Chapter 41

Conduction of Electricity in Solids



41.1: The Electrical Properties of Solids:

The electrical properties of solids can be categorized into following classes:

1.

2.

o

Their resistivity p at room temperature, with the SI unit ohm-meter ({}-m);
resistivity is defined in Section 26-4.

Their temperature coefficient of resistivity «a. defined as a = (1/p)(dp/dT) in
Eq. 26-17 and having the SI unit inverse kelvin (K™!). We can evaluate « for
any solid by measuring p over a range of temperatures.

Their number density of charge carriers n. This quantity, the number of charge
carriers per unit volume, can be found from measurements of the Hall effect,
as discussed in Section 28-4, and from other measurements. It has the SI unit
inverse cubic meter (m™?).



Fig. 41-1 (a) The unit cell for copper 1s a
cube. There 1s one copper atom (darker) at
each corner of the cube and one copper
atom (lighter) at the center of each face of
the cube. The arrangement is called face-
centered cubic. (b) The unit cell for either
silicon or the carbon atoms in diamond is
also a cube, the atoms being arranged in
what is called a diamond lattice. There 1s one
atom (darkest) at each corner of the cube
and one atom (lightest) at the center of
each cube face:;in addition, four atoms
(medium color) lie within the cube. Every
atom 1s bonded to its four nearest neighbors
by a two-electron covalent bond (only the
four atoms within the cube show all four
nearest neighbors).




Energy Levels in a Crystalline Solid:

Fig. 41-2 («@)Two copper atoms separated
by a large distance; their electron distributions
are represented by dot plots. (5) Each copper
atom has 29 electrons distributed among a set
of subshells. In the neutral atom in its ground
state, all subshells up through the 3d level are
filled, the 4s subshell contains one electron (it
can hold two), and higher subshells are empty.
For simplicity, the subshells are shown as be-
ing evenly spaced in energy.

If we bring the atoms of Fig. 41-24 close together, their
wave functions will overlap, beginning with those of the
outermost electrons. Then we have a single two-atom
system; here the system contains 2 x29 =58 electrons.

If we bring up more atoms, we gradually assemble a lattice
of solid copper. If the lattice contains AVatoms, then each
level of an isolated copper atom must split into AVlevels in
the solid.

Thus, the individual energy levels of the solid form energy
bands, adjacent bands being separated by an energy gap,
with the gap representing a range of energies that no
electron can possess.
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Fig. 41-3 The band-gap pattern of
energy levels for an idealized crystalline
solid. As the magnified view suggests, each
band consists of a very large number of
very closely spaced energy levels. (In many
solids, adjacent bands may overlap; for
clarity, we have not shown this condition.)



Table 41-1

Some Electrical Properties of Two Materials®

Material
Property Unit Copper Silicon
Type of conductor Metal Semiconductor
Resistivity, p Q-m 2 X 107% 3 x 103
Temperature coefficient of resistivity, K1 +4 x 1072 —70 X 1073
Number density of charge carriers,n m 3 9 X 10% 1 X 1018

*All values are for room temperature.



Insulators:

In an insulator,
electrons need
a big energy
jump.

11

Insulator

Fig. 41-4 The band-gap pattern for an insulator;filled levels are
shown in red and empty levels in blue.



Sample Problem 41.01

Approximately what is the probability that, at room temper-
ature (300 K), an electron at the top of the highest filled
band in diamond (an insulator) will jump the energy gap E,
in Fig. 41-4? For diamond, E,is 5.5 ¢V.

KEY IDEA

In Chapter 40 we used Eq. 40-29,

N

No
to relate the population N, of atoms at energy level E, to the
population N, at energy level £, where the atoms are part of a
system at temperature 7 (measured in kelvins); k is the
Boltzmann constant (8.62 X 107> eV/K). In this chapter we

can use Eq.41-1 to approximate the probability P that an elec-
tron in an insulator will jump the energy gap E,in Fig. 41-4.

— o~ (Ex—EQ)kT.

(41-1)

Probability of electron excitation in an insulator

Calculations: We first set the energy difference E, — E, to
E,. Then the probability P of the jump is approximately equal
to the ratio N,/N, of the number of electrons just above the
energy gap to the number of electrons just below the gap.

For diamond, the exponent in Eq. 41-1is

E 55eV

——& = _ =—213.
kT (8.62 X 1072 eV/K)(300 K)
The required probability is then
P = Nx — e—(ngkT) — e—213 ~ 3 X ‘10—93' (Answer)

0
This result tells us that approximately 3 electrons out of 10%
electrons would jump across the energy gap. Because any
diamond stone has fewer than 102 electrons, we see that the
probability of the jump is vanishingly small. No wonder
diamond is such a good insulator.



Metals:

In a conductor,
electrons need
only a small
energy jump.

— E;
— E=0

Metal

Fig. 41-5 The band-gap pattern for a
metal. The highest filled level, called the

Fermi level. lies near the middle of a band.

