two
widely separated paths and interferes with
itself at detector D after being recombined
by beam splitter B. (After Ming Lai and
Jean-Claude Diels, Journal of the Optical
Society of America B,9,2290-2294,
December 1992.)

When a molecule in the source emits a
single photon, does that photon travel

along path 1 or path 2 in the figure (or along
any other path)? Or can it move in both
directions at once?

To answer, we assume that when a molecule
emits a photon, a probability wave radiates
in all directions from it. The experiment
samples this wave in two of those
directions, chosen to be nearly opposite
cach other.

We see that we can interpret all three
versions of the double-slit experiment

if we assume that (1) light 1s generated in
the source as photons, (2) light 1s absorbed
in the detector as photons, and (3) light
travels between source and detector as a
probability wave.



38.4: The Birth of Quantum Physics
N 50
A debate among scientists started in f" Experiment T=2000K
. = 40
the 1900 on discrepancy between S '
theory and experiment of black body -
radiation that led to the birth E (lasical
Quantum Physics. = 2 |
2 10
0 l 1 2 3 4 5 6

Wavelength (um)

Figure 38-8 The solid curve shows the experimental spectral ra-
diancy for a cavity at 2000 K. Note the failure of the classical
theory, which is shown as a dashed curve. The range of visible
wavelengths is indicated.

That intensity distribution is handled by defining a spectral
radiancy S(A) of the radiation emitted at given wavelength A:

intensity ower
S(A) = — - P — (38-12)
unit unit area unit
wavelength of emitter /\ wavelength

If we multiply S(A) by a narrow wavelength range dA, we have the intensity (that
is, the power per unit area of the hole in the wall) that is being emitted in the
wavelength range A to A + dA.



Theory. The prediction of classical physics for the spectral radiancy, for a
given temperature 7 in kelvins, is

2mek T
/\4
where k is the Boltzmann constant (Eq. 19-7) with the value
k=138 X10"%J/K =8.62 X 10 eV/K.

This classical result is plotted in Fig. 38-8 for 7" = 2000 K. Although the theoreti-
cal and experimental results agree well at long wavelengths (off the graph to the
right), they are not even close in the short wavelength region. Indeed, the theo-
retical prediction does not even include a maximum as seen in the measured
results and instead “blows up” up to infinity (which was quite disturbing, even
embarrassing, to the physicists).

Planck’s Solution. In 1900, Planck devised a formula for S(A) that neatly
fitted the experimental results for all wavelengths and for all temperatures:

27cth 1

/\5 Ehd;\kT — 1

S(A) = (classical radiation law), (38-13)

S(A) = (Planck’s radiation law). (38-14)



Einstein’s Solution. No one understood Eq. 38-14 for 17 years, but then
Einstein explained it with a very simple model with two key ideas: (1) The ener-
gies of the cavity-wall atoms that are emitting the radiation are indeed quantized.
(2) The energies of the radiation in the cavity are also quantized in the form of
quanta (what we now call photons), each with energy E = Af. In his model he ex-
plained the processes by which atoms can emit and absorb photons and how the
atoms can be in equilibrium with the emitted and absorbed light.

Maximum Value. The wavelength A, at which the S(A) is maximum (for a
given temperature 7) can be found by taking the first derivative of Eq. 38-14 with
respect to A, setting the derivative to zero, and then solving for the wavelength.
The result is known as Wien’s law:

Amax ] = 2898 um - K (at maximum radiancy). (38—15)

For example, in Fig. 38-8 for which 7' = 2000 K, A,.x = 1.5 um, which is greater
than the long wavelength end of the visible spectrum and is in the infrared
region, as shown. If we increase the temperature, A,,, decreases and the peak in
Fig. 38-8 changes shape and shifts more into the visible range.

