Induction and Inductance
Chapter 30
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30-5 Self-Induction

When current flow in an inductor a _MN‘{VW\' i
process called self induction happen. This —=
process (see Figure), and the emf that ii_ é
appears is called a self-induced emf. It ST L=
obeys Faraday’s law of induction just as I)

other induced emfs do. For any inductor —
of inductance L and number of turns NV A z
and current /,

N®, = Li.
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30-5 Self-Induction

Faraday’s law tells us that
d(N®,)
= e
By combining these equations, we can write

1, = —L% (self-induced emf).

An induced emf : appears in any coil in which the current is
changing.

Note: Thus, in any inductor (such as a coll, a solenoid, or a toroid) a
self-induced emf appears whenever the current changes with time.

The magnitude of the current has no influence on the magnitude of
the induced emf; only the rate of change of the current counts.




. (Increasing)
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Figure 30-14 (a) The current i is increasing,
and the self-induced emf ‘€; appears along
i%" the coil in a direction such that it opposes
the increase. The arrow representing ‘€; can
be drawn along a turn of the coil or along-
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The changing side the coil. Both are shown. (b) The cur-
current changes  rent i is decreasing, and the self-induced
() the flux, which emf appears in a direction such that it

: . creates an emf  opposes the decrease.
¢ (decreasing)

— ‘ that opposes

the change.
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m Checkpoint 5

The figure shows an emf €, induced in a coil. Which of g o—

the following can describe the current through the coil: QQQQQ{!

(a) constant and rightward, (b) constant and leftward, (>

(c) increasing and rightward, (d) decreasing and rightward, (e) increasing and left-
ward, (f) decreasing and leftward?

dande




30-6 RL Circuits

If a constant emf =

IS Introduced into a single-loop circuit

containing a resistance /and an inductance L, the current rises to an

equilibrium value of %according to

__t
i =E—{1—e“]
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Here 7., the inductive time constant, is given by

T, =—

R




30-6 RL Circuits

Plot (a) and (b) shows how the potential differences V(= /R) across

di

the resistor and V(=L |  across the inductor vary with
time for particular values of = ,L,andR.

The resistor’s potential
difference turns on. %i
The inductor’s potential

difference turns off. B —
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When the source of constant e m f is removed and replaced by a conductor, the

current decays from a value 7, according to: ;_t _ ;_t
|=—e* =16t
0




M Checkpoint 6

The figure shows three circuits with identical batteries, inductors, and resistors. Rank
the circuits according to the current through the battery (a) just after the switch is
closed and (b) a long time later, greatest first. (If you have trouble here, work through
the next sample problem and then try again.)

(1) (2) (3)

(a)2,3.1(zero):(b)2,3.1




30-7 Energy Stored in a Magnetic
Field

If an inductor L carries a current /, the inductor’s magnetic
field stores an energy given by

An RL circuit.




Sample Problem 30.06 RL circuit, current during the transition

A solenoid has an inductance of 53 mH and a resistance of
0.37 Q. If the solenoid is connected to a battery, how long
will the current take to reach half its final equilibrium
value? (This is a real solenoid because we are considering its
small, but nonzero, internal resistance.)

KEY IDEA

We can mentally separate the solenoid into a resistance and
an inductance that are wired in series with a battery, as in
Fig. 30-16. Then application of the loop rule leads to
Eq. 30-39, which has the solution of Eq. 30-41 for the current
¢ in the circuit.

Calculations: According to that solution, current i in-
creases exponentially from zero to its final equilibrium
value of ‘é/R. Let ¢, be the time that current  takes to reach
hall its equilibrium value. Then Eq. 30-41 gives us

1 € ¢

_ — 1 _ Rl )

2 R_RUTETY
We solve for #, by canceling ‘é/R, isolating the exponential,
and taking the natural logarithm of each side. We find

L 53 X 107°*H

b= In2=-—In2 = In 2
0= L= 037Q

= 0.10s. (Answer)

10



A coil has an inductance of 53 mH and a resistance of
0.35 Q.

(a) If a 12 V emf is applied across the coil, how much energy
is stored in the magnetic field after the current has built up
to its equilibrium value?

KEY IDEA

The energy stored in the magnetic field of a coil at any time
depends on the current through the coil at that time, accord-
ing to Eq.30-49 (U = 1L#%).

Calculations: Thus, to find the energy Uj.. stored at equi-
librium, we must first find the equilibrium current. From
Eq.30-41, the equilibrium current is

€ 12V
= =035 343 A. (30-51)
Then substitution yields
Ug.. = 3 Li2 = (3)(53 X 10 2 H)(34.3 A)?
= 311J. (Answer)

(b) After how many time constants will half this equilibrium
energy be stored in the magnetic field?

Calculations: Now we are being asked: At what time r will
the relation

UB = %UBDC

Sample Problem 30.07 Energy stored in a magnetic field

be satistied? Using Eq. 30-49 twice allows us to rewrite this
energy condition as

1

or i= ( \/f) i (30-52)
This equation tells us that, as the current increases from its
initial value of 0 to its final value of i.., the magnetic field
will have half its final stored energy when the current has in-
creased to this value. In general, we know that i is given by
Eq. 30-41, and here i,, (see Eq. 30-51) is ¢/R; so Eq. 30-52
becomes

— (1 —e'm) = :
R ( ) V2R
By canceling €/R and rearranging, we can write this as
1
=1 — — = 0.293,
‘ V2
which yields
t
— = -In0.293 = 1.23
L
or t=127. (Answer)

Thus, the energy stored in the magnetic field of the coil by
the current will reach half its equilibrium value 1.2 time
constants after the emfis applied.



