Chapter 37

Relativity




37-1 Simultaneity and Time Dilation

Einstein’s special theory of relativity is based on two postulates:

AN
‘4‘ 1. The Relativity Postulate: The laws of physics are the same for observers in all ThE U|t|m ate Speed
inertial reference frames. No one frame is preferred over any other. 8
%
=
an ; 4 -
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We can also phrase this postulate to say that there 0 1 > :
IS in nature an ultimate speed ¢, the same in all Speed (108 /)
directions and in all inertial reference frames. Light

happens to travel at this ultimate speed. However,  The dots show measured values of

: : : : the kinetic energy of an electron plot-
no entity that carries energy or information can ted against its measured speed. No

exceed this limit. Moreover, no particle that has matter how much energy is given to
mass can actually reach speed ¢, no matter how an electron (or to any other particle
much or for how long that particle is accelerated. having mass), its speed can never

equal or exceed the ultimate limiting

: speed c. (The plotted curve through
Both postulates have been exhaustively tested, the dots shows the predictions of

and no exceptions have ever been found. Einstein’s special theory of relativity.)



37-1 Simultaneity and Time Dilation

An event is something that happens, and every event can
be assigned three space coordinates and one time
coordinate. Among many possible events are (1) the
turning on or off of a tiny light bulb, (2) the collision of two
particles, and (3) the sweeping of the hand of a clock past
a'Lnarker on the rim of the clock.

‘--‘ If two observers are In relative motion, they will not, in general, agree as to

whether two events are simultaneous. If one observer finds them to be simultane-

ous, the other generally will not.
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Simultaneity 1s not an absolute concept but rather a relative one, depending on
the motion of the observer.

If the relative speed of the observers is very much less
than the speed of light, then measured departures from
simultaneity are so small that they are not noticeable.

Such is the case for all our experiences of daily living; that

Is why the relativity of simultaneity is unfamiliar.
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Figure: The spaceships of Sally and Sam and the occurrences of events from
Sam'’s view. Sally’s ship moves rightward with velocity v. (a) Event Red occurs
at positions RR’ and event Blue occurs at positions BB’; each event sends out
a wave of light. (b) Sam simultaneously detects the waves from event Red and
event Blue. (c) Sally detects the wave from event Red. (d) Sally later detects

the wave from event Blue.



37-1 Simultaneity and Time Dilation

“f The time interval between two events depends on how far apart they occur in

both space and time; that is, their spatial and temporal separations are entangled.

Mirror » The measure of that time interval
Event 1 is the emission of light. on Sally’s clock differs from that
Event 2 is the return of the light. on Sam's clock due to the relative
We want the time between them. motion.

Mirror

Sally Sam
(a) (b)
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Figure (a) shows the basics of
an experiment Sally conducts
while she and her
equipment—a light source, a
mirror, and a clock—ride in a
train moving with constant
velocity vrelative to a station.
A pulse of light leaves the light
source B (event 1), travels
vertically upward, is reflected
vertically downward by the
mirror, and then is detected
back at the source (event 2).

As in the example, if two successive events occur at the same place in an inertial
reference frame, the time interval Af, between them, measured on a single clock
where they occur, is called the proper time Af,. Observers in frames moving
relative to that frame such as observers on the track watching Sally and her
equipment move past, will always measure a larger value 4ffor the time interval on

their clocks, an effect known as time dilation.



37-1 Simultaneity and Time Dilation
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If the relative speed between the two frames is v, then
At = = = = =y AL,

where g =vic Isthe speed parameter and y = 1/\1 — g* is the Lorentz factor.




Mﬂheckpuint 1

Standing beside railroad tracks, we are suddenly startled by a relativistic
boxcar traveling past us as shown in the figure. Inside, a well-equipped
hobo fires a laser pulse from the front of the boxcar to its rear. (a) Is our

measurement of the speed of the pulse greater than, less than, or the
same as that measured by the hobo? (b) Is his measurement of the flight §
time of the pulse a proper time? (¢) Are his measurement and our TS

measurement of the flight time related by Eq. 37-9?

(a) same (speed of light postulate); (b) no (the start and

end of the flight are spatially separated); (c) no (because his
measurement is not a proper time)



Sample Problem 37.01

Your starship passes Earth with a relative speed of 0.9990c.
After traveling 10.0y (your time), you stop at lookout post
LP13. turn, and then travel back to Earth with the same relative
speed. The trip back takes another 10.0 y (your time). How long
does the round trip take according to measurements made on
Earth? (Neglect any effects due to the accelerations involved
with stopping, turning, and getting back up to speed.)

