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39.1: String Waves and Matter Waves:

R

W Confinement of a wave leads to quantization— that is, to the existence of discrete
states with discrete energies. The wave can have only those energies.

This observation applies to waves of all kinds, including
matter waves.

For matter waves, however, 1t 1s more convenient to deal with
the energy £ of the associated particle than with the frequency
f of the wave.



39.2: Energies of a Trapped Electron: One-dimensional trap

An electron can be trapped I

nA . | .
. _ =—— forn=1,23,....
in the V=0 region. 2

Voo V=0 Voo Each value of » identifies a state of
¢ _\ the oscillating string; the integer # is
’«l. —»‘ a quantum number.
x=0 x=1 For each state of the string, the
Fig. 39-1 The elements of an transverse displacement of the
idealized “trap” designed to confine string at any position x along the

an electron to the central cylinder. We
take the semi-infinitely long end
cylinders to be at an infinitely great nar

negative potential and the central Yalx) = A Sin( i \) forn=1223, ...,
cylinder to be at zero potential. | |

string 1s given by




39.2: Energies of a Trapped Electron:

Finding the quantized energies:

h h
A — — .
P \N2mE

- h?
E, = n-, forn=1,2.3,....

Sml?

An electron can be trapped
in the U = 0 region.

Ul x)

0

Fig. 39-2 The electric potential
energy U(x) of an electron confined
to the central cylinder of the ideal-
ized trap of Fig. 39-1. We see that
U=0for0<x<L,andU— »
forx <Oandx > L.



39.2: Energies of a Trapped Electron:
Flndlng the quantized energies: These are the lowest five energy

levels allowed the electron.
(No intermediate levels
are allowed.)

000 — .
1000 4th excited )
h? , 800 [
E, = |53 |n° forn=1,2,3,....
SmlL~* S
S 3rd excited
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£
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2nd excited .
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200 Ist excited ‘
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Fig. 39-3 Several of the allowed
energies given by Eq. 39-4 for an elec-
tron confined to the infinite well of Fig.
39-2. Here width L = 100 pm. Such a
plot is called an energy-level diagram.



39.2: Energies of a Trapped Electron: Fig. 39-4 (a) Excitation of a trapped
F|nd|ng the quantized energies. electron from the energy level of its ground

state to the level of its third excited state.
(b)—(d) Three of four possible ways the
electron can de-excite to return to the en-
ergy level of its ground state. (Which way 1s
not shown?)

The electron is excited It can de-excite to a lower level in several
to a higher energy level. ways (set by chance).
E E L E
E,
AE = Ehigh o Elow' ’
Ey
E,
(a) Ky (p) (¢) (d)

fan
W If a confined electron is to absorb a photon, the energy Af of the photon must

equal the energy difference AE between the initial energy level of the electron and
a higher level.

hf = AE = Ehigh — Eiow-




M Checkpoint 1

Rank the following pairs of quantum states for an electron confined to an infinite well

according to the energy differences between the states, greatest first: (a) n = 3 and
n=1,(b)n=5andn =4,(c)n=4andn = 3.

b.a.c

E—( i3 )2 forn =1.2.3
=\ ) orn=1,23,....



Example, Energy levels in a 1-D infinite potential well:

An electron is confined to a one-dimensional, infinitely deep
potential energy well of width L = 100 pm.

(a) What is the smallest amount of energy the electron can
have?

Lowest energy level: Here, the collection of constants in
front of n? in Eq. 39-4 is evaluated as

oo (6.63 X 107 J-s5)?
8mL>  (8)(9.11 X 103 kg)(100 X 102 m)?
= 6.031 X 107187. (39-7)

The smallest amount of energy the electron can have corre-
sponds to the lowest quantum number, which is n = 1 for the
ground state of the electron. Thus, Eqgs. 39-4 and 39-7 give us

h? )
E, = 2 = (6.031 X 10718 ])(12

~ 6.03 X 1078) = 37.7 eV. (Answer)
(b) How much energy must be transferred to the electron if it

is to make a quantum jump from its ground state to its second
excited state?

