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41.1: The Electrical Properties of Solids:

The electrical properties of solids can be categorized into following classes:

1.

2.

>

Their resistivity p at room temperature, with the SI unit ohm-meter ({1-m);
resistivity is defined in Section 26-4.

Their temperature coefficient of resistivity «, defined as a = (1/p)(dp/dT) in
Eq. 26-17 and having the SI unit inverse kelvin (K™'). We can evaluate « for
any solid by measuring p over a range of temperatures.

Their number density of charge carriers ». This quantity, the number of charge
carriers per unit volume, can be found from measurements of the Hall effect,
as discussed in Section 28-4, and from other measurements. It has the SI unit
inverse cubic meter (m™>).
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Characteristics
Conductivity
Resistivity
Forbidden gap
Temperature
coefficient

|{Conduction

[Conductivity value

Resistivity value

|[Current flow

Number of carriers at
normal temperature

Band overlap

Zero Kelvin behavior

Formation

Valence electrons

Examples

Conductor

High

Low

No forbidden gap
Positive

Large number of
electrons for
conduction

Very high 10~7 mho/m

Negligible; less than
10-5 Q-m

Due to free electrons
Very high

Both conduction and
valence bands are
overlapped

Acts like a
superconductor

Formed by metallic
bonding

One valence electron
in outermost shell

Copper, mercury,
aluminum, silver

Semiconductor
Moderate

Moderate

Small forbidden gap
Negative

Very small number of
electrons for conduction

Between those of
conductors and insulators,
i.e., 10-7 mho/m to
10~ mho/m

Between those of
conductors and insulators,
i.e., 10° Q-mto 10° Q-m

Due to holes and free
electrons

Low

Both bands are separated by
an energy gap of 1.1 eV

Acts like an insulator

Formed by covalent
bonding

Four valence electrons in
outermost shell

Germanium, silicon

Insulator

Low

Very high

Large forbidden gap
Negative

Moderate number of
electrons for
conduction

Negligible like
10-"* mho/m

Very high; more than
10° Q-m

Due to negligible free
electrons
Negligible

Both bands are separated
by an energy gap of
6-10eV

Acts like an insulator

Formed by ionic
bonding

Eight valence electrons
in outermost shell

Wood, rubber, mica,

paper




Fig. 41-1 (a) The unit cell for copper is a
cube. There is one copper atom (darker) at
each corner of the cube and one copper
atom (lighter) at the center of each face of
the cube. The arrangement is called face-
centered cubic. (b) The unit cell for either
silicon or the carbon atoms in diamond is
also a cube, the atoms being arranged in
what is called a diamond lattice. There 1s one
atom (darkest) at each corner of the cube
and one atom (lightest) at the center of
each cube face; in addition, four atoms
(medium color) lie within the cube. Every
atom 1s bonded to its four nearest neighbors
by a two-electron covalent bond (only the
four atoms within the cube show all four
nearest neighbors).

(b)




Energy Levels in a Crystalline Solid:

Fig. 41-2 (a)Two copper atoms separated

by a large distance; their electron distributions

are represented by dot plots. (b) Each copper

atom has 29 electrons distributed among a set . o
of subshells. In the neutral atom in its ground

state, all subshells up through the 3d level are

filled, the 4s subshell contains one electron (it

can hold two), and higher subshells are empty.

For simplicity, the subshells are shown as be-

. . (a)
ing evenly spaced in energy.

4p
If we bring the atoms of Fig. 41-2a close together, their : 4/‘
wave functions will overlap, beginning with those of the |
outermost electrons. Then we have a single two-atom EE—
system; here the system contains 2 x29 =58 electrons. —=s222e 3,
.o ,

Energy

If we bring up more atoms, we gradually assemble a lattice
of solid copper. If the lattice contains N atoms, then each i

level of an 1solated copper atom must split into N levels in — 2s
the solid.

()
Thus, the individual energy levels of the solid form energy

bands, adjacent bands being separated by an energy gap,

with the gap representing a range of energies that no

electron can possess.
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Fig. 41-3 The band-gap pattern of
energy levels for an idealized crystalline
solid. As the magnified view suggests, each
band consists of a very large number of
very closely spaced energy levels. (In many
solids, adjacent bands may overlap; for
clarity, we have not shown this condition.)