KEY IDEAS

We begin by analyzing the outward trip:

1. This problem involves measurements made from two
(inertial) reference frames, one attached to Earth and
the other (your reference frame) attached to your ship.

2. The outward trip involves two events: the start of the
trip at Earth and the end of the trip at LP13.

3. Your measurement of 10.0 y for the outward trip is the
proper time Az, between those two events, because the
events occur at the same location in your reference
frame —namely, on your ship.

Time dilation for a space traveler who returns to Earth

4. The Earth-frame measurement of the time interval Atz
for the outward trip must be greater than Az, according
to Eq.37-9 (At = y At,) for time dilation.

Calculations: Using Eq. 37-8 to substitute for yin Eq.37-9,
we find

Azy
V1 — (vic)?

10.0
= Y = (22.37)(10.0y) = 224Yy.
V1 — (0.9990c/c)?
On the return trip, we have the same situation and the same

data. Thus, the round trip requires 20 y of your time but
Ao = (2)(224 y) = 448 y

of Earth time. In other words, you have aged 20 y while the
Earth has aged 448 y. Although you cannot travel into the
past (as far as we know), you can travel into the future of,
say, Earth, by using high-speed relative motion to adjust the
rate at which time passes.

At =

(Answer)



Sample Problem 37.02 Time dilation and travel distance for a relativistic particle

The elementary particle known as the positive kaon (K)
is unstable in that it can decay (transform) into other par-
ticles. Although the decay occurs randomly, we find that,
on average, a positive kaon has a lifetime of 0.1237 us
when stationary—that is, when the lifetime is measured in
the rest frame of the kaon. If a positive kaon has a speed
of 0.990c¢ relative to a laboratory reference frame when
the kaon is produced, how far can it travel in that frame
during its lifetime according to classical physics (which is
a reasonable approximation for speeds much less than c)

3. The distance traveled by the kaon between those two
events is related to its speed v and the time interval for
the travel by

distance
V=Y. (37-10)
time interval

With these ideas in mind, let us solve for the distance first

with classical physics and then with special relativity.

Classical physics: In classical physics we would find the
same distance and time interval (in Eq. 37-10) whether we
measured them from the kaon frame or from the laboratory
frame. Thus, we need not be careful about the frame in
which the measurements are made. To find the kaon’s travel
distance d, according to classical physics, we first rewrite
Eq.37-10 as

dep = v AL, (37-11)

where Ar is the time interval between the two events in
either frame. Then, substituting 0.990c¢ for v and 0.1237 us
for Atin Eq.37-11, we find

dep = (0.990¢) At

= (0.990)(299 792 458 m/s)(0.1237 X 10°5)

= 36.7 m. (Answer)

This is how far the kaon would travel if classical physics
were correct at speeds close to c.

and according to special relativity (which is correct for all
physically possible speeds)?

KEY IDEAS

1. We have two (inertial) reference frames, one attached to
the kaon and the other attached to the laboratory.

2. This problem also involves two events: the start of the

kaon’s travel (when the kaon is produced) and the end
of that travel (at the end of the kaon’s lifetime).

tance d, of the kaon as measured from the laboratory frame
and according to special relativity, we rewrite Eq.37-10 as

d, = v A, (37-12)

where Ar is the time interval between the two events as
measured from the laboratory frame.
Before we can evaluate dg; in Eq. 37-12, we must find
Ar. The 0.1237 us time interval is a proper time because the
two events occur at the same location in the kaon frame —
namely, at the kaon itself. Therefore, let A¢, represent this
proper time interval. Then we can use Eq. 37-9 (At = y At)
for time dilation to find the time interval At as measured
from the laboratory frame. Using Eq. 37-8 to substitute for
vin Eq. 37-9 leads to
Ar= Ar, 01237 X 107%s
VI — (vic)2 V1 = (0.990c/c)?
This is about seven times longer than the kaon’s proper
lifetime. That is, the kaon’s lifetime is about seven times
longer in the laboratory frame than in its own frame —the
kaon’s lifetime is dilated. We can now evaluate Eq. 37-12
for the travel distance d; in the laboratory [rame as

d,, = v At = (0.990¢) At
(0.990)(299 792 458 m/s)(8.769 X 1077 s)
= 260 m.

=8.769 X107 s.

(Answer)



37-2 The Relativity of Length

A

‘l’ The length L, of an object measured in the rest frame of the object is its - You measure a width at
proper length or rest lengih. Measurements of the length from any reference frame s — an instant, not spread
Position gyt over time.
at {

that 1s in relafive motion paralle! to that length are always less than the proper length.

