Chapter 38

Photons and Matter Waves



38.7: Heisenberg’'s Uncertainty Principle

Our inability to predict the position of a particle with a uniform electric potential
energy, as indicated by Fig. 38-13, 1s our first example of Heisenberg’s uncertainty
principle, proposed in 1927 by German physicist Werner Heisenberg. It states
that measured values cannot be assigned to the position 7 and the momentum p
of a particle simultaneously with unlimited precision.

In terms of & = h/27r (called “h-bar™), the principle tells us

Ax-Ap. = +h
Ay- ."_\py =h (Heisenberg’s uncertainty principle).
Az-Ap,. = h

Heisenberg’s Uncertainty Principle states that measured values cannot be assigned to
the position and the momentum of a particle simultaneously with unlimited precision.

Here Axand Ap, represent the intrinsic uncertainties in the measurements of the x
components of rand p, with parallel meanings for the yyand zterms. Even with the best
measuring instruments, each product of a position uncertainty and a momentum
uncertainty will be greater than 74, never less.



Example, Uncertainty Principle, position and momentum:

Assume that an electron is moving along an x axis and that
you measure its speed to be 2.05 X 10° m/s, which can be
known with a precision of 0.50%. What is the minimum
uncertainty (as allowed by the uncertainty principle in quan-
tum theory) with which you can simultaneously measure the
position of the electron along the x axis?

KEY IDEA

The minimum uncertainty allowed by quantum theory is
given by Heisenberg’s uncertainty principle in Eq. 38-20. We
need only consider components along the x axis because we
have motion only along that axis and want the uncertainty
Ax in location along that axis. Since we want the minimum
allowed uncertainty, we use the equality instead of the in-
equality in the x-axis part of Eq. 38-20, writing Ax-Ap, = .

Calculations: To evaluate the uncertainty Ap, in the mo-
mentum, we must first evaluate the momentum component
p.. Because the electron’s speed v, is much less than the
speed of light ¢, we can evaluate p, with the classical expres-
sion for momentum instead of using a relativistic expres-

sion. We find
py = mv, = (9.11 X 1073 kg)(2.05 X 10°m/s)
= 1.87 X 10 #kg-m/s.
The uncertainty in the speed is given as 0.50% of the measured

speed. Because p, depends directly on speed, the uncertainty
Ap, in the momentum must be 0.50% of the momentum:

Ap, = (0.0050)p,
= (0.0050)(1.87 X 10 2 kg-m/s)
=935 X 107" kg-m/s.

Then the uncertainty principle gives us

oo B _ (663X 10 7-5)2m
YT Ap, 935 % 107 kg-ms

=113 X 10 % m = 11 nm,

(Answer)

which is about 100 atomic diameters. Given your measurement
of the electron’s speed, it makes no sense to try to pin down the
electron’s position to any greater precision.



38.8: Reflection from a Potential Step

In Fig. 38-14, we send a beam of a great many nonrelativistic electrons, each of to-
tal energy E, along an x axis through a narrow tube. Initially they are in region 1
where their potential energy is U = 0, but at x = 0 they encounter a region with a
negative electric potential V. The transition is called a potential step or potential
energy step. The step is said to have a height U,, which is the potential energy an
electron will have once it passes through the boundary at x = 0, as plotted in

Fig. 38-15 for potential energy as a function of position x. (Recall that U = gV.
Here the potential V, is negative, the electron’s charge ¢ is negative, and so the
potential energy U, is positive.)
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Figure 38-14 The elements of a tube in which
an electron (the dot) approaches a region
with a negative electric potential V/,

Classically, the electron has
too much energy to be
reflected by the potential step.
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Figure 38-15 An energy diagram containing
two plots for the situation of Fig. 38-14: (1)
The electron’s mechanical energy FE is plot-
ted. (2) The electron’s electric potential en-
ergy U is plotted as a function of the elec-
tron’s position x. The nonzero part of the
plot (the potential step) has height U,

According to classical physics, if a particle’s initial kinetic energy
exceeds the potential energy, it should never be reflected by the re-
gion. However, according to quantum physics, there is a reflection
coefficient R that gives a finite probability of reflection. The proba-

bility of transmissionis 7'= 1—R.



38.9: Tunneling Through a Potential Barrier:

Fig. 38-13 A puck slides over
frictionless ice toward a hill. The

puck’s gravitational potential at the
top of the hill will be Uy, B x

As the puck climbs the hill, kinetic energy K is transformed into gravitational
potential energy U. If the puck reaches the top, its potential energy is

U,. Thus, the puck can pass over the top only if its initial mechanical energy
E >U,.

The hill acts as a potential energy barrier (or, for short, a potential barrier).



Can the electron pass

There is a potential barrier for a nonrelativistic electron through the region of
traveling along an idealized wire of negligible thickness e e
(Figure 38-14). The electron, with mechanical energy £,
approaches a region (the barrier) in which the electric
potential V/ is negative.
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The electron, being negatively charged, will have a Fig. 38-14 The clements of an idealized

pOSitiVE potential energy Ub (:C]Vb) in that region (Flg thin wire in which an electron (the dot)
38-15). If E >U,, we expect the electron to pass through approaches a negative electric potential V,

the barrier region and come out to the right of x =L in in the regionx = 0tox = L.
Fig. 38-14. If £ <U,, we expect the electron to be unable
to pass through the barrier region.