Table 41 -1

Some Electrical Properties of Two Materials*

Material
Property Unit Copper Silicon
Type of conductor Metal Semiconductor
Resistivity, p Q-m 2% 1078 3x 103
Temperature coefficient of resistivity, a K1 +4 x 1073 —70 X 107
Number density of charge carriers, n m 3 9 X 10% 1 X101

?All values are for room temperature.



Insulators:

In an insulator,
electrons need
a big energy
jump.

Insulator

Fig. 41-4 The band-gap pattern for an insulator; filled levels are
shown in red and empty levels in blue.



Sample Problem 41.01

Approximately what is the probability that, at room temper-
ature (300 K), an electron at the top of the highest filled

band in diamond (an insulator) will jump the energy gap E,
in Fig. 41-4? For diamond, E,is 5.5 eV.

KEY IDEA

In Chapter 40 we used Eq. 40-29,

Ny

No
to relate the population N, of atoms at energy level E, to the
population N at energy level E,, where the atoms are part of a
system at temperature 7 (measured in kelvins); k is the
Boltzmann constant (8.62 X 107> eV/K). In this chapter we

can use Eq.41-1 to approximate the probability P that an elec-
tron in an insulator will jump the energy gap E, in Fig. 41-4.

— ¢~ (Ex—EQUKT (41-1)

Probability of electron excitation in an insulator

Calculations: We first set the energy difference E, — E, to
E,. Then the probability P of the jump is approximately equal
to the ratio N,/N, of the number of electrons just above the
energy gap to the number of electrons just below the gap.

For diamond, the exponentin Eq.41-1is

E 55eV

——f = — =—213.
kT (8.62 X 107> eV/K)(300 K)
The required probability is then
P = & — e—(Eg/kT) — 6—213 ~ 3 X ‘10—93’ (Answer)

0

This result tells us that approximately 3 electrons out of 10
electrons would jump across the energy gap. Because any
diamond stone has fewer than 10% electrons, we see that the
probability of the jump is vanishingly small. No wonder
diamond is such a good insulator.



Metals:

In a conductor,
electrons need
only a small
energy jump.

I I.A‘F
— =0

Metal

Fig. 41-5 The band-gap pattern for a
metal. The highest filled level, called the

Fermi level. lies near the middle of a band.

Since vacant levels are available within
that band, electrons in the band can easily
change levels, and conduction can

take place.

If the electric potential energy U of a conduction
electron is uniform throughout the lattice, let’s set U
= (), so that the mechanical energy FE is entirely
kinetic. Then the level at the bottom of the partially
filled band of Fig. 41-5 corresponds to £ =0. The
highest occupied level in this band at absolute zero
(T =0 K) 1s called the Fermi level, and the energy
corresponding to it is called the Fermi energy E r;
for copper, Er=7.0 eV.

The electron speed corresponding to the Fermi
energy 1s called the Fermi speed v For copper the
Fermi speed is=1.6 x10° m/s. All motion does not
cease at absolute zero; at that temperature the
conduction electrons are stacked up in the partially
filled band of Fig. 41-5 with energies that range
from zero to the Fermi energy.



Metals: How Many Conduction Electrons Are There?

number of conduction electrons in sample

n =
sample volume V

(number of conduction) _ (number of atoms) (number of Valence)

electrons in sample in sample electrons per atom
(number of atoms) _ sample mass M,,,  sample mass M,,,
in sample atomic mass (molar mass M )/N,

(material’s density)(sample volume V')

(molar mass M )/N,

where the molar mass M is the mass of one mole of the material in the sample
and N, is Avogadro’s number (6.02 X 10%° mol 7).



Sample Problem 41.02 Number of conduction electrons in a metal

How many conduction electrons are in a cube of magnesium
of volume 2.00 X 107 m*? Magnesium atoms are bivalent.

