Chapter 39
More About Matter Waves
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The Wave Functions of the Hydrogen Atom’s Ground State:

The wave function for the ground state of the hydrogen atom, obtained by solving the three-

dimensional Schrodinger equation and normalizing is
1

P(r) = ——Fe ™ (ground state)
NTa-

where ais the Bohr radius.

The probability that an electron can be detected in any given (infinitesimal) volume element
dVlocated at radius 7, of width ar, from the center of the atom is

2 — —2ra el
Y(r) dV a3 ¢ redr. in which 4n /2 is the surface area of the inner shell

and aris the radial distance between the two shells.

The radial probability density A(r)is a linear probability density such that

P(r)dr = *(r)dV.
This leads to:

b SO Y . 010 o
P(r) = —ree” (radial probability density, hydrogen atom ground state).
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Fig. 39-19 A plot of the radial probabil-
ity density P(r) for the ground state of the
hydrogen atom. The triangular marker is lo-
cated at one Bohr radius from the origin, and
the origin represents the center of the atom.

JW P(r)dr = 1.
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The Wave Functions of the Hydrogen Atom’s Ground State:

Fig. 39-20 A “dot plot” showing the
volume probability density /*(r)—not the
radial probability density P(r)— for the
ground state of the hydrogen atom. The
density of dots drops exponentially with
increasing distance from the nucleus, which
is represented here by a red spot.



Example, Probability of detection of an electron in a hydrogen atom:

Show that the radial probability density for the ground state
of the hydrogen atom has a maximum at » = a.

KEY IDEAS

(1) The radial probability density for a ground-state hydro-
gen atom is given by Eq. 39-44,

4
P(r) = —rie 2"
a

(2) To find the maximum (or minimum) of any function, we
must differentiate the function and set the result equal to zero.

If we set the right side equal to zero, we obtain an equation
that is true if » = a, so that the term (¢ — r) in the middle of
the equation is zero. In other words, dP/dr is equal to zero

Calculation: If we differentiate P(r) with respect to r,
using derivative 7 of Appendix E and the chain rule for dif-
ferentiating products, we get

ar — i,.z( —2 )6—23’;":1 L in e—2n’a

dr a’ a a’
2
— 8r e—2n‘a — 8r e—2n’a
3 4
a a
8
=—r(a—rye "
a

when r=a. (Note that we also have dP/dr=10 at
r = 0 and at r = =. However, these conditions correspond to a
minimum in P(r), as you can see in Fig. 39-19.)



Example, Light emission from a hydrogen atom:

(a) What is the wavelength of light for the least energetic
photon emitted in the Lyman series of the hydrogen atom
spectrum lines?

KEY IDEAS

(1) For any series, the transition that produces the least
energetic photon is the transition between the home-base
level that defines the series and the level immediately above it.
(2) For the Lyman series, the home-base level is at n = 1 (Fig.
39-18b). Thus, the transition that produces the least energetic
photon is the transition from the n = 2 level to the n = 1 level.

Calculations: From Eq.39-33 the energy difference is

1 1
AE=E, - E, = —(13.60eV) (? — ?) = 10.20 eV.
Then from Eq. 39-6 (AE = hf), with ¢/A replacing f, we have

he  (6.63 X 107 J-5)(3.00 X 108 m/s)

A=AE (10.20 eV)(1.60 X 10~ J/eV)

=122 X 107" m = 122 nm. (Answer)

Light with this wavelength is in the ultraviolet range.

(b) What is the wavelength of the series limit for the Lyman
series”

KEY IDEA

The series limit corresponds to a jump between the home-
base level (n = 1 for the Lyman series) and the level at the
limit n = oo,

Calculations: Now that we have identified the values of n
for the transition, we could proceed as in (a) to find the cor-
responding wavelength A. Instead, let’s use a more direct
procedure. From Eq. 39-36, we find

1 1 1
— =R _
A ( ”izow Iﬁ'lzﬁgh )

(1 1
=1.097373 X 10" m™! (? — g),

which yields
A =911 X 107*m = 91.1 nm.

Light with this wavelength is also in the ultraviolet range.

(Answer)



Hydrogen Atom States with n = 2;

Table 39-3

Quantum Numbers for Hydrogen Atom States with n = 2

n 4 7y,
2 0 0
2 1 +1
2 1 0
2 1 -1




Hydrogen Atom States with n = 2;
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Fig. 39-21 A dot plot showing the
volume probability density ¢2(r) for the () (0)

hydrogen atom in the quantum state with Fig. 39-23 Dot plots of the volume probability density ¢/%(r, )
n=2,{=0,and m, = 0.The plot has for the hydrogen atom in states withn = 2 and € = 1. (a) Plot for
spherical symmetry about the central mg = 0.(b) Plot form, = +1and m; = —1. Both plots show that
nucleus. The gap in the dot density pattern the probability density is symmetric about the z axis.

marks a spherical surface over which

WA(r) = 0.



Hydrogen Atom States with large n:

Fig. 39-24 A dot plot of the radial prob-
ability density P(r) for the hydrogen atom
in a quantum state with a relatively large
principal quantum number—namely, n =
45 —and angular momentum quantum
number { = n — 1 = 44.The dots lie close
to the xy plane, the ring of dots suggesting a
classical electron orbit.



Ml‘.heckpuint 5

(a) A group of quantum states of the hydrogen atom has n = 5. How many values
of € are possible for states in this group? (b) A subgroup of hydrogen atom states in the
n =5 group has € = 3. How many values of m, are possible for states in this subgroup?

(a)5:(b) 7



