Chapter 42

Nuclear Physics



42.3: Radioactive Decay:
=

W There is absolutely no way to predict whether any given nucleus in a radioactive
sample will be among the small number of nuclei that decay during the next second.

All have the same chance.

If a sample contains A radioactive nuclei, then the rate AN
(=aN/dlt) at which nuclei will decay is proportional to N: A AN,
Here A is the disintegration or decay constant.
N ! N
Therefore dN J dN _ J In— = — At
) = _{}l fr‘ —_— ffr. )
N —Ar
by N = e = N = Npe (radioactive decay),
0

Here, N, Is the number of radioactive nuclei at time t = 0.

|l becquerel = 1 Bq = 1 decay per second.

1 curie = 1 Ci = 3.7 X 10'° Bq.



dN
. _— —_—— = _J.L’
The decay rate: R o = ANee

Therefore, R = RUE_‘“ (radioactive decay),

The half life-time (7,,) is the
time at which both MNand ~
have been reduced to one-

half their initial values 1Ry = Rye AT,
In2
Therefore, hp=—
In2
And, Lp=——=rh

Here zis the mean life time, which is the time at which both Vand R have been
reduced to e of their initial values.



Example, Finding the disintegration constant and the half life-time:

The table that follows shows some measurements of the de-
cay rate of a sample of '*®I, a radionuclide often used med-
ically as a tracer to measure the rate at which iodine is ab-
sorbed by the thyroid gland.

Time R Time R
(min) (counts/s) (min) (counts/s)
4 392.2 132 10.9
36 161.4 164 4.56
68 65.5 196 1.86
100 26.8 218 1.00

Find the disintegration constant A and the half-life 7),, for
this radionuclide.

KEY IDEAS

The disintegration constant A determines the exponential rate
at which the decay rate R decreases with time ¢ (as indicated
by Eq.42-16, R = R,e ). Therefore, we should be able to de-
termine A by plotting the measurements of R against the mea-
surement times . However, obtaining A from a plot of R versus
t is difficult because R decreases exponentially with 7, accord-
ing to Eq.42-16. A neat solution is to transform Eq. 42-16 into
a linear function of ¢, so that we can easily find A. To do so, we
take the natural logarithms of both sides of Eq. 42-16.

Calculations: We obtain
InR = In(Rpe™) = In Ry + In(e™™)
=In R, — Az (42-19)

Because Eq. 42-19 is of the form y = b + mx, with b and m
constants, it is a linear equation giving the quantity In R as a

In R (Rin counts/s)
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Fig. 42-9 A semilogarithmic plot of the decay of a sample
of 12, based on the data in the table.

function of . Thus, if we plot In R (instead of R) versus ¢, we
should get a straight line. Further, the slope of the line
should be equal to —A.

Figure 42-9 shows a plot of In R versus time ¢ for the
given measurements. The slope of the straight line that fits
through the plotted points is

0—6.2

= = — i1
slope 335 min — 0 0.0276 min™".
Thus, —A = —0.0276 min~!
or A=0.0276 min"!' = 1.7h" L. (Answer)

The time for the decay rate R to decrease by 1/2 is re-
lated to the disintegration constant A via Eq. 42-18 (7T, =
(In 2)/A). From that equation, we find

In 2 In2
T, = =

B L
A 0.0276 min" i

(Answer)



Example, Finding the half life from the activity and the mass:

A 271 g sample of KCl from the chemistry stockroom is
found to be radioactive, and it is decaying at a constant rate
of 44.90 Bq. The decays are traced to the element potassium
and in particular to the isotope *K, which constitutes
0.0117% of normal potassium. Calculate the half-life of this
nuclide.

KEY IDEAS

1. Because the activity R of the sample is apparently con-
stant, we cannot find the half-life 7, by plotting In R
versus time ¢ as in the preceding sample problem. (We
would just get a horizontal plot.) However, we can use
the following ideas.

2. We can relate the half-life T, to the disintegration con-
stant A via Eq.42-18 (T, = (In 2)/)).

5]

We can then relate A to the given activity R of
44.90 Bq by means of Eq. 42-17 (R = AN), where N is
the number of *’K nuclei (and thus atoms) in the sample.