AE31=( i )(3)2—( L )(1)2

= (6.031 X 107¥J)(8)
=483 X 1077J =301 eV. (Answer)

Upward jump: The energies E, and E; depend on tl
quantum number n, according to Eq. 39-4. Therefore, subs
tuting that equation into Eq. 39-8 for energies E; and E, a1

E E E

n=3 n=3 n=3

n=1 o n=1 n=1
(@) (b) (o)

Fig. 39-5 De-excitation from the second excited state to the
ground state either directly (a) or via the first excited state (b, ¢).




Example, Energy levels in a 1-D infinite potential well, cont.:

(c) If the electron gains the energy for the jump from energy
level E; to energy level E; by absorbing light, what light
wavelength is required?

KEY IDEAS

(1) If light is to transfer energy to the electron, the transfer
must be by photon absorption. (2) The photon’s energy must
equal the energy difference AE between the initial energy
level of the electron and a higher level, according to Eq. 39-6
(hf = AE). Otherwise, a photon cannot be absorbed.

Wavelength: Substituting c/A for f, we can rewrite
Eq.39-6 as  he

AE"
For the energy difference AE;; we found in (b), this equa-
tion gives us

A

(39-9)

hc
~ AR,
(6.63 X 10734 J-5)(2.998 X 108 m/s)
483 x 107V]
=412 X 10 m. (Answer)

(d) Once the electron has been excited to the second excited
state, what wavelengths of light can it emit by de-excitation?

A

The direct jump involves the same energy difference
AE;; we found in (¢). Then the wavelength is the same as we
calculated in (c)—except now the wavelength is for light

that is emitted, not absorbed. Thus, the electron can jump di-
rectly to the ground state by emitting light of wavelength

A=412X 107" m. (Answer)

Following the procedure of part (b), you can show that
the energy differences for the jumps of Figs. 39-5b and c are

AE, =3.016 X 10-7] and AE, = 1.809 X 10~ 1.

From Eq. 39-9, we then find that the wavelength of the light
emitted in the first of these jumps (fromn = 3ton = 2)is

A =6.60 X107 m, (Answer)

and the wavelength of the light emitted in the second of
these jumps (fromn = 2ton = 1)1is

A =110 X 10" m. (Answer)
Upward jump: The energies E; and E, depend on the

quantum number n, according to Eq. 39-4. Therefore, substi-
tuting that equation into Eq. 39-8 for energies £; and E,; and

E E E

(a) (b) (e)

Fig. 39-5 De-excitation from the second excited state to the
ground state either directly (@) or via the first excited state (b, ¢).



39.4: Wave Functions of a Trapped Electron: The probability density

must be zero at the

Fig. 39-6 The probability density y2(x) infinite walls.
for four states of an electron trapped in a
one-dimensional infinite well; their quantum L
numbers are n = 1,2, 3, and 15. The electron n=1
is most likely to be found where 2(x) is Y1
greatest and least likely to be found where
. |
Pr2(x) is least. % 50 100
x (pm)
probability p(x) . , . o
of detection in width dx | — ( Probability density ¢7(x)) . : i
X = { position x (width dx),
centered on position x at poston x ' %
2 % 50 100
p(x) _ !l/"(X) dx. N (‘l)m)
n=23
. [ nm
P, (x) = A sm(Tx), forn=1,2,3,..., w2
. % 50 100
probability of detection| _ [ = | x (pm)
, , = | pl)
between x; and x, .

n=15

*2 . nir Y
= J A?sin? (— x | dx. Yis
x L

1

0
0 50 100

x (pm)



39.4: Wave Functions of a Trapped Electron
Normalization and Zero-Point Energy:

» The product ¥;(x) dx gives the probability that an electron in an infinite well can be
detected in the interval of the x axis that lies between x and x +dx. We know that the electron

must be somewhere 1n the infinite well; so 1t must be true that

+ o
f t/I,z,(x) dx =1 (normalization equation)

h? 5
E"=(8mL2>n’ forn=1,2,3,....