KEY IDEAS

1. Because magnesium atoms are bivalent, each magne-
sium atom contributes two conduction electrons.

2. The cube’s number of conduction electrons is related to
its number of magnesium atoms by Eq. 41-2.

3. We can find the number of atoms with Eq.41-4 and known
data about the cube’s volume and magnesium’s properties.

Calculations: We can write Eq.41-4 as

b
cI)lfu:tlo;rs _ (density)(sample volume V )N,
in sample molar mass M '

Magnesium has density 1.738 g/cm® (= 1.738 X 10° kg/m?)

and molar mass 24.312 g/mol (= 24.312 X 1073 kg/mol)
(see Appendix F). The numerator gives us

(1738 X 10% kg/m?)(2.00 X 1076 m?)
X (6.02 X 10% atoms/mol) = 2.0926 X 10?! kg/mol.

2.0926 X 102 kg/mol
24.312 X 1073 kg/mol
= 8.61 X 10%.

Using this result and the fact that magnesium atoms are
bivalent, we find that Eq.41-2 yields

(number of atoms)
Thus, .
in sample

number of
conduction electrons
in sample

lect
_ (861 X 107 atoms>(z _)
atom

= 1.72 X 107 electrons. (Answer)



How Many Quantum States Are There?

The density of energy levels 8VImm™2 | ,
Increases upward in a band. N(E) = 3 E (density of states,m™3 J=1),
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Fig. 41-6 The density of states N(E)— [ "
that is, the number of electron energy levels % Band
per unit energy interval per unit volume — _:% Gap
plotted as a function of electron energy. Band
The density of states function simply counts BGap1

andc

the available states;it says nothing about
whether these states are occupied by
electrons.



M Checkpoint 1

Is the spacing between adjacent energy levels at £ = 4 eV in copper larger than, the
same as, or smaller than the spacingat £ = 6 eV?

larger

Sample Problem 41.03 Number of states per electron volt in a metal

(a) Using the data of Fig. 41-6, determine the number of
states per electron-volt at 7 eV in a metal sample with a vol-
ume Vof2 X 1072 m?.

KEY IDEA

We can obtain the number of states per electron-volt at a
given energy by using the density of states N(E) at that en-
ergy and the sample’s volume V.

Calculations: At an energy of 7 eV, we write

number of states) [ density of states \( volume V
pereVat7eV | \ N(E)at7eV )\ofsample )

From Fig. 41-6, we see that at an energy £ of 7 eV, the den-
sity of states is about 1.8 X 102 m— eV ~L. Thus,

<number of states

pereVat7eV ) = (1.8x10¥m~ eV (2 X107 m’)
= 3.6 X 1019 ev—l

~4 X 10¥eVL (Answer)

(b) Next, determine the number of states NV in the sample within
a small energy range AE of 0.003 eV centered at 7eV (the
range is small relative to the energy level in the band).

Calculation: From Eq.41-5 and Fig. 41-6, we know that the
density of states is a function of energy E. However, for an
energy range AFE that is small relative to E, we can approxi-
mate the density of states (and thus the number of states
per electron-volt) to be constant. Thus, at an energy of 7 eV,
we find the number of states N in the energy range AE of
0.003 eV as

number of states N'| _ (number of states energy
in range AE at 7 eV pereVat7eV )\range AE

or N = (3.6 X 10 eV1)(0.003 eV)

=11X107 =1 X 10". (Answer)

(When you are asked for the number of states in a certain
energy range, first see if that range is small enough to allow
this type of approximation.)



Metals: The Occupancy Probability P(E):

a The Fermi energy of a given material is the energy of a quantum state that has the
probability 0.5 of being occupied by an electron.

The occupancy
Fig. 41-7 The occupancy probability probability is
P(E) 1s the probability that an energy level high below the
will be occupied by an electron. (¢) At T = Fermi level.
0 K, P(E) 1s unity for levels with energies E
up to the Fermi energy Er and zero for lev- P
els with higher energies. (b) At T'= 1000 K, 0.5

P(E)

a few electrons whose energies were slightly ™
less than the Fermienergy at 7= 0 K move 0ozt (‘3\.) 510
up to states with energies shightly greater (a)
than the Fermi energy. The dot on the curve
shows that,for E = Ep, P(E) = 0.5. : I
S 05

1 - T=1000K

P(E) = o(E—ERJAT 4 | (occupancy probability), 0z 4 B (‘g\,) 8 10

(b)

For E < Eg, the exponential term in Eq. 41-6 is e™™, or zero; so P(E) =1, in
agreement with Fig. 41-7a.

