Chapter 37

Relativity




37-6 Momentum and Energy

In relativistic mechanics the definition of linear momentum is,
P = ymV (momentum).

This equation gives the correct definition of momentum for all physically
possible speeds. For a speed much less than ¢, it reduces to the classical
definition of momentum ( p =mv) .

An object’s mass /m and the equivalent energy £, are related by
E.;] = mﬂz,

which, without the subscript 0, is the best-known science equation of all time.
This energy E,that is associated with the mass of an object is called mass
energy or rest energy. The second name suggests that £,is an energy that
the object has even when it is at rest, simply because it has mass.

And if we assume that the object’s potential energy is zero, then its total energy
E'is the sum of its mass energy and its kinetic energy:

E=E,+ K=mc*+ K.

Another expression for total energy Eis E = ymc?



37-6 Momentum and Energy

An expression for kinetic energy that is correct for all

physically possible speeds, including speeds close to c is

given by

K = E — mc* = ymc? — me?

= mc*(y— 1) (kineticenergy),

where (= 1/V1 — (vic)?) Is the Lorentz factor for the
object’s motion.

The connection between the relativistic momentum
and kinetic energy is thus given by

(pe)* = K* + 2Kmc*.

and
E? = (pc)* + (mc*)~.

K= mé 1 : —]l
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The relativistic and classical
equations for the kinetic energy
of an electron, plotted as a
function of v/c. Note that the
two curves blend together at
low speeds and diverge widely
at high speeds. Experimental
data (at the X marks) show that
at high speeds the relativistic
curve agrees with experiment
but the classical curve does
not.



Table 37-3 The Energy Equivalents of a Few Objects

Object Mass (kg) Energy Equivalent
Electron ~011 x 1073 ~ 8.19 X 10714 (=511keV)
Proton ~1.67 X 1077 ~ 1.50 X 10719] (= 938 MeV)
Uranium atom ~395 X 107% ~ 355X 1078] (=225 GeV)
Dust particle ~1 X 1071 ~ 1 X 10*] (= 2 kcal)

U.S. penny ~3.1 X 1073 ~2.8 X 10%] (=78 GW -h)



M Checkpoint 4

Are (a) the kinetic energy and (b) the total energy of a 1 GeV electron more than,
less than, or equal to those of a 1 GeV proton?

(a) equal; (b) less



Sample Problem 37.06 Energy and momentum of a relativistic electron

(a) What is the total energy E of a 2.53 MeV electron?

KEY IDEA

From Eq. 37-47, the total energy E is the sum of the electron’s
mass energy (or rest energy) mc? and its kinetic energy:

E=mc + K. (37-57)

Calculations: The adjective “2.53 MeV™ in the problem
statement means that the electron’s kinetic energy is 2.53
MeV. To evaluate the electron’s mass energy mc?, we substi-
tute the electron’s mass m {rom Appendix B, obtaining

me? = (9.109 X 1073 kg)(299 792 458 m/s)?
= 8.187 X 10747.

Then dividing this result by 1.602 X 10713 J/MeV gives us
0.511 MeV as the electron’s mass energy (confirming the
value in Table 37-3). Equation 37-57 then yields

E = 0511 MeV + 253 MeV = 3.04 MeV. (Answer)

(b) What is the magnitude p of the electron’s momentum, in
the unit MeV/c? (Note that c is the symbol for the speed of
light and not itself a unit.)

KEY IDEA

We can find p from the total energy E and the mass energy mic?

via Eq.37-55,
! E? = (pc)* + (mc?).

Calculations: Solving for pc gives us

pc = VE? - (mc?)?
= V(3.04 MeV): — (0.511 MeV)? = 3.00 MeV.

Finally, dividing both sides by ¢ we find

p = 3.00 MeV/c. (Answer)



Sample Problem 37.07 Energy and an astounding discrepancy in travel time

The most energetic proton ever detected in the cosmic rays
coming to Earth from space had an astounding kinetic
energy of 3.0 X 10?° eV (enough energy to warm a teaspoon
of water by a few degrees).

(a) What were the proton’s Lorentz factor y and speed v
(both relative to the ground-based detector)?

KEY IDEAS

(1) The proton’s Lorentz factor y relates its total energy £
to its mass energy mc? via Eq. 37-48 (E = ymc?). (2) The
proton’s total energy is the sum of its mass energy mc? and
its (given) kinetic energy K.