If the relative speed between frames is v, the

contracted length £ and the proper length L, are AR
related by r
L=L,V1-p=—"
4

Position
at [l

where g =vic is the speed parameter
and . =1/n/1 — g* Isthe Lorentz factor.

(b)  x4(1y) xg(ty)

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

Does a moving ot_)ject really shrink? Real@ty IS If you want to measure the front-
based on observations and measurements; if the to-back length of a penguin while
results are always consistent and if no error can be it is moving, you must mark the
determined, then what is observed and measured is  positions of its front and back
real. In that sense, the object really does shrink. simultaneously (in your reference
However, a more precise statement is that the frame), as in (a), rather than at
object is really measured to shrink — motion affects ~ différent times, as in (b). How to
that measurement and thus reality. do that is not trivial



Sample Problem 37.03 Time dilation and length contraction as seen from each frame

In Fig. 37-8, Sally (at point A) and Sam’s spaceship (of
proper length Ly = 230 m) pass each other with constant
relative speed v. Sally measures a time interval of 3.57 us for
the ship to pass her (from the passage of point B in
Fig. 37-8a to the passage of point C in Fig. 37-8b). In terms of
c,what is the relative speed v between Sally and the ship?

KEY IDEAS

Let’s assume that speed v is near ¢. Then:

1. This problem involves measurements made from two
(inertial) reference frames, one attached to Sally and the
other attached to Sam and his spaceship.

2. This problem also involves two events: the first is the
passage of point B past Sally (Fig. 37-8a) and the second
is the passage of point C past her (Fig. 37-8b).

These are Sally's measurements,
from her reference frame:

3. From either reference frame, the other reference frame
passes at speed v and moves a certain distance in the
time interval between the two events:

distance
Y e (37-17)
time interval
Because speed v is assumed to be near the speed of light,
we must be careful that the distance and the time interval

in Eq.37-17 are measured in the same reference frame.

Calculations: We are free to use either frame for the mea-
surements. Because we know that the time interval At be-
tween the two events measured from Sally’s frame is 3.57 us,
let us also use the distance L between the two events mea-
sured from her frame. Equation 37-17 then becomes

L

v=—01-1
At

(37-18)

These are Sam's measurements,
from his reference frame:
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Figure 37-8 (a)—(b) Event 1
occurs when point B passes |'_L0/ 7—’| I[‘ Lo i
Sally (at point A) and event Contracted length Proper length
2 occurs when point C pass- ~ At=3.57s . rAL
es her. (c)—(d) Event 1 Sally Dilated tme Sally
occurs when Sally passes A A
: ° — 5 ——— — ——
point B and event 2 occurs v
when she passes point C. (B —————————————] { Bam[ )=>-- (d) . Bam] )

B V c B



These are Sally’s measurements,
from her reference frame:

These are Sam’s measurements,
from his reference frame:
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We do not know L, but we can relate it to the given L:
The distance between the two events as measured from Sam’s
frame is the ship’s proper length L, Thus, the distance L
measured from Sally’s frame must be less than L, as given by
Eq.37-13 (L = Ly/y) for length contraction. Substituting Ly/y
for L in Eq.37-18 and then substituting Eq. 37-8 for vy, we find

_ Lo/'y . LO V (1 - (V/C)z
YT A At :

Solving this equation for v (notice that it is on the left and
also buried in the Lorentz factor) leads us to

. Lyc
T VAT 3
_ (230 m)c
V(299792 458 m/s)2(3.57 X 10-65)% + (230 m)?
= 0.210c. (Answer)

Note that only the relative motion of Sally and Sam

matters here; whether either is stationary relative to, say, a
space station is irrelevant. In Figs. 37-8a and b we took
Sally to be stationary, but we could instead have taken
the ship to be stationary, with Sally moving to the left
past it. Event 1 is again when Sally and point B are aligned
(Fig. 37-8¢), and event 2 is again when Sally and point C
are aligned (Fig. 37-8d). However, we are now using Sam’s
measurements. So the length between the two events in Ais
frame is the proper length L, of the ship and the time in-
terval between them is not Sally’s measurement Ar but a
dilated time interval y At.

Substituting Sam’s measurements into Eq. 37-17, we have

Ly
YAt ’

which is exactly what we found using Sally’s measurements.
Thus, we get the same result of v = 0.210c¢ with either set of
measurements, but we must be careful not to mix the mea-
surements from the two frames.



