Chapter 41

Conduction of Electricity in Solids



Metals: How Many Conduction Electrons Are There?

number of conduction electrons in sample

n =
sample volume V

(number of CDIlduCtiDI]) B (number of atc}ms) (number of va]ence)
~ electrons in sample in sample electrons per atom )’

(number of atnms) _ sample mass M,  sample mass M,

in sample atomic mass (molar mass M )/N,

(material’s density)(sample volume V')
(molar mass M )/N,

where the molar mass M is the mass of one mole of the material in the sample
and N , is Avogadro’s number (6.02 X 102 mol ~1).



Sample Problem 41.02 Number of conduction electrons in a metal

How many conduction electrons are in a cube of magnesium
of volume 2.00 X 10~® m*? Magnesium atoms are bivalent.

KEY IDEAS

1. Because magnesium atoms are bivalent, each magne-
sium atom contributes two conduction electrons.

2. The cube’s number of conduction electrons is related to
its number of magnesium atoms by Eq. 41-2.

3. We can find the number of atoms with Eq. 41-4 and known
data about the cube’s volume and magnesium’s properties.

Calculations: We can write Eq.41-4 as

cl)lfu;?griz _ (density)(sample volume V)N,
in sample molar mass M )

Magnesium has density 1.738 g/cm?® (= 1.738 X 10° kg/m?)

and molar mass 24.312 g/mol (= 24.312 X 1073 kg/mol)
(see Appendix F). The numerator gives us

(1738 X 103 kg/m*)(2.00 X 1076 m?)
X (6.02 X 10% atoms/mol) = 2.0926 X 102! kg/mol.
2.0926 % 10%' kg/mol
24.312 X 1073 kg/mol
= 8.61 X 10%

Using this result and the fact that magnesium atoms are
bivalent, we find that Eq. 41-2 yields

Thus. (nun?ber of atoms)
in sample

number of
conduction electrons
in sample

lect
— (8.61 X 102 atoms)(z Rk )
atom

= 1.72 X 102 electrons. (Answer)



How Many Quantum States Are There?

The density of energy levels
iIncreases upward in a band.
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Fig. 41-6 The density of states N(E')—
that is, the number of electron energy levels
per unit energy interval per unit volume —
plotted as a function of electron energy.
The density of states function simply counts
the available states;it says nothing about
whether these states are occupied by
electrons.



M Checkpoint 1

[s the spacing between adjacent energy levels at £ = 4 eV in copper larger than, the
same as, or smaller than the spacingat £ = 6 eV?

larger

Sample Problem 41.03 Number of states per electron volt in a metal

(a) Using the data of Fig. 41-6, determine the number of
states per electron-volt at 7 eV in a metal sample with a vol-
ume Vof2 X 107 m3,

KEY IDEA

We can obtain the number of states per electron-volt at a
given energy by using the density of states N(E) at that en-
ergy and the sample’s volume V.

Calculations: At anenergy of 7 eV, we write

number of states) [ density of states \[ volume V
pereVat7eV /) \ N(E)at7eV )\ofsample )

From Fig. 41-6, we see that at an energy £ of 7 eV, the den-
sity of states is about 1.8 X 102 m~ eV~ Thus,

(number of states

I ) = (1.8X10%m=3eV-1)(2 X 10~ m?)
=3.6x10YeV!

~4 X 10¥eV~L (Answer)

(b) Next, determine the number of states N in the sample within
a small energy range AE of 0.003 eV centered at 7eV (the
range is small relative to the energy level in the band).

Calculation: From Eq.41-5 and Fig. 41-6, we know that the
density of states is a function of energy E£. However, for an
energy range AFE that is small relative to E, we can approxi-
mate the density of states (and thus the number of states
per electron-volt) to be constant. Thus, at an energy of 7 eV,
we find the number of states N in the energy range AE of
0.003 eV as

number of states V) _ (number of states energy
inrange AE at 7 eV pereVat7eV )\range AE

or N = (3.6 Xx10¥eV~1)(0.003eV)

= 1.1 x 107 =1 x 101" (Answer)

(When you are asked for the number of states in a certain
energy range, first see if that range is small enough to allow
this type of approximation.)



Metals: The Occupancy Probability P(E):
-y

W4 The Fermi energy of a given material is the energy of a quantum state that has the

probability 0.5 of being occupied by an electron.

Fig. 41-7 The occupancy probability
P(E) 1s the probability that an energy level
will be occupied by an electron. (a) At T =
0 K, P(E) is unity for levels with energies E
up to the Fermi energy Er and zero for lev-
els with higher energies. (b) At T = 1000 K,
a few electrons whose energies were slightly
less than the Fermienergy at 7= 0 K move
up to states with energies shghtly greater
than the Fermi energy. The dot on the curve
shows that, for E = Eg, P(E) = 0.5.

1

P(E) = o E—EFVKT 1 |

(occupancy probability),

P(F)

P(E)

0.5

0

0.5

0

The occupancy
probability is
high below the
Fermi level.

