Chapter 39
More About Matter Waves
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Example, Energy levels in a 1-D infinite potential well, cont.:

(c) Ifthe electron gains the energy for the jump from energy
level E, to energy level E; by absorbing light, what light
wavelength is required?

KEY IDEAS

(1) If light is to transfer energy to the electron, the transfer
must be by photon absorption. (2) The photon’s energy must
equal the energy difference AE between the initial energy
level of the electron and a higher level, according to Eq.39-6
(hf = AE). Otherwise,a photon cannot be absorbed.

Wavelength: Substituting c¢/A for f, we can rewrite
Eq.39-6 as he

= AL

For the energy difference AF;; we found in (b), this equa-
tion gives us

hc
AE,
(6.63 X 10~ T-5)(2.998 X 10% m/s)
N 483 X 10777
= 412 X 10~°m.

(d) Once the electron has been excited to the second excited
state, what wavelengths of light can it emit by de-excitation?

A (39-9)

A

(Answer)

The direct jump involves the same energy difference
AE,; we found in (c). Then the wavelength is the same as we
calculated in (c)—except now the wavelength is for light

that is emitted, not absorbed. Thus, the electron can jump di-
rectly to the ground state by emitting light of wavelength

A=412 X 107 m.

Following the procedure of part (b), you can show that
the energy differences for the jumps of Figs. 39-5b and ¢ are

AE, =3.016 X 10777 and AE, = 1.809 X 10~17].

From Eq. 39-9, we then find that the wavelength of the light
emitted in the first of these jumps (fromn = 3ton = 2)is

A =6.60 X 107 m,

(Answer)

(Answer)

and the wavelength of the light emitted in the second of
these jumps (fromn = 2ton = 1) is

A =110 x10"8¥m. (Answer)



39.4. Wave Functions of a Trapped Electron:

Fig. 39-6 The probability density y2(x)

for four states of an electron trapped in a

one-dimensional infinite well; their quantum
numbers are n = 1,2,3,and 15. The electron

is most likely to be found where f3(x) is

greatest and least likely to be found where

r2(x) is least.

probability p(x) : i NN
of detection in width dx | = (probabﬂ]ty density s (x)

centered on position x at position x ) (width dx),

p(x) = yr(x) dx.
lvbn(x) =A Sin(nTﬂ-x)ﬁ forn = 1,2, 3‘, C e

('probability of detection) N (x)
between x; and x, p

Xy

_ szz sinz(”T“x) dx.

The probability density
must be zero at the
infinite walls.
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39.4: Wave Functions of a Trapped Electron
Normalization and Zero-Point Energy:

> The product ¢;(x) dx gives the probability that an electron in an infinite well can be
detected in the interval of the xaxis that lies between xand x +ax. We know that the electron

must be somewhere in the infinite well: so it must be true that

+ oo
f l,l'lﬁ (JI ) dx =1 (normalization equation)

hz
—] 2 —]
E, (8 Lz)n, forn=1,2,3,....

» n=1 in the previous equation defines the state of lowest energy for an electron in an
infinite potential well, the ground state. Therefore in guantum physics confined systems
cannot exist in states with zero energy. They must always have a certain minimum energy

called the zero-point energy.



M Checkpoint 2 u ‘ ‘ ‘ ‘

The figure shows three

infinite potential wells of I 97 37,

widths L, 2L, and 3L; (a) (b) (¢

each contains an elec-

tron in the state for which n = 10. Rank the wells according to (a) the number of maxima
for the probability density of the electron and (b) the energy of the electron, greatest first.

(a)all tie;(b) a, b, c

M Checkpoint 3

Each of the following particles is confined to an mfiite well, and all four wells have the
same width: (a) an electron, (b) a proton, (¢) a deuteron, and (d) an alpha particle. Rank
their zero-point energies, greatest first. The particles are listed in order of increasing mass.

a,b,c.d



Example, Detection probability in a 1D potential well:

A ground-state electron is trapped in the one-dimensional
infinite potential well of Fig. 39-2, with width L = 100 pm.