» n=1 in the previous equation defines the state of lowest energy for an electron in an
infinite potential well, the ground state. Therefore in quantum physics confined systems
cannot exist in states with zero energy. They must always have a certain minimum energy

called the zero-point energy.



M Checkpoint 2 u ‘ ‘ ‘ ‘

The figure shows three

infinite potential wells of I 2L 3L

widths L, 2L, and 3L; () (D) (¢)

each contains an elec-

tron in the state for which n = 10. Rank the wells according to (a) the number of maxima
for the probability density of the electron and (b) the energy of the electron, greatest first.

(a) all tie; (b)a, b, c

h2
E, = ( >n2, forn=1,2.3,....

M Checkpoint 3

Each of the following particles is confined to an infinite well, and all four wells have the
same width: (a) an electron, (b) a proton, (c) a deuteron, and (d) an alpha particle. Rank
thelr zero-point energies, greatest first. The particles are listed in order of mcreasing mass.

a.b.c.d



Example, Detection probability in a 1D potential well:

Yalx) = A Sin(

Evaluate the amplitude constant A in Eq. 39-10 for an infinite
potential well extending fromx = Otox = L.

KEY IDEA

The wave functions of Eq.39-10 must satisfy the normalization
requirement of Eq. 39-14, which states that the probability that
the electron can be detected somewhere along the x axis is 1.

Calculations: Substituting Eq. 39-10 into Eq. 39-14 and
taking the constant A outside the integral yield

L
Azj Sin2<n—ﬂ-x> dx = 1.
0 L

We have changed the limits of the integral from —o and + to
0 and L because the wave function is zero outside these new
limits (so there’s no need to integrate out there).

We can simplify the indicated integration by changing the
variable from x to the dimensionless variable y, where

(39-15)

(39-16)

hence

ﬂx), forn=1,2.3,....

39-10
When we change the variable, we must also change the
integration limits (again). Equation 39-16 tells us that y = 0
when x = 0 and that y = n7r when x = L; thus 0 and n7 are
our new limits. With all these substitutions, Eq. 39-15 becomes

L niw
Az—f (siny)dy = 1.
ni Jo

We can use integral 11 in Appendix E to evaluate the inte-
gral, obtaining the equation

A’L y _ sinly '”'_1
nm | 2 4 |, '
Evaluating at the limits yields
AL nmw _
nw 2
2
thus A= A (Answer) (39-17)

This result tells us that the dimension for A% and thus for
2(x), is an inverse length. This is appropriate because the
probability density of Eq.39-12 is a probability per unit length.



Example, Detection probability in a 1D potential well:

A ground-state electron is trapped in the one-dimensional
infinite potential well of Fig. 39-2, with width L = 100 pm.

(a) What is the probability that the electron can be detected
in the left one-third of the well (x; = 0 to x, = L/3)?

KEY IDEAS

(1) If we probe the left one-third of the well, there is no guaran-
tee that we will detect the electron. However, we can calculate
the probability of detecting it with the integral of Eq.39-13. (2)
The probability very much depends on which state the electron
is in—that is, the value of quantum number n.

