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39.1: String Waves and Matter Waves:

This observation applies to waves of all kinds, including 
matter waves.

For matter waves, however, it is more convenient to deal with 
the energy E of the associated particle than with the frequency 
f of the wave.



39.2: Energies of a Trapped Electron: One-dimensional trap

Each value of n identifies a state of 
the oscillating string; the integer n is 
a quantum number.
For each state of the string, the 
transverse displacement of the 
string at any position x along the 
string is given by



39.2: Energies of a Trapped Electron:
Finding the quantized energies:



39.2: Energies of a Trapped Electron:
Finding the quantized energies:



39.2: Energies of a Trapped Electron:
Finding the quantized energies:





Example, Energy levels in a 1-D infinite potential well:



Example, Energy levels in a 1-D infinite potential well, cont.:



39.4: Wave Functions of a Trapped Electron:



39.4: Wave Functions of a Trapped Electron
Normalization and Zero-Point Energy:

Ø The product         gives the probability that an electron in an infinite well can be 
detected in the interval of the x axis that lies between x and x +dx. We know that the electron 
must be somewhere in the infinite well; so it must be true that

Ø n=1 in the previous equation defines the state of lowest energy for an electron in an 
infinite potential well, the ground state. Therefore in quantum physics confined systems 
cannot exist in states with zero energy. They must always have a certain minimum energy 
called the zero-point energy.





Example, Detection probability in a 1D potential well:



Example, Detection probability in a 1D potential well:



An Electron in a Finite Well:

To find the wave functions describing the quantum 
states of an electron in the finite well of Fig. 39-7, 
one needs to consider Schrödinger’s equation. 

For motion in one dimension, Schrödinger’s equation 
in the form is:



Fig. 39-8 The first three probability densities for an electron confined to a finite potential 
well of depth U0 =450 eV and width L =100 pm. Only states n =1, 2, 3, and 4 are allowed.

An Electron in a Finite Well:

For a finite well, the electron matter wave penetrates the walls of 
the well—into a region in which Newtonian mechanics
says the electron cannot exist.

However, from the plots in Fig. 39-8, we see there is leakage into 
the walls, and that the leakage is greater for greater values of 
quantum number n.



Example, Electron escaping from a finite well:



More Electron Traps, Nanocrystallites:

Fig. 39-10 Two samples of powdered cadmium selenide, a 
semiconductor, differing only in the size of their granules. Each 
granule serves as an electron trap. The lower sample has the larger 
granules and consequently the smaller spacing between energy levels 
and the lower photon energy threshold for the absorption of light. 
Light not absorbed is scattered, causing the sample to scatter light of
greater wavelength and appear red. The upper sample, because of its 
smaller granules, and consequently its larger level spacing and its 
larger energy threshold for absorption, appears yellow. (From 
Scientific American, January 1993,page 122.Reproduced with 
permission of Michael Steigerwald, Bell Labs–Lucent Technologies)

A given nanocrystallite can absorb photons with an energy above a certain threshold energy
Et (=hft) and thus wavelengths below a corresponding threshold wavelength



More Electron Traps, Quantum Dots:



39.5: The Bohr Model of the Hydrogen Atom:

The angular momentum:             
  = 

For quantization of l,



39.5: The Bohr Model of the Hydrogen Atom, Orbital energy is quantized:



39.5: The Bohr Model of the Hydrogen Atom, Energy Changes:

(Rydberg Constant)

R= 13.6 eV
h= 4.1357 × 10-15 eV s



39.9: Schrodinger’s Equation and The Hydrogen Atom:



Bohr Model of the Hydrogen Atom, Electron Transitions, Atomic 
Energy Levels, Lyman & Balmer Series

(UV) (visible) (IR)



Schrodinger’s Equation and The Hydrogen Atom:

Fig. 39-18 (a) An energy-level diagram for the hydrogen atom. Some of the 
transitions for (b) the Lyman series. For each, the longest four wavelengths and the 
series-limit wavelength are plotted on a wavelength axis. Any wavelength shorter 
than the series-limit wavelength is allowed.



Schrodinger’s Equation and The Hydrogen Atom:

Fig. 39-18 Some of the transitions for (c) the Balmer series, and (d) the Paschen series.
For each, the longest four wavelengths and the series-limit wavelength are plotted on a
wavelength axis. Any wavelength shorter than the series-limit wavelength is allowed.



Q: A photon is emitted as an atom makes a transition from n = 4 to n = 2 level. What
is the frequency, wavelength and energy of the emitted photon?

Solution:

-
The negative sign shows 
that photon has been 
emitted.



Solution:

Q:  A Hydrogen atom initially in its ground state i.e., n = 1 level, absorbs a photon and
ends up in n = 4 level. What must have been the frequency of the photon? Now the
electron makes spontaneous emission and comes back to the ground state. What are
the possible frequencies of the photons emitted during this process.

Direct Transition from n = 4 to n = 1

Indirect Transitions
(a) From level 4 to level 2 and then from 2 to level 1.
(b) From level 4 to level 3 and then from 3 to level 1.
(c) From level 4 to level 3, then from level 3 to level 2 
and then finally from level 2
to level 1.

The positive sign shows that photon has been absorbed.



Quantum Numbers and The Hydrogen Atom:

Each set of quantum numbers (n, l, ml) identifies the wave function of a particular quantum state. The 
quantum number n, is called the principal quantum number. The orbital quantum number l is a 
measure of the magnitude of the angular momentum associated with the quantum state. The orbital 
magnetic quantum number ml is related to the orientation in space of this angular momentum vector.

The restrictions on the values of the quantum numbers for the hydrogen atom, as listed in Table 39-2, 
are not arbitrary but come out of the solution to Schrödinger’s equation.





The Wave Functions of the Hydrogen Atom’s Ground State:

The wave function for the ground state of the hydrogen atom, obtained by solving the three-
dimensional Schrödinger equation and normalizing is
     
     where a is the Bohr radius.

 The probability that an electron can be detected in any given (infinitesimal) volume element 
dV located at radius r, of width dr, from the center of the atom is

     in which 4pr2 is the surface area of the inner shell 
and dr is the radial distance between the two shells.

The radial probability density P(r) is a linear probability density such that

This leads to: 



The Wave Functions of the Hydrogen Atom’s Ground State:



Example, Probability of detection of an electron in a hydrogen atom:



Example, Light emission from a hydrogen atom:



Hydrogen Atom States with n = 2:



Hydrogen Atom States with n = 2:



Hydrogen Atom States with large n:


