Chapter 39
More About Matter Waves
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39.4: Two- and Three- Dimensional Electron Traps:
The normalized wave function:

This is a two-dimensional
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Fig. 39-13 A rectangular corral —a

two-dimensional version of the infinite

potential well of Fig. 39-2—with widths
Lyand L,.




39.4: Two- and Three- Dimensional Electron Traps, Rectangular Box

This is a three-dimensional
The energy of an electron trapped in a 3-D trap with infinite
infinite potential box:

potential walls.
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Fig. 39-14 A rectangular box—a
three-dimensional version of the infinite

potential well of Fig. 39-2—with widths
Ly, Ly and L..



M Checkpoint 4

In the notation of Eq. 39-20,1s Eyq. Eqg. £y, or Ep; the ground-state energy of an
electron in a (two-dimensional) rectangular corral?

E|; (neither n,nor n, can be zero)



Example, Energy levels in a 2D infinite potential well:

An electron is trapped in a square corral that is a two-
dimensional infinite potential well (Fig. 39-13) with widths
L. =L,

i ¥

(a) Find the energies of the lowest five possible energy levels
for this trapped electron, and construct the corresponding

energy-level diagram.
Energy levels: Because the well here is square, we can let
the widths be L, = L, = L.Then Eq. 39-20 simplifies to

2

E

.y = 8mL2

(nZ + n2). (39-22)

The lowest energy states correspond to low values of the
quantum numbers n, and n,, which are the positive integers
1, 2,..., . Substituting those integers for n, and n, n
Eq. 39-22, starting with the lowest value 1, we can obtain the
energy values as listed in Table 39-1. There we can see that

Energy Levels

n, ny Energy” "y ny, Energy*
1 3 10 2 4 20
3 1 10 - 2 20
2 2 8 3 3 18
1 2 5 1 4 17
2 1 5 - 1 17
1 1 2 2 3 13
3 2 13

“Tn multiples of h*/8mL?.

These are the lowest five energy levels 13 E.- E
: 5,2 bag
allowed the electron. Different quantum
states may have the same energy.
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Fig. 39-15 Energy-level diagram for

an electron trapped in a square corral.

several of the pairs of quantum numbers (n,, n,) give the same
energy. For example, the (1,2) and (2, 1) states both have an
energy of 5(h’/8mL.?). Each such pair is associated with de-
generate energy levels. Note also that, perhaps surprisingly,
the (4,1) and (1,4) states have less energy than the (3,3) state.

From Table 39-1 (carefully keeping track of degenerate
levels), we can construct the energy-level diagram of Fig. 39-15.



Example, Energy levels in a 2D infinite potential well, cont.:

(b) As a multiple of #*/8m L2, what is the energy difference
between the ground state and the third excited state?

Energy difference: From Fig. 39-15, we see that the ground
state is the (1, 1) state, with an energy of 2(/*/8m1.?). We also
see that the third excited state (the third state up from the
ground state in the energy-level diagram) is the degenerate
(1,3) and (3, 1) states, with an energy of 10(h*/8mL?). Thus,
the difference AE between these two states is

h? h? h?
Ak = 1”(@) - z(m) - S(W)
(Answer)

These are the lowest five energy levels
allowed the electron. Different quantum
states may have the same energy.

Fig. 39-15 Energy-level diagram for
an electron trapped in a square corral.
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39.5: The Bohr Model of the Hydrogen Atom:

Nucleus

Circular orbit

Electron

(a) Bohr's model for
hydrogen resembles
the orbital model
of a planet around
a star.

(b)

Fig. 39-16 («) Circular orbit of an elec-
tron in the Bohr model of the l‘l}fdrogen
atom. (b) The Coulomb force F on the
electron is directed radially inward toward
the nucleus.

The angular momentum: ¢ = rmv sin ¢,

= rmv sin 90°

For quantization of /,  rmv = n#,

nh
y = ——
rm
he,
0 - ;
r= —n-, forn=1,23.....
mme-

‘ r=an’, forn=123, ...,
hzgo

a = > =5291772 X 107" m = 52.92 pm.
Tme-




39.5: The Bohr Model of the Hydrogen Atom, Orbital energy is quantized:

E=K+U

| i 1 e2
=-mv- + | — .
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|:> En = — 3 .};?2 H,, . forn = 1.2,3“ .
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_ 2180 X 10-18] _ 13.61eV
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39.5: The Bohr Model of the Hydrogen Atom, Energy Changes:

hf = AE = Ehigh = Ejow-
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R=-"C 1097373 x 107m~! (Rydberg Constant)
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39.9: Schrodinger’s Equation and The Hydrogen Afom:

U (eV)
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-10F Hydrogen is a
three-dimensional,

finite electron trap,

_%0 _
with walls that vary
B in depth with
=30~ distance.

Fig. 39-17 The potential energy U of a
hydrogen atom as a function of the separa-
tion r between the electron and the central
proton. The plot is shown twice (on

the left and on the right) to suggest the
three-dimensional spherically symmetric
trap in which the electron is confined.



Schrodinger’s Equation and The Hydrogen Atom:

Nonquantized Nonquantized
n n
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Fig. 39-18 (a) An energy-level diagram for the hydrogen atom. Some of the
transitions for (b) the Lyman series. For each, the longest four wavelengths and the

series-limit wavelength are plotted on a wavelength axis. Any wavelength shorter
than the series-limit wavelength is allowed.



Schrodinger’s Equation and The Hydrogen Atom:

Fig. 39-18 Some of the transitions for (c) the Balmer series, and (d) the Paschen series.
For each, the longest four wavelengths and the series-limit wavelength are plotted on a
wavelength axis. Any wavelength shorter than the series-limit wavelength is allowed.
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Quantum Numbers and The Hydrogen Atom:

Each set of quantum numbers (1, /, m) identifies the wave function of a particular quantum state. The
quantum number 7, is called the principal quantum number. The orbital quantum number /is a
measure of the magnitude of the angular momentum associated with the quantum state. The orbital

magnetic quantum number 7;is related to the orientation in space of this angular momentum
vector.

The restrictions on the values of the quantum numbers for the hydrogen atom, as listed in Table 39-2,

are not arbitrary but come out of the solution to Schrédinger’s equation.

Table 39-2

Quantum Numbers for the Hydrogen Atom

Symbol Name Allowed Values
n Principal quantum number 1,2,3,...
€ Orbital quantum number 0,1,2,...,n—1

n Orbital magnetic quantum number €, —=(€—=1), ..., +(€ — 1), +¢