Calculations: Because here the electron is in the ground
state, we set n = 1 in Eq. 39-13. We also set the limits of inte-
gration as the positions x; = 0 and x, = L/3 and set the
amplitude constant A as V2/L (so that the wave function is
normalized). We then see that

(probability of detection) a j B 2( A7 ) d
in left one-third ), M\ Y
We could find this probability by substituting 100 X 10~ m
for L and then using a graphing calculator or a computer
math package to evaluate the integral. Here, however, we
shall evaluate the integral “by hand.” First we switch to a new

integration variable y:

y = T ¢ and dx =£dy.
L T

From the first of these equations, we find the new limits of
integration to be y, = 0 for x;, = 0 and y, = /3 for x, = L/3.
We then must evaluate

2 L 73
probability = (—> (—> f (sin® y) dy.
L a 0

Using integral 11 in Appendix E, we then find

2 in 2 /3
probability = — (l - ) = 0.20.
m \2 4 0

Thus, we have

(probability of detection

in left one-third ) = W20 (e

That is, if we repeatedly probe the left one-third of the well, then
on average we can detect the electron with 20% of the probes.

(b) What is the probability that the electron can be de-
tected in the middle one-third of the well?

Reasoning: We now know that the probability of detection
in the left one-third of the well is 0.20. By symmetry, the probabil-
ity of detection in the right one-third of the well is also 0.20.
Because the electron is certainly in the well, the probability of de-
tection in the entire well is 1. Thus, the probability of detection in
the middle one-third of the well is

(probability of detection

in middle one-third ) = 1= 2 =

= 0.60. (Answer)



An Electron in a Finite Well:

0 L

Fig. 39-7 A finite potential energy well.

The depth of the well is Uy and its width is
L.As in the infinite potential well of Fig.
39-2, the motion of the trapped electron is
restricted to the x direction.

To find the wave functions describing the quantum
states of an electron in the finite well of Fig. 39-7,
one needs to consider Schrodinger’s equation.

For motion in one dimension, Schrodinger’s equation
in the form is:

d*ys 87’m
— + . E — Ux)|y = 0.
dx? h? [ ()l




An Electron in a Finite Well:

| — | - | x |
=50 0 50 100 150

x (pm)

Fig. 39-8 The first three probability densities for an electron confined to a finite potential
well of depth U, =450 eV and width L =100 pm. Only states n =1, 2, 3, and 4 are allowed.

Fig. 39-9 The energy-level diagram corre-

B N : sponding to the probability densities of
e onquantized o o T ) .
Fig.39-8. If an electron is trapped in the finite
potential well, it can have only the energies
correspondington = 1,2,3,and 4. If it has an
450~ — Top of well energy of 450 eV or greater, it is not trapped
%’ E E, =393 eV and its energy is not quantized.
g
s Ey =233 eV .
n : For a finite well, the electron matter wave penetrates the walls of
the well—into a region in which Newtonian mechanics
E E> = 106 eV says the electron cannot exist.
0 Ey =27 eV However, from the plots in Fig. 39-8, we see there is leakage into

the walls, and that the leakage is greater for greater values of
quantum number 7.



Example, Electron escaping from a finite well:

Suppose a finite well with U, = 450 eV and L = 100 pm
confines a single electron in its ground state.

(a) What wavelength of light is needed to barely free the
electron from the potential well if the electron absorbs a

single photon from the light?
Barely escaping: The electron is initially in its ground

state, with an energy of £, = 27 eV. So, to barely become
free, it must receive an energy of

U,— E,=450eV — 27eV =423 eV.
he

— =U,- E,
A 0 1

from which we find
he
Uy, — E,
(6.63 X 1073*J-5)(3.00 X 10¥ m/s)
(423 eV)(1.60 X 107 J/eV)
=294 X 107" m = 2.94 nm. (Answer)

Thus, if A =2.94 nm, the electron just barely escapes.

A=

(b) Can the ground-state electron absorb light with A =
2.00 nm? If so, what then is the electron’s energy?