Calculations: Combining Eqs. 42-18 and 42-17 yields

Nlin2
R

We know that N in this equation is 0.0117% of the total
number Nk of potassium atoms in the sample. We also know
that Ng must equal the number Ng of molecules in the
sample. We can obtain Ny from the molar mass My of
KCI (the mass of one mole of KCI) and the given mass M,,,
of the sample by combining Egs. 19-2 (n = N/N,) and 19-3
(n = M,,,/M) to write

Tip = (42-20)

o (number of moles)
ka , in sample

MSEI]’II

A p—
MKCI

N, (42-21)

where N, is Avogadro’s number (6.02 X 10% mol™'). From
Appendix F we see that the molar mass of potassium is
39.102 g/mol and the molar mass of chlorine is 35.453 g/mol:
thus, the molar mass of KCl is 74.555 g/mol. Equation 42-21
then gives us

(2.71 £)(6.02 X 10% mol ™)

= 2.188 X 10*
74.555 g/mol 2188 > 10

N KCl —

as the number of KCl molecules in the sample. Thus, the to-
tal number Ny of potassium atoms is also 2.188 X 102%, and
the number of K in the sample must be

N = (0.000 117)Ng = (0.000 117)(2.188 X 102)
= 2.560 X 10',

Substituting this value for N and the given activity of 44.90
Bq (= 44.90 s7!) for Rinto Eq.42-20leads to

(2.560 % 10'%) 1n 2
1z 44.90 s~

=395 X 10%s = 1.25 X 10%y.

(Answer)

This half-life of “°K turns out to have the same order of
magnitude as the age of the universe. Thus, the activity of
K in the stockroom sample decreases very slowly, too
slowly for us to detect during a few days of observation or
even an entire lifetime. A portion of the potassium in our
bodies consists of this radioisotope, which means that we are
all slightly radioactive.



42.4: Alpha Decay:

When a nucleus undergoes alpha decay, it transforms to a different nuclide by emitting an alpha particle (a
helium nucleus, “He). For example, when uranium 238U undergoes alpha decay, it transforms to thorium
234Th: 28U — 2*Th + *He.  The disintegration energy, Q, for the decay above is 4.25.

The potential energy shown in the figure below is a combination of the potential energy associated with the
(attractive) strong nuclear force that acts in the nuclear interior and a Coulomb potential associated with the
(repulsive) electric force that acts between the two particles (24Th and “He) before and after the decay has

occurred.

Fig. 42-10 A potential energy function for
the emission of an alpha particle by 238U,
The horizontal black line marked Q =4.25
MeV/ shows the disintegration energy for the
process. The thick gray portion of this line
represents separations rthat are classically
forbidden to the alpha particle. The alpha
particle is represented by a dot, both inside
this potential energy barrier (at the left) and
outside it (at the right), after the particle has
tunneled through. The horizontal black line
marked Q =6.81 MeV/'shows the
disintegration energy for the alpha decay of
228, (Both isotopes have the same potential
energy function because they have the same
nuclear charge.)
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Example, Q value of an alpha decay using masses:

We are given the following atomic masses:

PBU 238.05079u  4He 4.00260u
2*Th 234.04363u 'H 1.00783u
37Pa 237.05121u

Here Pa is the symbol for the element protactinium
(Z =91).

(a) Calculate the energy released during the alpha decay of
28U, The decay process is

28U — 34Th + “He.

Note, incidentally, how nuclear charge is conserved in this
equation: The atomic numbers of thorium (90) and helium
(2) add up to the atomic number of uranium (92). The num-
ber of nucleons is also conserved: 238 = 234 + 4,

KEY IDEA

The energy released in the decay is the disintegration en-
ergy O, which we can calculate from the change in mass AM
due to the U decay.

Calculation: To do this, we use Eq. 37-50,
Q= M;c? - Mfcz, (42-23)

where the initial mass M, is that of >**U and the final mass
M;is the sum of the **Th and “He masses. Using the atomic
masses given in the problem statement, Eq. 42-23 becomes

O = (238.050 79 u)c? — (234.043 63 u + 4.002 60 u)c?
— (0.004 56 u)c? = (0.004 56 u)(931.494 013 MeV/u)

= 4.25 MeV. (Answer)

Note that using atomic masses instead of nuclear masses
does not affect the result because the total mass of the elec-
trons in the products subtracts out from the mass of the nu-
cleons + electrons in the original >**U.

(b) Show that **U cannot spontaneously emit a proton;
that is, protons do not leak out of the nucleus in spite of the
proton—proton repulsion within the nucleus.

Solution: 1f this happened, the decay process would be
2381 — 237Pg + 'H.