(a) What is the probability that the electron can be detected
in the left one-third of the well (x; = 0tox, = L/3)?

KEY IDEAS

(1) If we probe the left one-third of the well, there is no guaran-
tee that we will detect the electron. However, we can calculate
the probability of detecting it with the integral of Eq. 39-13. (2)
The probability very much depends on which state the electron
is in— that is, the value of quantum number ».

Calculations: Because here the electron is in the ground
state, we set n = 1 in Eq. 39-13. We also set the limits of inte-
gration as the positions x; = 0 and x, = L/3 and set the
amplitude constant A as V2/L (so that the wave function is
normalized). We then see that

('Probability of detection) _ L el Sin? ( 17 r) "
in left one-third o L L ax.

We could find this probability by substituting 100 X 107" m
for L. and then using a graphing calculator or a computer
math package to evaluate the integral. Here, however, we
shall evaluate the integral “by hand.” First we switch to a new
integration variable y:

v and dx = Ld}’.

U
L T

}}:

From the first of these equations, we find the new limits of
integration to be y; = O for x; = O and y, = 7/3 for x, = L/3.
We then must evaluate

2N/ L\ (73
probability = (T) (—)f (sin? y) dy.
L, 0

LT

Using integral 11 in Appendix E, we then find

5 , in 2y \73
probability = — (}? - 5m4 Y )

a

= 0.20.
/0

Thus, we have

probability of detection) _

(_ in left one-third 0.20. (Answer)
That is, if we repeatedly probe the left one-third of the well, then
on average we can detect the electron with 20% of the probes.

(b) What is the probability that the electron can be de-
tected in the middle one-third of the well?

Reasoning: We now know that the probability of detection
in the left one-third of the well is 0.20. By symmetry, the probabil-
ity of detection in the right one-third of the well is also 0.20.
Because the electron is certainly in the well, the probability of de-
tection in the entire well is 1. Thus, the probability of detection in
the middle one-third of the well is

probability of detection) . N
( in middle one-third | b= 0202020

= 0.60. (Answer)



Example, Detection probability in a 1D potential well:

Evaluate the amplitude constant A in Eq. 39-10 for an infinite
potential well extending fromx = Otox = L.

KEY IDEA

The wave functions of Eq. 39-10 must satisfy the normalization
requirement of Eq. 39-14, which states that the probability that
the electron can be detected somewhere along the x axis is 1.

Calculations: Substituting Eq. 39-10 into Eq. 39-14 and
taking the constant A outside the integral yield

L
Aﬁf sinz("ix) e il
0 L

We have changed the limits of the integral from — and + to
0 and L because the wave function is zero outside these new
limits (so there’s no need to integrate out there).

We can simplify the indicated integration by changing the
variable from x to the dimensionless variable y, where

(39-15)

nm
y=—7-x,

L

hence dx = L dy.

ni

(39-16)

When we change the variable, we must also change the
integration limits (again). Equation 39-16 tells us that y =0
when x = 0 and that y = n7r when x = L; thus 0 and n7 are
our new limits. With all these substitutions, Eq. 39-15 becomes
nir
AQLJ' (sin’y) dy = 1.
nm Jo

We can use integral 11 in Appendix E to evaluate the inte-
gral, obtaining the equation

AL F _ sin2y Tf _

2 4

nm 0

Evaluating at the limits yields

AL nm

— 1'
nw 2 ’
2
thus A= T (Answer) (39-17)

This result tells us that the dimension for A2 and thus for
r2(x), is an inverse length. This is appropriate because the
probability density of Eq.39-12 is a probability per unit length.



An Electron in a Finite Well -
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Fig. 39-7 A finite potential energy well.

The depth of the well is U and its width is
L.As in the infinite potential well of Fig.
39-2,the motion of the trapped electron is
restricted to the x direction.

To find the wave functions describing the
quantum states of an electron in the finite
well of Fig. 39-7, one needs to consider
Schrodinger’s equation.