More than escaping: The energy transferred to the elec-
tron is the photon energy:

_(6.63 X 107#7J-5)(3.00 X 10% m/s)
2.00 X 10~ m

=9.95 X 1077J = 622 eV.

c
hf = h—
f 1/\

From (a), the energy required to just barely free the electron
from the potential well is U, — E, (= 423 V). The remainder
of the 622 eV goes to kinetic energy. Thus, the kinetic energy
of the freed electron is

K= hf — (U, - E))
= 622eV —423eV =199eV. (Answer)



More Electron Traps, Nanocrystallites:

Fig. 39-10 Two samples of powdered cadmium selenide, a
semiconductor, differing only in the size of their granules. Each
granule serves as an electron trap. The lower sample has the larger
granules and consequently the smaller spacing between energy levels
and the lower photon energy threshold for the absorption of light.
Light not absorbed is scattered, causing the sample to scatter light of
greater wavelength and appear red. The upper sample, because of its
smaller granules, and consequently its larger level spacing and its
larger energy threshold for absorption, appears yellow. (From
Scientific American, January 1993,page 122.Reproduced with
permission of Michael Steigerwald, Bell Labs—Lucent Technologies)

(E = (h*/8mL*)n?)

A given nanocrystallite can absorb photons with an energy above a certain threshold energy

E, (=hf;) and thus wavelengths below a corresponding threshold wavelength , _ ¢ _ ¢”
i ES




More Electron Traps, Quantum Dots:

Conducting
Metal
Insulator
Fig. 39-11 A quantum dot, or “artificial Semi-
atom.” (a) A central semiconducting layer Conuctox
forms a potential energy well in which elec- Tistiliins

trons are trapped. The lower insulating layer

is thin enough to allow electrons to be added

to or removed from the central layer by bar-

rier tunneling if an appro»priate voltage is ap- 0
plied between the leads. (b) A photograph of

an actual quantum dot. The central purple

band is the electron confinement region.

(From Scientific American, September 1995,

page 67. Image reproduced with permission of

H. Temkin, Texas Tech University)

Metal

Conducting
*{lead

(b)




39.5: The Bohr Model of the Hydrogen Atom:

Nucleus

Circular orbit

Electron

(a) Bohr's model for
hydrogen resembles
the orbital model
of a planet around
a star.

Y —e

(b)

Fig. 39-16 (a) Circular orbit of an elec-
tron in the Bohrmodel of the hydrogen
atom. (b) The Coulomb force F on the
electron is directed radially inward toward
the nucleus.

g1l

= K
.2
/

1 & ( V2 )
— = m| —|,
direy 12 .or
The angular momentum: ¢ = rmv sin ¢,
= rmy sin 90°

For quantization of [,  rmv = n#,

nh
p = —,
rm

17280

> r= —n?, forn=1,23,....
mTme*

‘ /‘=anz. forn=1,2.3,....

17280

= 5291772 X 107" m = 52.92 pm.

a = >
mme-



39.5: The Bohr Model of the Hydrogen Atom, Orbital energy is quantized:

— T
E=K+U rmv = nh.,
| e-
- : nh
= F‘mv2 + (— . . v =
Z | 4778() v | Fn
| e2
—> E=—— ‘
67780 r
me* 1

E =—— forn=1.2.3....
— " 8edh? n?

2180 X 1078J  13.61eV

=) E,6 = - = —, forn=1,2,3,....

n- n-




39.5: The Bohr Model of the Hydrogen Atom, Energy Changes:

hf = AE = Ehigh — Ejow-

¥
b met ( L 1)
A 886173(7 - ”lzligh "Eow : .
¥
| | |
T R( 7 ) )*
A . Niow P high
me* | |
R=—5—+=1.097373 x 107m~! (Rydberg Constant)
Segh’c

h=4.1357 x101° eV s
R=13.6 eV



39.9: Schrodinger’s Equation and The Hydrogen Atom:

U(eV)

600 400 200 0 200 400 600
r(pm) ——1—L 1 1 | L1 1 1 1 1 ,(pm)

-10F Hydrogen is a
- three-dimensional,
AL finite electron trap,
with walls that vary
i in depth with
=301 distance.