Calculations: Putting these ideas together we have
E mct + K K

5 — =1+
mc mc mc

(37-58)
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From Table 37-3, the proton’s mass energy mc? is 938 MeV.
Substituting this and the given kinetic energy into Eq. 37-58,
we obtain

3.0 X 102 eV
038 X 10%eV

= 3.198 X 10! = 3.2 X 10M,

y=1+

(Answer)

This computed value for yis so large that we cannot use
the definition of y (Eq.37-8) to find v. Tty it; your calculator
will tell you that B is effectively equal to 1 and thus that v is
effectively equal to c. Actually, v is almost ¢, but we want
a more accurate answer, which we can obtain by first solving

Eq.37-8 for 1 — B.To begin we write

1 _ 1 _ 1
VI-F Va-pi+p  Vai-p
where we have used the fact that g is so close to unity that
1 + Bis very close to 2. (We can round off the sum of two very

close numbers but not their difference.) The velocity we seek
is contained in the 1 — B term. Solving for 1 — S then yields

‘J/:

9

1 1
| —g= _
P 292 (2)(3.198 X 10'1)?
=49 X107 =35 x 1073,

Thus,
and, since v = fc,

v = (0.999 999 999 999 999 999 999 995c¢.

B=1-5x10"2

(Answer)

(b) Suppose that the proton travels along a diameter of the
Milky Way galaxy (9.8 X 10*1y). Approximately how long
does the proton take to travel that diameter as measured
from the common reference frame of Earth and the Galaxy?

Reasoning: We just saw that this ultrarelativistic proton is
traveling at a speed barely less than ¢. By the definition of
light-year, light takes 1 y to travel a distance of 1 ly, and so light
should take 9.8 X 10*y to travel 9.8 X 10*ly, and this proton
should take almost the same time. Thus, from our
Earth—Milky Way reference frame, the proton’s trip takes

At =9.8 X 10%y. (Answer)



(c) How long does the trip take as measured in the refer-
ence frame of the proton?

KEY IDEAS

1. This problem involves measurements made from two
(inertial) reference frames: one is the Earth—Milky Way
frame and the other is attached to the proton.

2. 'This problem also involves two events: the first is when the
proton passes one end of the diameter along the Galaxy,
and the second is when it passes the opposite end.

3. The time interval between those two events as measured
in the proton’s reference frame is the proper time inter-
val At, because the events occur at the same location in
that frame —namely, at the proton itself.

4. We can find the proper time interval Af, from the time

interval Ar measured in the Earth—Milky Way frame by
using Eq. 37-9 (At = y At) for time dilation. (Note that
we can use that equation because one of the time mea-
sures is a proper time. However, we get the same relation
if we use a Lorentz transformation.)

Calculation: Solving Eq. 37-9 for At#, and substituting y
from (a) and Az from (b), we find

A — At 9.8 X 10y
" 5y 3198 x 104

=3.06 X 1077y = 9.7s.

(Answer)

In our frame, the trip takes 98 000 y. In the proton’s frame, it
takes 9.7 s! As promised at the start of this chapter, relative
motion can alter the rate at which time passes, and we have
here an extreme example.



37/ Summary

The Postulates
 Einstein’s special theory of relativity is
based on two postulates:

1.

The laws of physics are the same for
observers in all inertial reference
frames. No one frame is preferred
over any other.

The speed of light in vacuum has the
same value cin all directions and in
all inertial reference frames.

Time Dilation
* For an observer moving with
relative speed v, the measured time

interval is
V1 — (vle)? V1 - g

= v Af,

Eq. 37-7t0 9

(time dilation).

Length Contraction

* For an observer moving with
relative speed v, the measured
length is

L=LV1-g= LT Eq. 37-13

The Lorentz Transformation

» The Lorentz transformation
equations relate the space time
coordinates of a single event as
seen by observers in two inertial
frames and are given by

x' = T{x - FE}:-
y o=y
r — E,

Eq. 37-21

]

' = y(t — vxic?).



37/ Summary

Relativity of Velocities
 Relativistic addition of velocities is

given by

w+ v
U= Eq. 37-29

Relativistic Doppler Effect
« When the separation between the

detector and the light source is

increasing, the wavelengths are
related by

1+ 8
.-:H. - AU."‘I.'I 1 _ '3 Eq. 37'32

* For speeds much less than c, the
magnitude of the Doppler
wavelength shift is approximately
related to v by

)= ";”" ¢ (v<o. Eq.37-36
|

Transverse Doppler Effect

« If the relative motion of the light source is
perpendicular to a line joining the source
and detector, then

f=£V1- g Eq. 37-37
Momentum and Energy
» The following definitions of linear
momentum p , kinetic energy K, and total

energy E for a particle of mass m are
valid at any physically possible speed:

p" = -}amy" Eq 37-42
E=mc*+ K= -}mci Eq. 37-47&48
K=mc(y-1) Eqg. 37-52

* These equations lead to the relationships
(pc)* = K* + 2Kmc*  Eq. 37-54
E* = (pc)* + (mc)~ Eq. 37-55