For E > Eg, the exponential term is e so P(E) = 0, again in agreement with
Fig.41-7a.



Sample Problem 41.04 Probability of occupancy of an energy state in a metal

(a) What is the probability that a quantum state whose
energy is 0.10 eV above the Fermi energy will be occupied?
Assume a sample temperature of 800 K.

KEY IDEA

The occupancy probability of any state in a metal can be
found from Fermi-Dirac statistics according to Eq. 41-6.

Calculations: Let’s start with the exponent in Eq. 41-6:

E—Er _ 0.10eV _ 145
kT (8.62 X 107 eV/K)(800 K) o
Inserting this exponent into Eq. 41-6 yields
1 | |
P(E) = T 0.19 or 19%. (Answer)

(b) What is the probability of occupancy for a state that is
0.10 eV below the Fermi energy?

Calculation: The Key Idea of part (a) applies here also
except that now the state has an energy below the Fermi
energy. Thus, the exponent in Eq. 41-6 has the same magni-
tude we found in part (a) but is negative, and that makes the
denominator smaller. Equation 41-6 now yields
P(E) =
€

T 0.81 or 81%. (Answer)

—1.45 1L
For states below the Fermi energy, we are often more in-
terested in the probability that the state is not occupied.
This probability is just 1 — P(E), or 19%. Note that it is the
same as the probability of occupancy in (a).



density of occupied states | _ ( density of states > (occupancy probability)
N,(E) at energy E N(E) at energy E P(E) at energy E

or No(E) = N(E) P(E) (density of occupied states). (41-7)
The density of occupied .
states equals the product ... the density of ... the occupancy
of ... energy levels and ... probability

F P I'F

cl :;‘, 0.5

— n T=0 3 - I'=0

=~ o

~ |

=0 2 4 6 8 10 % 0 2 4 6 8 10

E (eV) o 2 E (eV)

(a) = X

z =

Z g

o = 0 2 4 6 8 10 I

s “ N, (E) 5 2 ) ¢ -

5 o(£) T Energy (eV) _ b

=1 =05

= n T=1000 K \ Y al T'=1000 K

Z0 2 4 68 10 0 2 4 6 8 10

E (eV) Few or no Lots of E (V)

(b) T T \ levels levels [
Feworno Lots of Few or no Little or zero
occupied occupied occupied Full occupancy occupancy
levels levels levels probability probability

Fig. 41-8 (a) The density of occupied states N,(E) for copper at absolute zero. The area under the curve is the
number density of electrons n. Note that all states with energies up to the Fermi energy Er =7 eV are
occupied, and all those with energies above the Fermi energy are vacant. (b) The same for copper at T =1000
K. Note that only electrons with energies near the Fermi energy have been affected and redistributed.



Sample Problem 41.05 Number of occupied states in an energy range in a metal

A lump of copper (Fermi energy = 7.0 eV) has volume
2 X 1072 m®. How many occupied states per eV lie in a nar-
row energy range around 7.0 eV?

KEY IDEAS

(1) First we want the density of occupied states N,(E) as
given by Eq. 41-7 (No(E) = N(E) P(E)). (2) Because we
want to evaluate quantities for a narrow energy range
around 7.0 eV (the Fermi energy for copper), the occupancy
probability P(E) is 0.50.

Calculations: From Fig. 41-6, we see that the density of
states at 7 eV is about 1.8 X 102 m~3 eV~L Thus, Eq. 41-7
tells us that the density of occupied states is

N,(E) = N(E) P(E) = (1.8 X 102 m~3 eV ~1)(0.50)
=09 X 102m3eVL

Next, we write

( number of occupied ) _ (density of occupied
states per eV at 7 eV states N,(E) at 7 eV

(Volume V)
X ;
of sample

Substituting for N,(E) and V gives us

number of occupied | = (0.9 X 10¥m3 eV )2 X 107 m?)

states per eV
at7eV

=18 X 10¥eV!