Radiated Power. 1f we integrate Eq. 38-14 over all wavelengths (for a given
temperature), we find the power per unit area of a thermal radiator. If we then
multiply by the total surface area A, we find the total radiated power P. We have
already seen the result in Eq. 18-38 (with some changes in notation):

P = geAT* (38-16)

where o (= 5.6704 X 1078 W/m? - K*) is the Stefan-Boltzmann constant and ¢ is
the emissivity of the radiating surface (¢ = 1 for an ideal blackbody radiator).



38.5: Electrons and Matter Waves:
A=— (de Broglie wavelength)

de Broglie suggested that p =A/A might apply not only
to photons but also to electrons

Circular
) diffraction
Incident beam ring
(x rays or electrons) |
Target
(aluminum
crystals)
Photographic
film

(a)

Fig. 38-9 (a)An experimental arrangement used to demon-
strate, by diffraction techniques, the wave-like character of the in-
cident beam. Photographs of the diffraction patterns when the in-
cident beam is (b) an x-ray beam (light wave) and (¢) an electron
beam (matter wave). Note that the two patterns are geometrically
identical to each other. (Photo (b) Cameca, Inc. Photo (c¢) from
PSSC film “Matter Waves,” courtesy Education Development
Center, Newton, Massachusetts)




38.5: Electrons and Matter Waves:

.."’. < wt "c
‘.’ .'. ,-

Central Research Laboratory, Hitachi, Ltd., Kokubinju, Tokyo:
H. Ezawa, Department of Physics, Gakushuin University,
Mejiro, Tokyo

Figure 38-8 Photographs showing the buildup of an inter-
ference pattern by a beam of electrons in a two-slit in-
terference experiment like that of Fig. 38-6. Matter
waves, like light waves, are probability waves. The ap-
proximate numbers of electrons involved are (a) 7, (b)
100, (¢) 3000, () 20 000, and (e) 70 000.



M Checkpoint 4

For an electron and a proton that have the same (a) kinetic energy, (b) momentum, or
(c) speed, which particle has the shorter de Broglie wavelength?

(a) proton; (b) same; (c) proton

Sample Problem 38.04 de Broglie wavelength of an electron

What is the de Broglie wavelength of an electron with a
kinetic energy of 120 eV?

KEY IDEAS

(1) We can find the electron’s de Broglie wavelength A
from Eq. 38-17 (A = h/p) if we first find the magnitude of
its momentum p. (2) We find p from the given kinetic en-
ergy K of the electron. That kinetic energy is much less
than the rest energy of an electron (0.511 MeV, from
Table 37-3). Thus, we can get by with the classical approxi-
mations for momentum p (= mv) and Kinetic energy
K (= 3mv?).

Calculations: We are given the value of the kinetic energy.
So, in order to use the de Broglie relation, we first solve the
kinetic energy equation for v and then substitute into the

momentum equation, finding
p=\V2mK
= \/(2)(9.11 X 10731 kg)(120 eV)(1.60 X 1071 J/eV)
=591 X 10 **kg-m/s.
From Eq.38-17 then

6.63 X 1073 J-s

591 X 10~**kg-m/s
=112 X 107"m = 112 pm.

(Answer)

This wavelength associated with the electron is about the
size of a typical atom. If we increase the electron’s kinetic
energy, the wavelength becomes even smaller.



38.6: Schrodinger’s Equation:

If a wave function, y(x, y, z, t), can be used to describe matter waves, then its space and
time variables can be grouped separately and can be written in the form

\I,(\ y, <, f) _— l’[/(.\'" v, :) (,_i(ot

where w=( 27x/f) is the angular frequency of the matter wave.

Suppose that a matter wave reaches a particle detector; then the probability that a particle

will be detected in a specified time interval is proportional to |]?, where |/ is the absolute
value of the wave function at the location of the detector.

|y)? is always both real and positive, and it is called the probability density,

-
W The probability (per unit time) of detecting a particle in a small volume centered on a
. . . . . ~ o s .
given point in a matter wave is proportional to the value of [/ at that point.



38.6: Schrodinger’s Equation:

Matter waves are described by Schrodinger’s Equation.

