
Chapter 38

Photons and Matter Waves



38.7: Heisenberg’s Uncertainty Principle

Heisenberg’s Uncertainty Principle states that measured values cannot be assigned to 

the position and the momentum of a particle simultaneously with unlimited precision.

Here Dx and Dpx represent the intrinsic uncertainties in the measurements of the x 

components of r and p, with parallel meanings for the y and z terms. Even with the best 

measuring instruments, each product of a position uncertainty and a momentum

uncertainty will be greater than ħ, never less.



Example, Uncertainty Principle, position and momentum:



38.8: Reflection from a Potential Step



38.9: Tunneling Through a Potential Barrier:

As the puck climbs the hill, kinetic energy K is transformed into gravitational

potential energy U. If the puck reaches the top, its potential energy is

Ub. Thus, the puck can pass over the top only if its initial mechanical energy

E >Ub.

The hill acts as a potential energy barrier (or, for short, a potential barrier).



There is a potential barrier for a nonrelativistic electron 

traveling along an idealized wire of negligible thickness 

(Figure 38-14). The electron, with mechanical energy E, 

approaches a region (the barrier) in which the electric 

potential Vb is negative.

The electron, being negatively charged, will have a 

positive potential energy Ub (=qVb) in that region (Fig. 

38-15). If E >Ub, we expect the electron to pass through 

the barrier region and come out to the right of x =L in 

Fig. 38-14. If E <Ub, we expect the electron to be unable 

to pass through the barrier region.

Fig. 38-15 An electron’s mechanical energy E is plotted when the 

electron is at any coordinate x<0. 

The electron’s electric potential energy U is plotted as a function of 

the electron’s position x, assuming that the electron can reach any 

value of x. The nonzero part of the plot (the potential barrier) has 

height Ub and thickness L.



Something astounding can happen to the electron when E <Ub.

Since it is a matter wave, the electron has a finite probability of leaking (or, tunneling) 

through the barrier and materializing on the other side, moving rightward with energy E 

as though nothing had happened in the region of 0 ≤ x ≤ L.

The wave function y(x) describing the 

electron can be found by solving 

Schrödinger’s equation separately for the 

three regions: (1) to the left of the barrier, (2) 

within the barrier, and (3) to the right of the 

barrier.

The arbitrary constants that appear in the 

solutions can then be chosen so that the 

values of y(x) and its derivative with respect 

to x join smoothly at x =0 and at x =L. 

Squaring the absolute value of y(x) then

yields the probability density.



Within the barrier the probability density 

decreases exponentially with x.
To the right of the barrier, the probability 

density plot describes a transmitted (through the 

barrier) wave with low but constant amplitude.

We can assign a transmission coefficient T to 

the incident matter wave and the barrier. This 

coefficient gives the probability with which an 

approaching electron will be transmitted through 

the barrier—that is, that tunneling will occur. For 

example if T  = 0.020, then for every 1000 

electrons fired at the barrier, 20 will tunnel 

through and 980 will be reflected back.

Approximately, 



Barrier Tunneling, The Scanning Tunneling Microscope (STM):
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Iron atoms on the surface of Cu(111)