~2 X 10°eV~L (Answer)



Metals: Calculating the Fermi Energy:

Ex
n= J N,(E)dE. (The number of occupied states per unit volume at
0 T = 0 K for all energies between E=0 and E=E}).

8\ 2mm*? [EF .
- ll"‘ f EY? dE (Here m 1s the electron mass)
v 0

n =

8V2mm? 2E

h? 3

Ll o

2/3

( 3 )’ ' h? 0.12142
Er=|—77— ne? = ——
1627 m m

n"-.




41.2: Semiconductors:

Conduction

Co 110
band Conduction

o ATC
° o o band

Valence
hand

Valence
hand

Semiconductor
(@) (b)

Fig. 41-9 (a) The band—gap pattern for a semiconductor. It resembles that of an
insulator except that here the energy gap £, is much smaller; thus electrons,
because of their thermal agitation, have some reasonable probability of being able
to jump the gap. (b) Thermal agitation has caused a few electrons to jump the gap
from the valence band to the conduction band, leaving an equal number of holes in
the valence band.



Semiconductors: Temperature Coefficient of Resistivity:

1 dp

a = 7 4T  (Here pis the resistivity)

The resistivity of copper increases with temperature (that is, do/dT >0) because
collisions of copper’s charge carriers occur more frequently at higher
temperatures. This makes «a positive for copper. The collision frequency also

increases with temperature for silicon.

In contrast, the resistivity of silicon actually decreases with temperature (do/dT
<() since the number of charge carriers n (electrons in the conduction band and
holes in the valence band) increases so rapidly with temperature. (More electrons
jump the gap from the valence band to the conduction band.) Thus, the fractional

change « 1s negative for silicon.

N

p Ag

Transition Mejals

T

Semiconductors

T



Doped Semiconductors:

The electrons in an isolated silicon atom are arranged in subshells according to

the scheme

1s? 2s% 2p® 3s? 3p2,

in which, as usual, the superscripts (which add to 14, the atomic number of sili-
con) represent the numbers of electrons in the specified subshells.
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Fig. 41-10 (a) A flattened-out represen-

tation of the lattice structure of pure silicon.

Each silicon ion is coupled to its four near-
est neighbors by a two-electron covalent
bond (represented by a pair of red dots be-
tween two parallel black lines). The elec-
trons belong to the bond —not to the indi-
vidual atoms—and form the valence band
of the sample. (b) One silicon atom is re-

placed by a phosphorus atom (valence = 5).

The “extra” electron is only loosely bound
to its 1on core and may easily be elevated to
the conduction band, where it is free to
wander through the volume of the lattice.
(¢) One silicon atom is replaced by an alu-
minum atom (valence = 3). There is now a
hole in one of the covalent bonds and thus
in the valence band of the sample. The hole
can easily migrate through the lattice as
electrons from neighboring bonds move in
to fill it. Here the hole migrates rightward.




n type

Fig. 41-11 (a) In adoped n-type Conduction band

semiconductor, the energy levels of donor 000% 0 0% % %00% ¢ _L

electrons lie a small interval E; below the N e

bottom of the conduction band. Because E, _TE_ Electrons

donor electrons can be easily excited to the 4 jJump up

conduction band, there are now many more from donors

electrons in that band. The valence band at the

contains the same small number of holes as dashed level.

before the dopant was added. (b) Ina

doped p-type semiconductor, the acceptor b type

levels lie a small energy interval E, above

the top of the valence band. There are now

many more holes in the valence band. The

conduction band contains the same small

number of electrons as before the dopant

was added. The ratio of majority carriers to Electrons

minority carriers in both («) and (b) 1s very jump up to

much greater than is suggested by these acceptors

diagrams. atithe
dashed
level, leaving

holes.