Since vacant levels are available within
that band,electrons in the band can easily
change levels, and conduction can

take place.

If the electric potential energy U of a conduction
electron is uniform throughout the lattice, let’s set
U = 0, so that the mechanical energy £'is entirely
kinetic. Then the level at the bottom of the partially
filled band of Fig. 41-5 corresponds to £ =0. The
highest occupied level in this band at absolute zero
(7 =0 K)is called the Fermi level, and the energy
corresponding to it is called the Fermi energy E-;
for copper, £E-=7.0 eV.

The electron speed corresponding to the Fermi
energy is called the Fermi speed v For copper the
Fermi speed is=1.6 x108 m/s. All motion does not
cease at absolute zero; at that temperature the
conduction electrons are stacked up in the partially
filled band of Fig. 41-5 with energies that range
from zero to the Fermi energy.



Metals: How Many Conduction Electrons Are There?

(number of conductiﬂn) B (number of atoms) (number of va]ence)
~ electrons in sample in sample electrons per atom )’

number of conduction electrons in sample

n =
sample volume V

(number of atnms) _ sample mass M,  sample mass M,

in sample atomic mass (molar mass M )/N,

(material’s density)(sample volume V')
(molar mass M )/N,

where the molar mass M is the mass of one mole of the material in the sample
and N , is Avogadro’s number (6.02 X 102 mol ~1).



Sample Problem 41.02 Number of conduction electrons in a metal

How many conduction electrons are in a cube of magnesium
of volume 2.00 X 10~® m*? Magnesium atoms are bivalent.

KEY IDEAS

1. Because magnesium atoms are bivalent, each magne-
sium atom contributes two conduction electrons.

2. The cube’s number of conduction electrons is related to
its number of magnesium atoms by Eq. 41-2.

3. We can find the number of atoms with Eq. 41-4 and known
data about the cube’s volume and magnesium’s properties.

Calculations: We can write Eq.41-4 as

cl)lfu;?griz _ (density)(sample volume V)N,
in sample molar mass M )

Magnesium has density 1.738 g/cm?® (= 1.738 X 10° kg/m?)

and molar mass 24.312 g/mol (= 24.312 X 1073 kg/mol)
(see Appendix F). The numerator gives us

(1738 X 103 kg/m*)(2.00 X 1076 m?)
X (6.02 X 10% atoms/mol) = 2.0926 X 102! kg/mol.
2.0926 % 10%' kg/mol
24.312 X 1073 kg/mol
= 8.61 X 10%

Using this result and the fact that magnesium atoms are
bivalent, we find that Eq. 41-2 yields

Thus. (nun?ber of atoms)
in sample

number of
conduction electrons
in sample

lect
— (8.61 X 102 atoms)(z Rk )
atom

= 1.72 X 102 electrons. (Answer)



The density of energy levels
iIncreases upward in a band.
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Fig. 41-6 The density of states N(E')—
that is, the number of electron energy levels
per unit energy interval per unit volume —
plotted as a function of electron energy.
The density of states function simply counts
the available states;it says nothing about
whether these states are occupied by
electrons.



M Checkpoint 1

[s the spacing between adjacent energy levels at £ = 4 eV in copper larger than, the
same as, or smaller than the spacingat £ = 6 eV?

larger

Sample Problem 41.03 Number of states per electron volt in a metal

(a) Using the data of Fig. 41-6, determine the number of
states per electron-volt at 7 eV in a metal sample with a vol-
ume Vof2 X 107 m3,

KEY IDEA

We can obtain the number of states per electron-volt at a
given energy by using the density of states N(E) at that en-
ergy and the sample’s volume V.

Calculations: At anenergy of 7 eV, we write

number of states) [ density of states \[ volume V
pereVat7eV /) \ N(E)at7eV )\ofsample )

From Fig. 41-6, we see that at an energy £ of 7 eV, the den-
sity of states is about 1.8 X 102 m~ eV~ Thus,

(number of states

I ) = (1.8X10%m=3eV-1)(2 X 10~ m?)
=3.6x10YeV!

~4 X 10¥eV~L (Answer)

(b) Next, determine the number of states N in the sample within
a small energy range AE of 0.003 eV centered at 7eV (the
range is small relative to the energy level in the band).

Calculation: From Eq.41-5 and Fig. 41-6, we know that the
density of states is a function of energy E£. However, for an
energy range AFE that is small relative to E, we can approxi-
mate the density of states (and thus the number of states
per electron-volt) to be constant. Thus, at an energy of 7 eV,
we find the number of states N in the energy range AE of
0.003 eV as

number of states V) _ (number of states energy
inrange AE at 7 eV pereVat7eV )\range AE

or N = (3.6 Xx10¥eV~1)(0.003eV)

= 1.1 x 107 =1 x 101" (Answer)

(When you are asked for the number of states in a certain
energy range, first see if that range is small enough to allow
this type of approximation.)