Suppose a particle traveling in the x direction through a region in which forces acting on
the particle cause it to have a potential energy U(x). In this special case, Schrodinger’s
equation can be written as:

d*y 8mm (Schrodinger’s equation,
dx? + h? [E — UX)]¢g=0 one-dimensional motion)

For a free particle, U(x) is zero, that equation describes a free particle where a moving
particle on which no net force acting on it. The particle’s total energy in this case 1s all
kinetic, and the equation becomes:

d*y N 8mim (mv2 )lf/ = 0. =3 d*y - (27r£>2¢/’ = 0.

dx? h? 2 dx? h
Using the concept of de Broglie wavelength and the definition of wave number,
d*ys
dx?
The solution to this is: [ (x) = Ae’™ + Be ™, J

- kzt/J =0 (Schrodinger’s equation, free particle). J

Here A and B are constants.



38.6: Schrodinger’s Equation, Finding the Probability Density:
(x) = Ae™ + Be ik~

Consider a free particle that travels only
in the positive direction of x. Let the
arbitrary constant B be zero. At the same

Probability time, let us relabel the constant 4 as
density |y/(x)|° .

(x) = iy e™.

!

0 X W2 = Iy e = (Y§)le™™ 2.
Fig. 38-12 A plot of the probability
density [/ for a free particle moving in the l

positive x direction. Since |1/1* has the same
constant value for all values of x, the parti-
cle has the same probability of detection at
all points along its path. > = (Y3)(1)> = ¥  (aconstant).

letkx|2 = (eik.r)((_,ik.r )# = eikx p—ikx — pikx—ikx — o0 — 1.



38.7: Heisenberg’'s Uncertainty Principle

Our inability to predict the position of a particle with a uniform electric potential
energy. as indicated by Fig. 38-13,1s our first example of Heisenberg’s uncertainty
principle, proposed in 1927 by German physicist Werner Heisenberg. It states
that measured values cannot be assigned to the position 7 and the momentum p
of a particle simultaneously with unlimited precision.

In terms of 2 = h/24r (called “h-bar™), the principle tells us

Ax-Ap,. = h
Ay 'Apy =h (Heisenberg’s uncertainty principle).
Az-Ap, =1

Heisenberg’s Uncertainty Principle states that measured values cannot be assigned to
the position and the momentum of a particle simultaneously with unlimited precision.

Here Ax and Ap, represent the intrinsic uncertainties in the measurements of the x
components of r and p, with parallel meanings for the y and z terms. Even with the
best measuring instruments, each product of a position uncertainty and a momentum
uncertainty will be greater than 7, never less.



Example, Uncertainty Principle, position and momentum:

Assume that an electron is moving along an x axis and that
you measure its speed to be 2.05 X 10° m/s, which can be
known with a precision of 0.50%. What is the minimum
uncertainty (as allowed by the uncertainty principle in quan-
tum theory) with which you can simultaneously measure the
position of the electron along the x axis?

KEY IDEA

The minimum uncertainty allowed by quantum theory is
given by Heisenberg’s uncertainty principle in Eq. 38-20. We
need only consider components along the x axis because we
have motion only along that axis and want the uncertainty
Ax in location along that axis. Since we want the minimum
allowed uncertainty, we use the equality instead of the in-
equality in the x-axis part of Eq. 38-20, writing Ax-Ap, = f.

Calculations: To evaluate the uncertainty Ap, in the mo-
mentum, we must first evaluate the momentum component
p,. Because the electron’s speed v, is much less than the
speed of light ¢, we can evaluate p, with the classical expres-
sion for momentum instead of using a relativistic expres-

sion. We find
p, = mv, = (9.11 X 1073 kg)(2.05 X 10% m/s)
= 1.87 X 107*kg-m/s.
The uncertainty in the speed is given as 0.50% of the measured

speed. Because p, depends directly on speed, the uncertainty
Ap, in the momentum must be 0.50% of the momentum:

Ap, = (0.0050)p,
= (0.0050)(1.87 X 10 kg-m/s)
=935 X 10?"kg-m/s.