Fig. 39-17 'The potential energy U of a
hydrogen atom as a function of the separa-
tion r between the electron and the central
proton. The plot is shown twice (on

the left and on the right) to suggest the
three-dimensional spherically symmetric
trap in which the electron is confined.



Bohr Model of the Hydrogen Atom, Electron Transitions, Atomic
Energy Levels, Lyman & Balmer Series

@ o o

i
v O~

n=3

n=2

Electron transitions for the Hydrogen atom

(visible) (IR) m—)

LVV

lYYY

Brackett series

E(n) to E(n=4)
Paschen series
E(n) to E(n=3)
YYVYY
Balmer series
E(n) to E(n=2)
1 1
L (!
A Hiow

Lyman series
E(n) to E(n=1)




Schrodinger’s Equation and The Hydrogen Atom:

Nonquantized Nonquantized
) n n
0 0 :
i i
3 3
-2.0 2.0
_ 2 2 The Lyman series
-0 -0 of wavelengths
are jumps up from
7z 6.0 7 6.0 n =1 (absorption)
2 These are the lowest 2 ordownton=1
E 8.0 six allowed energies E 8.0 (emission).
of the hydrogen atom. |~ Series
limit
-10.0 -10.0
-12.0 -12.0
1 :
-14.0 —14.0 — Lyman series

(a) (b)

Fig. 39-18 (a) An energy-level diagram for the hydrogen atom. Some of the
transitions for (b) the Lyman series. For each, the longest four wavelengths and the
series-limit wavelength are plotted on a wavelength axis. Any wavelength shorter
than the series-limit wavelength is allowed.



Schrodinger’s Equation and The Hydrogen Atom:

Fig. 39-18 Some of the transitions for (¢) the Balmer series, and (d) the Paschen series.
For each, the longest four wavelengths and the series-limit wavelength are plotted on a
wavelength axis. Any wavelength shorter than the series-limit wavelength is allowed.

The Balmer series

Nonquantized of wavelengths
are jumps up from
0 : n = 2 (absorption)
l ‘ ; Series  OF down to n=2
920 i = ~ limit (emission).
|
Lo .
4.0 Bah?ler
series
> 6.0
5]
5 8.0 hl
This is the This is the
~10.0 shortest longest
Balmer 4 Balmer A4
190 (series limit). (red).
-14.0 I

Energy (eV)

-6.0

-10.0

-14.0

The Paschen series
Nonquantized of wavelengths
are jumps up from
n = 3 (absorption)
Series ordownton=3

3 o o
Paschen  limit (emission).
series

n

oo
6

no

(d)



Q: A photon is emitted as an atom makes a transition from n = 4 to n = 2 level. What
is the frequency, wavelength and energy of the emitted photon?

Solution:
[ 1 1
RLY LY c = fA
1 1 c 3x10°m/s
= —-136|5 — — > A ===
1365 42] v f 6.15 x 10" Hz
T 1 = 4.875 x 107" m
- 9 = 488 nm.
= —13.6 X — eV
16
— 9RER
=-2.50 eV. Thus frequency of photon will be,
The negative sign shows
that photon has been f - E - 2.55 eV
emitted.  h 6.63x 1073 Js

255 x 1.6 x 1077 J
6.63 x 10~34 Js
= 6.15 x 10" Hz.




Q: A Hydrogen atom initially in its ground state i.e., n = 1 level, absorbs a photon and
ends up in n = 4 level. What must have been the frequency of the photon? Now the
electron makes spontaneous emission and comes back to the ground state. What are
the possible frequencies of the photons emitted during this process.

Solution: _ -
We are given that, IndlreCt TranSItlonS

(a) From level 4 to level 2 and then from 2 to level 1.
(b) From level 4 to level 3 and then from 3 to level 1.