Classically, the electron
lacks the energy to pass

_ _ Fig. 38-15 An electron’s mechanical energy £ is plotted when the
through the barrier region.

electron is at any coordinate x<0.
Eneray The electron’s electric potential energy Uis plotted as a function of
the electron’s position X, assuming that the electron can reach any
0, value of x. The nonzero part of the plot (the potential barrier) has

| height U, and thickness L.
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Something astounding can happen to the electron when £ <U,,

Since it is a matter wave, the electron has a finite probability of leaking (or, tunneling)
through the barrier and materializing on the other side, moving rightward with energy £
as though nothing had happened in the region of 0 < x< L.

Probability
= P
density [y (x)[

W

() L.

Fig. 38-16 A plot of the probability
density | /7 of the electron matter wave for
the situation of Fig. 38-15. The value of [/ is
nonzero to the right of the potential barrier.

Classically, the electron
lacks the energy to pass
through the barrier region.
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The wave function y(x) describing the
electron can be found by solving
Schrodinger’s equation separately for the
three regions: (1) to the left of the barrier, (2)
within the barrier, and (3) to the right of the
barrier.

The arbitrary constants that appear in the
solutions can then be chosen so that the
values of y(x)and its derivative with respect
to xjoin smoothly at x =0and at x =L.
Squaring the absolute value of y(x)then
yields the probability density.
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Fig. 38-16 A plot of the probability
density [/ of the electron matter wave for
the situation of Fig. 38-15. The value of /1% is
nonzero to the right of the potential barrier.

T~ e2bL

Within the barrier the probability density
decreases exponentially with x.

U To the right of the barrier, the probability
density plot describes a transmitted (through the
barrier) wave with low but constant amplitude.

We can assign a transmission coefficient 7to
the incident matter wave and the barrier. This
coefficient gives the probability with which an
approaching electron will be transmitted through
the barrier—that is, that tunneling will occur. For
example if T =0.020, then for every 1000
electrons fired at the barrier, 20 will tunnel
through and 980 will be reflected back.

Approximately, Sm’m(U, — E)
b = \X J ’

h?

the value of 7 is very sensitive to the three variables on which it depends: particle
mass m, barrier thickness L., and energy difference U, — E. (Because we do not
include relativistic effects here, £ does not include mass energy.)



Barrier Tunneling, The Scanning Tunneling Microscope (STM):
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Fig. 38-17 The essence of a scanning
tunneling microscope (STM). Three quartz
rods are used to scan a sharply pointed
conducting tip across the surface of inter-
est and to maintain a constant separation
between tip and surface. The tip thus
moves up and down to match the contours
of the surface, and a record of its move-
ment provides information for a computer
to create an image of the surface.

The Nobel Prize in Physics
1986

Ernst Ruska Gerd Binnig
Prize share: 1/2 Prize share: 1/4 Prize share: 1/4

Heinrich Rohrer

The Nobel Prize in Physics 1986 was divided, one half awarded to
Ernst Ruska "for his fundamental work in electron optics, and for
the design of the first electron microscope”, the other half jointly to
Gerd Binnig and Heinrich Rohrer "for their design of the scanning
tunneling microscope”.
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Iron atoms on the surface of Cu(111)



Sample Problem 38.06 Barrier tunneling by matter wave

Suppose that the electron in Fig. 38-17, having a total energy
E of 5.1 eV, approaches a barrier of height U, = 6.8 eV and
thickness L. = 750 pm.

(a) What is the approximate probability that the electron
will be transmitted through the barrier, to appear (and be
detectable) on the other side of the barrier?

KEY IDEA

The probability we seek is the transmission coefficient 7" as
given by Eq.38-38 (T =~ ¢~ 2"L), where

b= \/ 877'2m(Ub — E).

h?

Calculations: The numerator of the fraction under the
square-root sign is

(872)(9.11 X 10 kg)(6.8 eV — 5.1 eV))
X (1.60 X 10719 J/eV) = 1.956 X 10~ J -kg.

1.956 X 104 J-kg

- — = 6.67 X 10°m ™.
663 x 10 #J5p 067 x107m

Thus, b =

The (dimensionless) quantity 2b L is then
2bL = (2)(6.67 X 10°m~")(750 X 1072 m) = 10.0

and, from Eq. 38-38, the transmission coefficient is
T=e 2L =100 =45 x 107 (Answer)

Thus, of every million electrons that strike the barrier, about
45 will tunnel through it, each appearing on the other side
with its original total energy of 5.1 eV. (The transmission
through the barrier does not alter an electron’s energy or
any other property.)

(b) What is the approximate probability that a proton
with the same total energy of 5.1 eV will be transmitted
through the barrier, to appear (and be detectable) on the
other side of the barrier?

Reasoning: The transmission coefficient 7 (and thus the
probability of transmission) depends on the mass of the
particle. Indeed, because mass m is one of the factors in the
exponent of e in the equation for 7. the probability of trans-
mission is very sensitive to the mass of the particle. This time,
the mass is that of a proton (1.67 X 10" kg), which is signif-
icantly greater than that of the electron in (a). By substitut-
ing the proton’s mass for the mass in (a) and then continuing
as we did there, we find that 7'~ 10 ~'%. Thus, although the
probability that the proton will be transmitted is not exactly
zero, it is barely more than zero. For even more massive par-
ticles with the same total energy of 5.1 eV, the probability of
transmission is exponentially lower.