Then the uncertainty principle gives us

oo B _ (663X 10745-5)0m
YT Ap, 935X 10 7 kg-mls

=113 X 107 ¥m = 11 nm,

(Answer)

which is about 100 atomic diameters. Given your measurement
of the electron’s speed, it makes no sense to try to pin down the
electron’s position to any greater precision.



38.8: Reflection from a Potential Step

In Fig. 38-14, we send a beam of a great many nonrelativistic electrons, each of to-
tal energy E, along an x axis through a narrow tube. Initially they are in region 1
where their potential energy is U = 0, but at x = 0 they encounter a region with a
negative electric potential V,,. The transition is called a potential step or potential
energy step. The step is said to have a height U,. which is the potential energy an
electron will have once it passes through the boundary at x = 0, as plotted in

Fig. 38-135 for potential energy as a function of position x. (Recall that U = ¢gV.
Here the potential V,, is negative, the electron’s charge ¢ is negative, and so the
potential energy U, is positive.)

Figure 38-14 The elements of a tube in which
an electron (the dot) approaches a region
with a negative electric potential V.

Classically, the electron has
too much energy to be
reflected by the potential step.

Energy

—l—_—
Electron

‘b

X
0

Figure 38-15 An energy diagram containing
two plots for the situation of Fig. 38-14: (1)
The electron’s mechanical energy E is plot-
ted. (2) The electron’s electric potential en-
ergy U is plotted as a function of the elec-
tron’s position x. The nonzero part of the
plot (the potential step) has height U,

According to classical physics, if a particle’s initial kinetic energy
exceeds the potential energy, it should never be retlected by the re-
gion. However, according to quantum physics, there is a reflection
coefficient R that gives a finite probability of reflection. The proba-

bility of transmissionis 7' = 1—R.



Reflection from a Potential Step (2)

d2¢ + oo (E U( )) 0 Classically, the electron ha
dx2 'Yl o — W ! 1 s
dxz h2 3 w oo rm:ch'yonorgy to b':o
v reflected by the potential step.
In region 1 (x < 0), U = 0 | o YomE by the potential step

h } nevgy
- 13

P, (x) = Ae'*™ 4 Be~'*x )
For the case that E>U, I

, 2m(E - U 0
Inregion 2 (x > 0), U = U, kb:‘/m(h ) E > U,

P,(x) = Ce'*»* 4 De~ikpX
The electron should go in +x direction,so D = 0
P2 (x) = Ce'ko¥
The wave equation should satisfy boundary condition (i is continuous)
1(0) = ,(0)
= A+B=C



Reflection from a Potential Step (3)

wl (x) = AeikX 4 Be~ikx ll)z(x) = Celkpx

The wave equation should satisfy boundary condition

Y is continuous: Y, (0) = ,(0) = A4+ B=(

dy,(0) — d¥2(0) = Ak — Bk = Ck,,

Y’ is continuous:

dx dx
. k—k
. e B|? - b2
= |=Z R =

Reflection coefficient R |A| (k+k,,)

r 32 g 2kky,
Transmission coefficient T=1—-R T = ————
(k + kp)?

For E<U,

For the second case where E < V,, the particles again can be reflected or transmitted when x < 0,
but for the solution when x > 0, the book says:

wr(x) = Ce ™ 2* + D*  (x > 0).

Since the wave function must be finite everywhere, and since the term ¢%2* diverges when
x — 00, the constant D has to be zero. Thus, the complete wave function is

Aei(klx—cot)+Be—i(k1x+wt)’ x <0,

Yix.0) = Ce—k&xe—iwt, > - 0 | 4



Quantum mechanics
V(x) Vix)
For E>U, 1

For E<U,

> X

Probability
density |y(x)f

Classical mechanics W

0 L

Fig. 38-16 A plot of the probability
density | /1% of the electron matter wave for
the situation of Fig. 38-15. The value of i//* is
nonzero to the right of the potential barrier.