Initial state of electron = n; =1

final state of electron = ny =4 (c) From level 4 to level 3, then from level 3 to level 2
We want to calculate the frequency of photon absorbed by the electron to make this and then flna”y from level 2
transition. As we know that energy of photon absorbed is given by, to level 1.
1 1 Fromn=4ton=2
i fta-__;ZbXI“ ;—4— Hz
hf = —13'6<n—12 - %) eV = —6.15 x 10** Hz.
¥ i
f = 136/ 1 1 oV Fromn=2ton=1
N h \n} n? w1 1
fo = —328x 10 (— —) Hz
B 13.6 1 1 oV . =z
T 414x 1075 eVs n; n? = —2.46 x 10° Hz.
— 398 x 10 1 Fromn=4ton=3
o nz} n} 11
1 1 fins = —328 x 107 (;—4—) Hz
fisa = —3.28x 10“( . —2) = —1.6 x 10" Hz,
= —3.28 x 10*° (11() ) From n =3 ton =1
— 328 x 10 x 22 [y fon = —328x 107 (%‘.‘) Hz

i = —2.92 x 10" Hz.
= +3.08 x 10" Hz,

The positive sign shows that photon has been absorbed. fromn =5 ton =2

1
fass = —3.28 x 10" (2— - —) Hz
= —4.57 x 10" Hz.

Direct Transition fromn=4ton =1

fi1 = —3.08 x 10"° Hz,

Negative sign with each frequency represents that photon has been emitted.



Quantum Numbers and The Hydrogen Atom:

Each set of quantum numbers (n, /, m;) identifies the wave function of a particular quantum state. The
quantum number 7, is called the principal quantum number. The orbital quantum number / is a
measure of the magnitude of the angular momentum associated with the quantum state. The orbital
magnetic quantum number m;1s related to the orientation in space of this angular momentum vector.

The restrictions on the values of the quantum numbers for the hydrogen atom, as listed in Table 39-2,
are not arbitrary but come out of the solution to Schrodinger’s equation.

Table 39-2

Quantum Numbers for the Hydrogen Atom

Symbol Name Allowed Values
n Principal quantum number 1,2,3,...
( Orbital quantum number 0,1,2,...,n—1

m, Orbital magnetic quantum number -, —(€—=1), ..., +(€ - 1), +¢




Ml‘.heckpuint 5

(a) A group of quantum states of the hydrogen atom has n = 5. How many values
of € are possible for states in this group? (b) A subgroup of hydrogen atom states in the
n =5 group has € = 3. How many values of m, are possible for states in this subgroup?

(a) S:(b) 7



The Wave Functions of the Hydrogen Atom’s Ground State:

The wave function for the ground state of the hydrogen atom, obtained by solving the three-

dimensional Schrodinger equation and normalizing is
1

W(r) = —— e rla (ground state) . :
b(r) a2 = where a 1s the Bohr radius.

The probability that an electron can be detected in any given (infinitesimal) volume element
dV located at radius 7 of width dr, from the center of the atom is

W(r) dV = —

- (,—Er."'ul.'.-’_ (h.. . . ) .
a’ in which 4n7~ is the surface area of the inner shell

and dr 1s the radial distance between the two shells.

The radial probability density P(7) is a linear probability density such that

P(r)dr = *(r)dV.
This leads to:

2h i . ags .
P(r) = —— e (radial probability density, hydrogen atom ground state).
a




12
z 8
> 4
A |
(0 50 100 150 200 250

r (pm)

Fig. 39-19 A plot of the radial probabil-
ity density P(r) for the ground state of the
hydrogen atom. The triangular marker is lo-
cated at one Bohr radius from the origin, and
the ongin represents the center of the atom.

The Wave Functions of the Hydrogen Atom’s Ground State:

Fig. 39-20 A “dot plot” showing the
volume probability density /*(r)—not the
radial probability density P(r)—for the
ground state of the hydrogen atom. The
density of dots drops exponentially with
increasing distance from the nucleus, which
is represented here by a red spot.