Table 41-2

Properties of Two Doped Semiconductors

Type of Semiconductor

Property n P
Matrix material Silicon Silicon
Matrix nuclear charge +14e +14e
Matrix energy gap 1.2eV 1.2eV
Dopant Phosphorus Aluminum
Type of dopant Donor Acceptor
Majority carriers Electrons Holes
Minority carriers Holes Electrons
Dopant energy gap E,;=0.045eV E,=0.067 eV
Dopant valence 5 3
Dopant nuclear charge +15e +13e
Dopant netion charge +e —e




Sample Problem 41.06

The number density n, of conduction electrons in pure
silicon at room temperature is about 10 m~3. Assume that,
by doping the silicon lattice with phosphorus, we want to
increase this number by a factor of a million (10°). What
fraction of silicon atoms must we replace with phosphorus
atoms? (Recall that at room temperature, thermal agitation
is so effective that essentially every phosphorus atom
donates its “extra” electron to the conduction band.)

Number of phosphorus atoms: Because each phosphorus
atom contributes one conduction electron and because we want
the total number density of conduction electrons to be 10%n,,
the number density of phosphorus atoms np must be given by

1081, = ny + np.

Then np = 10%n, — ny = 10%n,

= (105)(10" m~3) = 102 m~>.

This tells us that we must add 10?? atoms of phosphorus per
cubic meter of silicon.

Fraction of silicon atoms: We can find the number density
ng; of silicon atoms in pure silicon (before the doping) from
Eq.41-4, which we can write as
number of atoms
in sample

__ (silicon density)(sample volume V')
(silicon molar mass Mg;)/N 4

Doping silicon with phosphorus

Dividing both sides by the sample volume V to get the num-
ber density of silicon atoms ng; on the left, we then have

(silicon density) Ny

Ms; '
Appendix F tells us that the density of silicon is 2.33 g/cm
(= 2330 kg/m?) and the molar mass of silicon is 28.1 g/mol
(= 0.0281 kg/mol). Thus, we have
(2330 kg/m?)(6.02 X 10% atoms/mol)

0.0281 kg/mol

=5 X 10%®atoms/m> = 5 X 10® m™3.

g =

3

Nng;i

The fraction we seek is approximately

np 102 m™3 1

ne  5x10Bm3 _ 5x 106’  \Answer)
If we replace only one silicon atom in five million with a
phosphorus atom, the number of electrons in the conduc-
tion band will be increased by a factor of a million.

How can such a tiny admixture of phosphorus have what
seems to be such a big effect? The answer is that, although
the effect is very significant, it is not “big.” The number den-
sity of conduction electrons was 10'® m~ before doping and
102 m~? after doping. For copper, however, the conduction-
electron number density (given in Table 41-1) is about
10%° m~3. Thus, even after doping, the number density of con-
duction electrons in silicon remains much less than that of a
typical metal, such as copper, by a factor of about 107.




41.3: The p-n junction and the Transistor:

Fig. 41-12 (a) A p-njunction.
(b) Motions of the majority charge
carriers across the junction plane
uncover a space charge associated
with uncompensated donor ions (to
the right of the plane) and acceptor
1ons (to the left). (¢) Associated with
the space charge 1s a contact potential
difference Vjy across d,. (d) The
diffusion of majority carriers (both
electrons and holes) across the
junction plane produces a diffusion
current /4. (In a real p-n junction,
the boundaries of the depletion zone
would not be sharp, as shown here,
and the contact potential curve (¢)
would be smooth, with no sharp
corners.)



The Junction Rectifier:

6 "
E \ | If a potential difference is applied across a
. i . . . . .
= “‘ p-n junction in one direction (here labeled
EREI and “Forward bias”), there will be a
| current through the junction.
=2 -1 0+ : N :
Potential difference (V) However, if the direction of the potential
™ Back bias arward bias Difference is reversed, there will be
dack bias Forward bias >
‘ approximately zero current through the
Fig. 41-13 A current—voltage plot for a . .
p-n junction, showing that the junction is junction.

highly conducting when forward-biased
and essentially nonconducting when back-
biased.