(You should verify that both nuclear charge and the num-
ber of nucleons are conserved in this process.) Using the
same Key Idea as in part (a) and proceeding as we did there,
we would find that the mass of the two decay products

237.05121u + 1.00783 u

would exceed the mass of 2**U by Am = 0.008 25 u. with disin-

tegration energy
O = —7.68 MeV.

The minus sign indicates that we must add 7.68 MeV to a 2*U
nucleus before it will emit a proton; it will certainly not do so
spontaneously.



42.5. Beta Decay:

A nucleus that decays spontaneously by emitting an electron or a positron (a positively charged particle with
the mass of an electron) is said to undergo beta decay. Like alpha decay, this is a spontaneous process, with a
definite disintegration energy and half-life.

Examples: PP -3 +e  +p (T, =143d). (P decay)

“Cu—*Ni+et+v (T, =12.7h). (B decay)

Here, v is a neutrino, a neutral particle which has a very small mass, that is emitted from the nucleus along
with the electron or positron during the decay process.

In a beta decay the energy of the emitted electrons or positrons may range from zero up to a certain
maximum K., since, unlike the alpha decay, the Qenergy is shared by two components.

Fig. 42-11 The distribution of
the kinetic energies of positrons
emitted in the beta decay of *Cu.
The maximum kinetic energy of the
distribution (K,,,,) 1s 0.653 MeV. In
all **Cu decay events, this energy is
shared between the positron and the
neutrino, in varying proportions. The
most probable energy for an emitted 0 0.2 0.4 0.6
positron is about 0.15 MeV. Kinetic energy (MeV)
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42.5: Beta Decay: The Neutrino
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Wolfgang Pauli first suggested the existence of
neutrinos in 1930.

Billions of them pass through our bodies every
second, leaving no trace.

In spite of their elusive character, neutrinos
have been detected in the laboratory. In spite
of their elusive character, neutrinos have been
detected in the laboratory.

Fig. 42-12 A burst of neutrinos from the su-
pernova SN 1987 A, which occurred at (relative)
time 0,stands out from the usual background of
neutrinos. (For neutrinos, 10 1s a “burst.”) The par-

ticles were detected by an elaborate detector

housed deep in a mine in Japan. The supernova
was visible only in the Southern Hemisphere;so

the neutrinos had to penetrate Earth (a trifling
barrier for them) to reach the detector.



Beta Decay: Radioactivity and the Nuclidic Chart
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Fig. 42-13 A portion of the valley of the

nuclides, showing only the nuclides of low
mass. Deuterium, tritium, and helium lie at
the near end of the plot, with helium at the
high point. The valley stretches away from
us, with the plot stopping at about Z = 22
and N = 35.Nuchdes with large values of
A, which would be plotted much beyond
the valley, can decay into the valley by re-
peated alpha emissions and by fission
(splitting of a nuchide).
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Example, Q value of a beta decay using masses:

Calculate the disintegration energy QO for the beta decay of
2P, as described by Eq. 42-24. The needed atomic masses are
31.973 91 u for *?P and 31.972 07 u for *S.

KEY IDEA

The disintegration energy Q for the beta decay is the
amount by which the mass energy is changed by the decay.

Calculations: Q is given by Eq. 37-50 (Q = —AM c?).
However, we must be careful to distinguish between nuclear
masses (which we do not know) and atomic masses (which
we do know). Let the boldface symbols mp and mg represent
the nuclear masses of 2P and *2S, and let the italic symbols
mp and mg represent their atomic masses. Then we can write
the change in mass for the decay of Eq. 42-24 as

Am = (mg + m,) — mp,

in which m, is the mass of the electron. If we add and sub-
tract 15m, on the right side of this equation, we obtain

Am = (mg + 16m,) — (mp + 15m,).

The quantities in parentheses are the atomic masses of S

and **P; so
Am = mg — mp.

We thus see that if we subtract only the atomic masses, the mass
of the emitted electron is automatically taken into account. (This
procedure will not work for positron emission. )

The disintegration energy for the P decay is then

Q= —-Amc?
= —(31.97207 u — 31.973 91 u)(931.494 013 MeV/u)
= 1.71 MeV. (Answer)

Experimentally, this calculated quantity proves to be equal
to K. the maximum energy the emitted electrons can
have. Although 1.71 MeV is released every time a **P nu-
cleus decays, in essentially every case the electron carries
away less energy than this. The neutrino gets all the rest,
carrying it stealthily out of the laboratory.