For motion in one dimension,

Schrodinger’s equation in the form is:

d*y ~ 8mm
— + . E — U( = 0.
dx*} hz [ (r)]llb




An Electron in a Finite Well:
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Fig. 39-8 The first three probability densities for an electron confined to a finite potential
well of depth U,=450 eV and width L =100 pm. Only states 7=1, 2, 3, and 4 are allowed.

Fig. 39-9 The energy-level diagram corre-
sponding to the probability densities of

— Nonquantized o . . :
e Fig.39-8. If an electron is trapped in the finite
B potential well,it can have only the energies
correspondington = 1,2,3,and 4. If it has an
450 = — Top of well energy of 450 eV or greater, it is not trapped
%’ E E, =393 eV and its energy is not quantized.
B |
v
= Fq =233 eV . .
_ 3 For a finite well, the electron matter wave penetrates the walls of
the well—into a region in which Newtonian mechanics
- By = 106 eV says the electron cannot exist.
0 L =27 eV However, from the plots in Fig. 39-8, we see there is leakage into

the walls, and that the leakage is greater for greater values of
quantum number 7.



Example, Electron escaping from a finite well:

Suppose a finite well with U, = 450 eV and L = 100 pm
confines a single electron in its ground state.

(a) What wavelength of light is needed to barely free the
electron from the potential well if the electron absorbs a

single photon from the light?
Barely escaping: The electron is initially in its ground

state, with an energy of E; = 27 eV. So, to barely become
free, it must receive an energy of

U,— E,=450eV — 27 eV =423 eV.
he
— =, - E,
A 0 1+

from which we find
he
U, — E;
(6.63 X 1073 J-5)(3.00 X 10%m/s)
(423 eV)(1.60 X 107 J/eV)
=294 X 107’ m = 2.94 nm.

Thus,if A =2.94 nm, the electron just barely escapes.

A=

(Answer)

(b) Can the ground-state electron absorb light with A =
2.00 nm? If so, what then is the electron’s energy?

More than escaping: The energy transferred to the elec-

tron is the photon energy:
hf = n S (6.63 X 107 J-5)(3.00 X 10®* m/s)
A 2.00 X 10 m

=0.95 X 10717J = 622 eV.

From (a), the energy required to just barely free the electron
from the potential well is U, — E, (= 423 eV). The remainder
of the 622 eV goes to kinetic energy. Thus, the kinetic energy
of the freed electron is

K = hf = (Uy ~ E)

= 622eV —423eV =199 eV. (Answer)



More Electron Traps, Nanocrystallites:

Fig. 39-10 Two samples of powdered cadmium selenide, a
semiconductor, differing only in the size of their granules. Each
granule serves as an electron trap. The lower sample has the larger
granules and consequently the smaller spacing between energy levels
and the lower photon energy threshold for the absorption of light.
Light not absorbed is scattered, causing the sample to scatter light of
greater wavelength and appear red. The upper sample, because of its
smaller granules, and consequently its larger level spacing and its
larger energy threshold for absorption, appears yellow. (From
Scientific American, January 1993 page 122. Reproduced with
permission of Michael Steigerwald, Bell Labs—Lucent Technologies)

A given nanocrystallite can absorb photons with an energy above a certain threshold energy

E, (=hf,)and thus wavelengths below a corresponding threshold wavelength , _ ¢ _ ch
i E.




More Electron Traps, Quantum Dots:

Fig. 39-11 A quantum dot, or “artificial
atom.” (a) A central semiconducting layer
forms a potential energy well in which elec-
trons are trapped. The lower insulating layer
is thin enough to allow electrons to be added
to or removed from the central layer by bar-
rier tunneling if an appropriate voltage is ap-
plied between the leads. (b) A photograph of
an actual quantum dot. The central purple
band is the electron confinement region.
(From Scientific American, September 1995,
page 67. Image reproduced with permission of
H. Temkin, Texas Tech University)
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