T'=1000K

2 4 6 8 10

For E < Ef, the exponential term in Eq. 41-6 is ¢, or zero; so P(E) = 1. in

agreement with Fig. 41-7a.

For E > Ey. the exponential term is e*; so P(E) = 0, again in agreement with

Fig. 41-7a.



Sample Problem 41.04 Probability of occupancy of an energy state in a metal

(a) What is the probability that a quantum state whose
energy is 0.10 eV above the Fermi energy will be occupied?
Assume a sample temperature of 800 K.

KEY IDEA

The occupancy probability of any state in a metal can be
found from Fermi-Dirac statistics according to Eq. 41-6.

Calculations: Let’s start with the exponent in Eq. 41-6:

E—Er _ 0.10eV 145
kT (8.62 X 1073 eV/K)(800 K) o
Inserting this exponent into Eq. 41-6 yields
1
P(E) = B 0.19 or 19%. (Answer)

(b) What is the probability of occupancy for a state that is
0.10 eV below the Fermi energy?

Calculation: The Key Idea of part (a) applies here also
except that now the state has an energy below the Fermi
energy. Thus, the exponent in Eq. 41-6 has the same magni-
tude we found in part (a) but is negative, and that makes the
denominator smaller. Equation 41-6 now yields
P(E) = —%
e

T‘Fl = (.81 or 81%.

(Answer)
For states below the Fermi energy, we are often more in-
terested in the probability that the state is not occupied.
This probability is just 1 — P(E), or 19%. Note that it is the
same as the probability of occupancy in (a).



(density of occupied states ) _ ( density of states ) (occupancy probability)
N,(E) at energy £ N(E) at energy E P(L) at energy L

or No(E) = N(E) P(E) (density of occupied states). (41-7)
The density of occupied _
states equals the product ... the density of ... the occupancy
of ... energy levels and ... probability
D?E 2 ! i
z 1 = 0.5
o ; - T=0
20 0 2 4 6 8 10

Rl
[

—
4]
-

-

(a) =

N(E) (102 i ev-1

T

-

= 0 2 4 6 8 10 l TZ

N Energy (eV) _ ¥

= <05

o - T=1000 K

o c ) > 2 ( 5 - -

- eV Few or no Lots of I E (V) 810
(b) T I T levels levels ‘ T
Feworno  Lots of Few or no Little or zero
occupied occupied occupied Full occupancy occupancy
levels levels levels probability probability

Fig. 41-8 (a) The density of occupied states N, (E) for copper at absolute zero. The area under the curve is the
number density of electrons n. Note that all states with energies up to the Fermi energy E. =7 eV are
occupied, and all those with energies above the Fermi energy are vacant. (b) The same for copper at T =1000
K. Note that only electrons with energies near the Fermi energy have been affected and redistributed.



Sample Problem 41.05 Number of occupied states in an energy range in a metal

A lump of copper (Fermi energy = 7.0 eV) has volume
2 X 1072 m*. How many occupied states per eV lie in a nar-
row energy range around 7.0 eV?

KEY IDEAS

(1) First we want the density of occupied states N (E) as
given by Eq. 41-7 (N,(E) = N(E) P(E)). (2) Because we
want to evaluate quantities for a narrow energy range

around 7.0 eV (the Fermi energy for copper), the occupancy
probability P(FE) is 0.50.

Calculations: From Fig. 41-6, we see that the density of
states at 7 eV is about 1.8 X 102® m™2 eV ~L. Thus, Eq. 41-7
tells us that the density of occupied states is

N,(E) = N(E) P(E) = (1.8 X 108 m~3 eV 1)(0.50)
=09 X 10¥m3eVL

Next, we write

number of occupied | _ ( density of occupied
states pereV at 7 eV states N(E) at 7eV

volume V
of sample )’

Substituting for N (E) and V gives us

number of occupied | = (0.9 X 10¥m™3eV™)(2 X 107 m?)
states per eV =18 X 100 eV1!

at7ev ~2 X 10%eV~L, (Answer)



Metals: Calculating the Fermi Energy:

Er
n= f N,(E)dE. (The number of occupied states per unit volume at
! T =0 K for all energies between £=0Oand E=E)).

. 32 EF _
n = Svji”” f EV dE (Here mis the electron mass)
L

h

8V2mrm3? 2E
h? 3 7

(. 3 )2;3 12 - 0.121k2 213
S nee =T nt.
© \16vem,

m iy



41.2: Semiconductors and Doping:
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Fig. 41-9 (a) The band—gap pattern for a semiconductor. It resembles that of an
insulator except that here the energy gap £,is much smaller; thus electrons,
because of their thermal agitation, have some reasonable probability of being able
to jump the gap. (b) Thermal agitation has caused a few electrons to jump the gap
from the valence band to the conduction band, leaving an equal number of holes in

the valence band.



Semiconductors: Temperature Coefficient of Resistivity:

1 dp
o = S ar (Here p s the resistivity)

The resistivity of copper increases with temperature (that is, ap/dT >0) because
collisions of copper’s charge carriers occur more frequently at higher
temperatures. This makes « positive for copper. The collision frequency also
Increases with temperature for silicon.

