Chapter 38

Photons and Matter Waves



Light as a Probability Wave

A fundamental mystery in physics is how light can be a wave (which spreads out
over a region) in classical physics but be emitted and absorbed as photons (which
originate and vanish at points) in quantum physics. The double-slit experiment of
Module 35-2 lies at the heart of this mystery. Let us discuss three versions of it.

The Standard Version

The probabilistic description of a light
wave is another way to view light. It is
not only an electromagnetic wave but
also a probability wave. That is, to
every point in a light wave we can
attach a numerical probability (per unit
time interval) that a photon can be
detected in any small volume centered
on that point. This probability is directly
related to the square of the amplitude
electric field vector at that point.
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Fig. 38-6 Light is directed onto screen
B, which contains two parallel slits. Light
emerging from these slits spreads out by
diffraction. The two diffracted waves over-
lap at screen C and form a pattern of inter-
ference fringes. A small photon detector D
in the plane of screen C generates a sharp
click for each photon that it absorbs.



The Single-Photon Version

Consider the double-slit experiment again. Since an interference pattern eventually builds
up on the screen, we can speculate that each photon travels from source to screen as a
wave that fills up the space between source and screen and then vanishes in a photon
absorption at some point on the screen, with a transfer of energy and momentum to the
screen at that point.

We cannot predict where this transfer will occur (where a photon will be detected) for any
given photon originating at the source.

However, we can predict the probability that a transfer will occur at any given point on the
screen.

Transfers will tend to occur (and thus photons will tend to be absorbed) in the regions of
the bright fringes in the interference pattern that builds up on the screen. Transfers will
tend not to occur (and thus photons will tend not to be absorbed) in the regions of the dark
fringes in the built-up pattern.

Thus, we can say that the wave traveling from the source to the screen is a probability
wave, which produces a pattern of “probability fringes™ on the screen.



The Single-Photon, Wide-Angle Version

A single photon can take
widely different paths and
still interfere with itself.
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Fig. 38-7 The light from a single photon
emission in source S travels over two
widely separated paths and interferes with
itself at detector D after being recombined
by beam splitter B. (After Ming Lai and
Jean-Claude Diels, Journal of the Optical
Society of America B,9,2290-2294,
December 1992.)

When a molecule in the source emits a
single photon, does that photon travel

along path 1 or path 2 in the figure (or along
any other path)? Or can it move in both
directions at once?

To answer, we assume that when a molecule
emits a photon, a probability wave radiates
in all directions from it. The experiment
samples this wave in two of those
directions, chosen to be nearly opposite
each other.

We see that we can interpret all three
versions of the double-slit experiment

If we assume that (1) light is generated in
the source as photons, (2) light is absorbed
In the detector as photons, and (3) light
travels between source and detector as a
probability wave.



38.4: The Birth of Quantum Physics
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Figure 38-8 The solid curve shows the experimental spectral ra-
diancy for a cavity at 2000 K. Note the failure of the classical
theory, which is shown as a dashed curve. The range of visible
wavelengths is indicated.

That intensity distribution is handled by defining a spectral
radiancy S(A) of the radiation emitted at given wavelength A:

intensit
S(A) = intensity power ‘ (38-12)

unit unit area unit
wavelength of emitter /\ wavelength

If we multiply S(A) by a narrow wavelength range dA, we have the intensity (that
is, the power per unit area of the hole in the wall) that is being emitted in the
wavelength range A to A + dA.




Theory. The prediction of classical physics for the spectral radiancy, for a
given temperature 7 in kelvins, is

2mckT
S(A) = ﬂ; (classical radiation law), (38-13)

where k is the Boltzmann constant (Eq. 19-7) with the value
k=138X10"2J/K =8.62 X 1077 eV/K.

This classical result is plotted in Fig. 38-8 for 7 = 2000 K. Although the theoreti-
cal and experimental results agree well at long wavelengths (off the graph to the
right), they are not even close in the short wavelength region. Indeed. the theo-
retical prediction does not even include a maximum as seen in the measured
results and instead “blows up™ up to infinity (which was quite disturbing, even
embarrassing, to the physicists).

Planck’s Solution. In 1900, Planck devised a formula for S(A) that neatly
fitted the experimental results for all wavelengths and for all temperatures:
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S(A) = (Planck’s radiation law). (38-14)



Einstein’s Solution. No one understood Eq. 38-14 for 17 years, but then
Einstein explained it with a very simple model with two key ideas: (1) The ener-
gies of the cavity-wall atoms that are emitting the radiation are indeed quantized.
(2) The energies of the radiation in the cavity are also quantized in the form of
quanta (what we now call photons), each with energy £ = Af. In his model he ex-
plained the processes by which atoms can emit and absorb photons and how the
atoms can be in equilibrium with the emitted and absorbed light.

Maximum Value. The wavelength A, at which the S(A) is maximum (for a
given temperature 7) can be found by taking the first derivative of Eq. 38-14 with
respect to A, setting the derivative to zero, and then solving for the wavelength.
The result is known as Wien's law:

Amax ] = 2898 um - K (at maximum radiancy). (38-15)

For example, in Fig. 38-8 for which T = 2000 K, A,.x = 1.5 um, which is greater
than the long wavelength end of the visible spectrum and is in the infrared
region, as shown. If we increase the temperature, A,,,, decreases and the peak in
Fig. 38-8 changes shape and shifts more into the visible range.