Example, Probability of detection of an electron in a hydrogen atom:

Show that the radial probability density for the ground state
of the hydrogen atom has a maximum at r = a.

KEY IDEAS

(1) The radial probability density for a ground-state hydro-
gen atom is given by Eq. 39-44,
4
P — —2r/a.
(r) ae
(2) To find the maximum (or minimum) of any function, we
must differentiate the function and set the result equal to zero.

If we set the right side equal to zero, we obtain an equation
that is true if » = @, so that the term (¢ — r) in the middle of
the equation is zero. In other words, dP/dr is equal to zero

Calculation: If we differentiate P(r) with respect to r,
using derivative 7 of Appendix E and the chain rule for dif-
ferentiating products, we get

P4 (-2\ _ 4 _
5 = e r2< >e rla + —2re?

a a
2
_ ﬁe—Zr/a _ SLe—zr/a
a’ a*
8
=—r(a—re 2
a

when r=a. (Note that we also have dP/dr=0 at
r =0 and at r = . However, these conditions correspond to a
minimum in P(r),as you can see in Fig. 39-19.)



Example, Light emission from a hydrogen atom:

(a) What is the wavelength of light for the least energetic
photon emitted in the Lyman series of the hydrogen atom
spectrum lines?

KEY IDEAS

(1) For any series, the transition that produces the least
energetic photon is the transition between the home-base
level that defines the series and the level immediately above it.
(2) For the Lyman series, the home-base level is at n = 1 (Fig.
39-18b). Thus, the transition that produces the least energetic
photon is the transition from the n = 2 level to the n = 1 level.

Calculations: From Eq.39-33 the energy difference is
1 1
AE=F,— E, = —(13.60eV) <? — ?) = 10.20 eV.
Then from Eq. 39-6 (AE = hf), with ¢/A replacing f, we have
he  (6.63 X 107**J-5)(3.00 X 10¥ m/s)

AT AE (10.20 eV)(1.60 X 10~ J/eV)

=122 X 107" m = 122 nm. (Answer)

Light with this wavelength is in the ultraviolet range.

(b) What is the wavelength of the series limit for the Lyman
series?

KEY IDEA

The series limit corresponds to a jump between the home-
base level (n = 1 for the Lyman series) and the level at the
limit n = ce.

Calculations: Now that we have identified the values of n
for the transition, we could proceed as in (a) to find the cor-
responding wavelength A. Instead, let’s use a more direct
procedure. From Eq. 39-36, we find

A - n:lzow n‘lzligh
1 1

=1.097 373 X 10" m™! (— - —),

2 o
which yields
A =911 X 10"*m = 91.1 nm.

Light with this wavelength is also in the ultraviolet range.

(Answer)



Hydrogen Atom States with n = 2:

Table 39-3

Quantum Numbers for Hydrogen Atom States with n = 2

n { My

0 0
1 +1
1
|

0
—1

SO S R




Hydrogen Atom States with n = 2:
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Fig. 39-21 A dot plot showing the
volume probability density ¢/2(r) for the (a) (0)
hydrogen atom in the quantum state with Fig. 39-23 Dot plots of the volume probability density /(r, 6)
n = 2,{ = 0,and m; = 0.The plot has for the hydrogen atom in states withn = 2 and € = 1. (a) Plot for
spherical symmetry about the central me = 0.(b) Plot for m; = +1and m, = —1. Both plots show that
nucleus. The gap in the dot density pattern the probability density is symmetric about the z axis.

marks a spherical surface over which

Y2(r) = 0.



Hydrogen Atom States with large n:

Fig. 39-24 A dot plot of the radial prob-
ability density P(r) for the hydrogen atom
in a quantum state with a relatively large
principal quantum number—namely,n =
45 —and angular momentum quantum
number { = n — 1 = 44.The dots lie close
to the xy plane, the ring of dots suggesting a
classical electron orbit.