In contrast, the resistivity of silicon actually decreases with temperature (ap/dT
<0) since the number of charge carriers 1 (electrons in the conduction band and
holes in the valence band) increases so rapidly with temperature. (More electrons
jump the gap from the valence band to the conduction band.) Thus, the fractional
change « Is negative for silicon.



Doped Semiconductors:
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Fig. 41-10 (a) A flattened-out represen-
tation of the lattice structure of pure silicon.
Each silicon ion is coupled to its four near-
est neighbors by a two-electron covalent
bond (represented by a pair of red dots be-
tween two parallel black lines). The elec-
trons belong to the bond —not to the indi-
vidual atoms—and form the valence band
of the sample. () One silicon atom 1s re-
placed by a phosphorus atom (valence = 5).
The “extra” electron is only loosely bound
to its 1on core and may easily be elevated to
the conduction band, where it is free to
wander through the volume of the lattice.
(¢) One silicon atom is replaced by an alu-
minum atom (valence = 3). There is now a
hole in one of the covalent bonds and thus
in the valence band of the sample. The hole
can easily migrate through the lattice as
electrons from neighboring bonds move in
to fill it. Here the hole migrates rightward.



n type

Fig. 41-11 (a) Ina doped n-type Conduction band

semiconductor, the energy levels of donor 0% 0% % 00e% o AL

electrons lie a small interval E,; below the T -

bottom of the conduction band. Because Ly _TE_ Electrons
donor electrons can be easily excited to the 4 jump up
conduction band, there are now many more from donors
electrons in that band. The valence band at the

contains the same small number of holes as dashed level.
before the dopant was added. (b) Ina

doped p-type semiconductor, the acceptor b type

levels lie a small energy interval £, above
the top of the valence band. There are now
many morte holes in the valence band. The
conduction band contains the same small

number of electrons as before the dopant

was added. The ratio of majority carriers to Electrons
minority carriers in both (@) and (b) 1s very jump up to
much greater than is suggested by these acceptors
diagrams. at the
dashed

level, leaving
holes.



Table 41-2

Properties of Two Doped Semiconductors

Type of Semiconductor

Property n p
Matrix material Silicon Silicon
Matrix nuclear charge +14e +14e
Matrix energy gap 1.2eV 1.2eV
Dopant Phosphorus Aluminum
Type of dopant Donor Acceptor
Majority carriers Electrons Holes
Minority carriers Holes Electrons
Dopant energy gap E;,=0.045eV E, = 0.067eV
Dopant valence 5 3
Dopant nuclear charge +15e +13e
Dopant netion charge +e —e




Sample Problem 41.06 Doping silicon with phosphorus

The number density ny, of conduction electrons in pure
silicon at room temperature is about 10! m~3. Assume that,
by doping the silicon lattice with phosphorus, we want to
increase this number by a factor of a million (10°). What
fraction of silicon atoms must we replace with phosphorus
atoms? (Recall that at room temperature, thermal agitation
is so effective that essentially every phosphorus atom
donates its “extra” electron to the conduction band.)

Number of phosphorus atoms: Because each phosphorus
atom contributes one conduction electron and because we want
the total number density of conduction electrons to be 10%x,,
the number density of phosphorus atoms np must be given by

10%ny = ny + np.

Then np = 101, — ng = 10°n,

= (106)(10" m~3) = 102 m">.

This tells us that we must add 10?2 atoms of phosphorus per
cubic meter of silicon.

Fraction of silicon atoms: We can find the number density
ng; of silicon atoms in pure silicon (before the doping) from
Eq.41-4, which we can write as

(number of atoms)
in sample

_ (silicon density)(sample volume V)
(silicon molar mass Mg;)/N

Dividing both sides by the sample volume V to get the num-
ber density of silicon atoms rng; on the left, we then have

_ (silicon density)N,

- Ms; |

Appendix F tells us that the density of silicon is 2.33 g/cm?
(= 2330 kg/m?) and the molar mass of silicon is 28.1 g/mol
(= 0.0281 kg/mol). Thus, we have

(2330 kg/m?)(6.02 X 10* atoms/mol)

a 0.0281 kg/mol

=5 X 10®atoms/m> =35 X 108 m3.

Ng;

g

The fraction we seek is approximately

p T = 1

Hg; 5x10%m™3 5% 10¢°
If we replace only one silicon atom in five million with a
phosphorus atom, the number of electrons in the conduc-
tion band will be increased by a factor of a million.

How can such a tiny admixture of phosphorus have what
seems to be such a big effect? The answer is that, although
the effect is very significant, it is not “*big.” The number den-
sity of conduction electrons was 10! m ™3 before doping and
1022 m~3 after doping. For copper, however, the conduction-
electron number density (given in Table 41-1) is about
10% m™3. Thus, even after doping, the number density of con-
duction electrons in silicon remains much less than that of a
typical metal, such as copper, by a factor of about 107.

(Answer)