0

In Classical Mechanics, electrons must climb Quantum Mechanics allows electron with less

the potential hill to appear on the other side. energy to tunnel thru the barrier and appear
on the other side.




38.9: Tunneling Through a Potential Barrier:

Fig. 38-13 A puck slides over
frictionless ice toward a hill. The

puck’s gravitational potential at the P
top of the hill will be Uy, e - x

As the puck climbs the hill, kinetic energy K is transformed into gravitational
potential energy U. If the puck reaches the top, its potential energy 1s

U,. Thus, the puck can pass over the top only 1f its mitial mechanical energy
E >U,.

The hill acts as a potential energy barrier (or, for short, a potential barrier).



Can the electron pass
through the region of

There is a potential barrier for a nonrelativistic electron : _
negative potential?

traveling along an idealized wire of negligible thickness
(Figure 38-14). The electron, with mechanical energy E, V=0 V<0 V=0

approaches a region (the barrier) in which the electric e o | _ N
potential V, is negative.

The GIGCtI'OH, being negatively charged, will have a Fig. 38-14 The elements of an 1idealized
positive potential energy U, ) ( =q Vb ) 1n that region (Flg thin wire in which an electron (the dot)
38-15) IfE >Ub: we expect the electron to pass thIOngh ‘f]p[)l‘Oi]Ch.eS a negative electric potential V,
the barrier region and come out to the right of x =L in 'n the region x = Otox = L.

Fig. 38-14. If E <U,, we expect the electron to be unable

to pass through the barrier region.

Classically, the electron
lacks the energy to pass

, : Fig. 38-15 An electron’s mechanical energy E is plotted when the
through the barrier region.

electron is at any coordinate x<0.

Energy The electron’s electric potential energy U is plotted as a function of
| the electron’s position x, assuming that the electron can reach any
U, value of x. The nonzero part of the plot (the potential barrier) has
height U, and thickness L.

——-_1'4.-._’—— R —— [~ —— ——— —— ——
Electron

0 Ll



wA(x) - Aeikox + Be-ikox
wright, A(X) = Ae'
wleft, A(X) = Be-x

w B bel°w(X) - Fekbelowx <+ Ge-kbelowx
wB above(x) = Heikabovex + Ke-ikabovex
(x) = H eKaboveX (x) = K @ KaboueX

’(pc(x) - Ceikox + De'ikox
wright, C(x) = Ceikox

wleft, C(x) = o

wB, above, right wB, above, left

E A A, B,C,F,G H,and K
may all have some value

v v v

_— —_— —_— e




Something astounding can happen to the electron when £ <U,,.

Since 1t 1s a matter wave, the electron has a finite probability of leaking (or, tunneling)
through the barrier and materializing on the other side, moving rightward with energy E
as though nothing had happened in the region of 0 <x < L.

Probability
. , 9
density |y (x)]*

0 L

Fig. 38-16 A plot of the probability
density |1 of the electron matter wave for
the situation of Fig. 38-15. The value of [i/? is
nonzero to the right of the potential barrier.

Classically, the electron
lacks the energy to pass
through the barrier region.

Energy

——-.1‘,‘-.—>—— 1
Electron

0 L

The wave function y(x) describing the
electron can be found by solving
Schrodinger’s equation separately for the
three regions: (1) to the left of the barrier, (2)
within the barrier, and (3) to the right of the
barrier.

The arbitrary constants that appear in the
solutions can then be chosen so that the
values of y(x) and its derivative with respect
to x join smoothly at x =0 and at x =L.
Squaring the absolute value of y(x) then
yields the probability density.



Probability
. \ |9
density |y (x)|°

W |

0 L

Fig. 38-16 A plot of the probability
density |i/? of the electron matter wave for
the situation of Fig. 38-15. The value of [/ is
nonzero to the right of the potential barrier.

T =~ (_,—ZI)L~

Within the barrier the probability density
decreases exponentially with x.