The Junction Rectifier, An Example:

—
)
=

Junction rectifier

o

-0

in R

Input voltage

9—-
Output voltage

Fig. 41-14 A p-njunction connected as a junction rectifier. The action of the circuit in
(b) 1s to pass the positive half of the input wave form in (@) but to suppress the negative
half. The average potential of the input wave form is zero; that of the output wave form in

(¢) has a positive value V,,.



(a)

+] —

ext

Lasife

(b)

Fig. 41-15 (a)The forward-bias con-
nection of a p-n junction, showing the
narrowed depletion zone and the large
forward current /. (b) The back-bias
connection,showing the widened deple-
tion zone and the small back current /5.

Lavife




The Light-Emitting Diode (LED):

Hole current
( O

Light 7 Light
’ w '
1

[
Flectron current

Fig. 41-16 A forward-biased p-n junc-
tion,showing electrons being injected into
the n-type material and holes into the p-type
material. (Holes move in the conventional
direction of the current 7, equivalent to elec-
trons moving in the opposite direction.)
Light is emitted from the narrow depletion
zone each time an electron and a hole com-
bine across that zone.

In some semiconductors, including gallium
arsenide, the energy can be emitted as a photon of
energy hf at wavelength

C c he

f  Elh E,

g

Axis
Light
?s Transparent
dome

Terminal
=

Fig. 41-17 Crosssection of an LED (the
device has rotational symmetry about the
central axis). The p-type material, which is
thin enough to transmit light, is in the form
of a circular disk. A connection is made to
the p-type material through a circular
metal ring that touches the disk at its pe-
riphery. The depletion zone between the n-

type material and the p-type material 1s not
shown.




Photodiode:

A p-n junction can act as a
junction laser, where its light
output being highly coherent

Shining light on a suitably and much more sharply
produce a current in a circuit light from an LED.

that includes the junction. This
is the basis for the photodiode.

Fig. 41-18 A junction laser developed
at the AT&T Bell Laboratories. The cube at
the right is a grain of salt. (Courtesy AT&T
Archives and History Center, Warren, NJ)



Sample Problem 41.07 Light-emitting diode (LED)

An LED is constructed from a p-n junction based on a cer- he  (6.63 X 10734 7-5)(3.00 X 108 m/s)
tain Ga-As-P semiconducting material whose energy gap is A= E 19 eVY(1.60 X 10-9 J/eV
1.9 eV.What is the wavelength of the emitted light? g (1.9eV)(l. ev)
= 6.5 X 107" m = 650 nm. (Answer)

Calculation: For jumps from the bottom of the conduction
band to the top of the valence band, Eq.41-11 tells us Light of this wavelength is red.



The Transistor:
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The Transistor:

NPN

PNP

One P-type semiconductor is
sandwiched between the two N-type
semiconductors.

It is made of up two P-type material
layers with N-type sandwiched
between them.

From collector terminal to emitter
terminal, the current flows.

From emitter to collector terminal,
the current flows

The current flow from the collector is
generated by keeping a +ve voltage
there.

The current flow from the emitter to
collector is generated at emitter
terminal by keeping a +ve voltage
there.

When the current is reduced in the
base, the transistor doesn’t function
across the collector terminal and
switches OFF

When a current is present at the
base of a PNP transistor, then the
transistor switches OFF.

With the increase in current in the
base terminal, the transistor switches

When there is no current flow at the
base terminal the transistors switch




The Transistor:

A transistor is a three-terminal semiconducting device that can be used to amplify input signals.
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Fig. 41-19 A circuit containing a (Si0y) semiconductor
generalized field-effect transistor
through Whl.Ch electrons ﬂox‘v from Fhe Fig. 41-20 A particular type of field-effect
source terminal S to the drain tel‘llm.nal transistor known as a MOSFET. The magnitude
D.(The cc‘)nvefltlol?al current /pg IS of the drain-to-source conventional current /¢
the opposite direction.) The magnltude through the n channel is controlled by the poten-
of I s 1s controlled by the electric field tial difference Vg applied between the source S
set up within the FET by a potential ap- and the gate G. A depletion zone that exists be-
plied to G, the gate terminal. tween the n-type material and the p-type sub-

strate is not shown.