Radiated Power. 1f we integrate Eq. 38-14 over all wavelengths (for a given
temperature), we find the power per unit area of a thermal radiator. If we then
multiply by the total surface area A, we find the total radiated power P. We have
already seen the result in Eq. 18-38 (with some changes in notation):

P = geAT*, (38-16)

where o (= 5.6704 X 107 W/m? - K*) is the Stefan-Boltzmann constant and & is
the emissivity of the radiating surface (¢ = 1 for an ideal blackbody radiator).



38.5: Electrons and Matter Waves:
A=— (de Broglie wavelength)

de Broglie suggested that p =/A/4 might apply not only
to photons but also to electrons
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Fig. 38-9 (a) An experimental arrangement used to demon-
strate, by diffraction techniques, the wave-like character of the in-
cident beam. Photographs of the diffraction patterns when the in-
cident beam is (/) an x-ray beam (light wave) and (¢) an electron
beam (matter wave). Note that the two patterns are geometrically
identical to each other. (Photo (b) Cameca, Inc. Photo (c) from
PSSC film “Matter Waves,” courtesy Education Development
Center, Newton, Massachusetts)




38.5: Electrons and Matter Waves:
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Figure 38-9 Photographs showing the buildup of an inter-
ference pattern by a beam of electrons in a two-slit in-
terference experiment like that of Fig. 38-6. Matter
waves, like light waves, are probability waves. The ap-
proximate numbers of electrons involved are (a) 7, (b)
100, (¢) 3000, (d) 20 000, and (e) 70 000.




M Checkpoint 4

For an electron and a proton that have the same (a) kinetic energy, (b) momentum, or
(c) speed, which particle has the shorter de Broglie wavelength?

(a) proton; (b) same; (c) proton

Sample Problem 38.04 de Broglie wavelength of an electron

What is the de Broglie wavelength of an electron with a
kinetic energy of 120 eV?

KEY IDEAS

(1) We can find the electron’s de Broglie wavelength A
from Eq. 38-17 (A = h/p) if we first find the magnitude of
its momentum p. (2) We find p from the given kinetic en-
ergy K of the electron. That kinetic energy is much less
than the rest energy of an electron (0.511 MeV, from
Table 37-3). Thus, we can get by with the classical approxi-
mations for momentum p (= mv) and kinetic energy
K (= 5mv?).

Calculations: We are given the value of the kinetic energy.
So, in order to use the de Broglie relation, we first solve the
kinetic energy equation for v and then substitute into the

momentum equation, finding

p = V2mK
= \/(2)(9.11 X 107 kg)(120 eV)(1.60 X 1017 J/eV)
=591 X 10" kg-m/s.

From Eq.38-17 then

h
A= —
p

6.63 X 10-34] -5

591 X 10~*kg-m/s
=112 X 10 m = 112 pm.

(Answer)

This wavelength associated with the electron is about the
size of a typical atom. If we increase the electron’s kinetic
energy, the wavelength becomes even smaller.



38.6: Schrodinger’s Equation:

If a wave function, y(X, y, z, ), can be used to describe matter waves, then its space and
time variables can be grouped separately and can be written in the form

‘lP('r- ,_."r- Ly r} = df(,‘["_‘ .,.‘;" :} {;_fw{
where = Zr f)is the angular frequency of the matter wave.

Suppose that a matter wave reaches a particle detector; then the probability that a particle
will be detected in a specified time interval is proportional to /i/Z, where |y is the absolute
value of the wave function at the location of the detector.

|wF is always both real and positive, and it is called the probability density,

-
" The probability (per unit time) of detecting a particle in a small volume centered on a

- - - - - 3 -
given point in a matter wave is proportional to the value of [/|* at that point.



38.6: Schrodinger’s Equation:

Matter waves are described by Schrodinger’s Equation.

Suppose a particle traveling in the x direction through a region in which forces acting on
the particle cause it to have a potential energy U(x). In this special case, Schrodinger’s
equation can be written as:

dzrjj 817

d’x2

(Schrédinger’s equation,
one-dimensional motion)

~E - Uy

For a free particle, U(x)is zero, that equation describes a free particle where a moving
particle on which no net force acting on it. The particle’s total energy in this case 1s all
Kinetic, and the equation becomes:

d* 87im (ml ) 21,!; ( p)2 _
dx? - h? ¥=0. => 271-!1 v=0.

Using the concept of de Broglie wavelength and the definition of wave number,

dZ
L p f + kzljl =0 (Schrodinger’s equation, free particle).
X

The solution to this is: [ (x) = Ae™ + Be ik,

Here A and B are constants.



38.6: Schrodinger’s Equation, Finding the Probability Density:
(x) = Ae’*™ + Be ¥,

Consider a free particle that travels only
In the positive direction of x. Let the
arbitrary constant B be zero. At the same

Probabiliy time, let us relabel the constant Aas v,
density |y (x)| -

(x) = i e™.

!
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Fig. 38-12 A plot of the probability
density [#/1* for a free particle moving in the l

positive x direction. Since 11> has the same
constant value for all values of x, the parti-
cle has the same probability of detection at

all points along its path. W2 = (Y3)(1)> = 3 (aconstant).
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