To the right of the barrier, the probability
density plot describes a transmitted (through the
barrier) wave with low but constant amplitude.

We can assign a transmission coefficient 7 to
the incident matter wave and the barrier. This
coefficient gives the probability with which an
approaching electron will be transmitted through
the barrier—that is, that tunneling will occur. For
example if T = 0.020, then for every 1000
electrons fired at the barrier, 20 will tunnel
through and 980 will be reflected back.

Approximately, Sa5m (U, = E)
b = \/ ) :

h?

the value of 7'is very sensitive to the three variables on which it depends: particle
mass m, barrier thickness L, and energy ditference U, — E. (Because we do not
include relativistic effects here, E does not include mass energy.)



Barrier Tunneling, The Scanning Tunneling Microscope (STM):

—

Quartz
rods

DOl OallalOalOs Surface

Fig. 38-17 The essence of a scanning
tunneling microscope (STM). Three quartz
rods are used to scan a sharply pointed
conducting tip across the surface of inter-
est and to maintain a constant separation
between tip and surface. The tip thus
moves up and down to match the contours
of the surface, and a record of its move-
ment provides information for a computer
to create an image of the surface.

The Nobel Prize in Physics
1986

I

Ernst Ruska Gerd Binnig
Prize share: 1/2 Prize share: 1/4 Prize share: 1/4

Heinrich Rohrer

The Nobel Prize in Physics 1986 was divided, one half awarded to
Ernst Ruska "for his fundamental work in electron optics, and for
the design of the first electron microscope”, the other half jointly to
Gerd Binnig and Heinrich Rohrer "for their design of the scanning
tunneling microscope”.




[ron atoms on the surface of Cu(111)



Sample Problem 38.06 Barrier tunneling by matter wave

Suppose that the electron in Fig. 38-17, having a total energy
E of 5.1 eV, approaches a barrier of height U, = 6.8 eV and
thickness L. = 750 pm.

(a) What is the approximate probability that the electron
will be transmitted through the barrier, to appear (and be
detectable) on the other side of the barrier?

KEY IDEA

The probability we seek is the transmission coefficient 7" as
given by Eq.38-38 (T = ¢~?"L), where

_ [8mm(U, — E)
b = 2 :

Calculations: The numerator of the fraction under the
square-root sign is

(87)(9.11 X 10~ kg)(6.8 €V — 5.1 V)
X (1.60 X 10719 J/eV) = 1.956 X 10~ J -kg.

1.956 X 1047 J-kg

Th = -
e (6.63 X 10~ J-5)

= 6.67 X 10°m™".

The (dimensionless) quantity 2b 1. is then
2bL = (2)(6.67 X 10 m~1)(750 X 102 m) = 10.0

and, from Eq. 38-38, the transmission coefficient is
T=e 2L =¢100=45x10"°.

Thus, of every million electrons that strike the barrier, about
45 will tunnel through it, each appearing on the other side
with its original total energy of 5.1 eV. (The transmission
through the barrier does not alter an electron’s energy or
any other property.)

(Answer)

(b) What is the approximate probability that a proton
with the same total energy of 5.1 eV will be transmitted
through the barrier, to appear (and be detectable) on the
other side of the barrier?

Reasoning: The transmission coefficient 7 (and thus the
probability of transmission) depends on the mass of the
particle. Indeed, because mass m is one of the factors in the
exponent of ¢ in the equation for 7, the probability of trans-
mission is very sensitive to the mass of the particle. This time,
the mass is that of a proton (1.67 X 10 %" kg), which is signif-
icantly greater than that of the electron in (a). By substitut-
ing the proton’s mass for the mass in (a) and then continuing
as we did there, we find that 7 = 10!, Thus, although the
probability that the proton will be transmitted is not exactly
zero, it 1s barely more than zero. For even more massive par-
ticles with the same total energy of 5.1 eV, the probability of
transmission is exponentially lower.
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Figure 38-17 An energy diagram containing



