CH31: Electromagnetic
Oscillations and Alternating
Current
Lecture 5




31-1 Electromagnetic Oscillations

Of the three circuit elements, resistance R, capacitance C, and inductance L, we have
so far discussed the series combinations RC (in Module CH 27-4) and RL (in Module
CH 30-6). In these two kinds of circuit we found that the charge, current, and potential
difference grow and decay exponentially. The time scale of the growth or decay is
given by a time constant t, which is either capacitive or inductive.
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31-1 Electromagnetic Oscillations
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The resulting oscillations of the capacitor’s electric field and the inductor’s

magnetic field are said to be electromagnetic oscillations.



31-1 Electromagnetic Oscillations

Table 31-1 Comparison of the Energy in Two Oscillating Systems

Block —Spring System LC Oscillator
Element Energy Element Energy
Spring Potential, 5 kx> Capacitor Electrical, 5(1/C)q?
Block Kinetic, %mv2 Inductor Magnetic, %Li 3
v = dx/dt i = dqldt

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

From the table we can deduce the correspondence between these
systems. Thus,

g corresponds to x, 1/C corresponds to 4,

/corresponds to v, and L corresponds to m.

The correspondences listed above suggest that to find the angular
frequency of oscillation for an ideal (resistanceless) LC circuit, &
should be replaced by 1/C and m by L, yielding

i = (LC circuit ).

L



31-1 Electromagnetic Oscillations

LC Oscillator

The total energy U present at any instant in an oscillating LC circuit is given by

L:‘:z 2
Ustpr U= F L?C
iIn which Uy is the energy stored in the magnetic field of the inductor and Ucis the
energy stored in the electric field of the capacitor. Since we have assumed the
circuit resistance to be zero, no energy is transferred to thermal energy and U
remains constant with time. In more formal language, dU/dt must be zero. This

leads to

7 ;2 2 ;
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However, i = dg/dt and di/dt = d?g/dt?. With these substitutions, we get

d’q 1
_—— — ﬂ
a2 "¢t

This is the differential equation that describes the oscillations of a
resistanceless LC circuit.



31-1 Electromagnetic Oscillations

Charge and Current Oscillation

The solution for the differential equation equation that describes the oscillations of
a resistanceless LC circuit is

g = Qcos(awt + @)
where Qs the amplitude of the charge variations, wis the angular frequency of

the electromagnetic oscillations, and ¢ is the phase constant. Taking the first
derivative of the above Eqg. with respect to time gives us the current:

j= Eg = —w( sin(wt + ¢)

Z Checkpoint 2

A capacitor in an LC oscillator has a maximum potential difference of 17 V and a
maximum energy of 160 wJ. When the capacitor has a potential difference of 5 V and
an energy of 10 wJ, what are (a) the emf across the inductor and (b) the energy stored
in the magnetic field?

Answer: (a) g, =12V
(b) Ug=150 pd



Electrical and Magnetic Energy Oscillations

The electrical energy stored in the LC circuit at time #is,

q° Q-

U =%¢c = 2c

cos*(wl + @).

The magnetic energy is,

U = f—csinz(m: + @).
Figure shows plots of UL (t) and Uy (t) for the case of ¢=0.
Note that
1. The maximum values of U and U are both Q4/2C.
2. At any instant the sum of U-and Ugis equal to Q?/2C, a
constant.

3. When Ugis maximum, Ugis zero, and conversely.

m Checkpoint 1

A charged capacitor and an inductor are connected in series at time 7 = 0. In terms
of the period T of the resulting oscillations, determine how much later the following
reach their maximum value: (a) the charge on the capacitor; (b) the voltage across

the capacitor, with its original polarity; (c) the energy stored in the electric field; and
(d) the current.

(a) T/2:(b) T;(c) T/2:(d) T/4

The electrical and magnetic
energies vary but the total
is constant.
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The stored magnetic
energy and electrical
energy in the LC circuit
as a function of time.



Sample Problem 31.01

A 1.5 uF capacitor is charged to 57 V by a battery, which is
then removed. At time r = 0,a 12 mH coil is connected in se-
ries with the capacitor to form an LC oscillator (Fig. 31-1).

(a) What is the potential difference v, (¢) across the inductor
as a function of time?

KEY IDEAS

(1) The current and potential differences of the circuit (both
the potential difference of the capacitor and the potential
difference of the coil) undergo sinusoidal oscillations.
(2) We can still apply the loop rule to these oscillating
potential differences, just as we did for the nonoscillating
circuits of Chapter 27.

1) Capacitor charging. current
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(e} Entirely
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LC oscillator: potential change, rate of current change

Calculations: At any time 7 during the oscillations, the loop
rule and Fig. 31-1 give us

vi(t) = ve(0): (31-18)

that 1s, the potential difference v; across the inductor must
always be equal to the potential difference v, across the
capacitor, so that the net potential difference around the
circuit is zero. Thus, we will find v, (¢) if we can find v(¢),
and we can find v(¢) from ¢(¢) with Eq.25-1 (g = CV)).

Because the potential difference v(f) is maximum
when the oscillations begin at time ¢ = 0, the charge g on the
capacitor must also be maximum then. Thus, phase constant
¢ must be zero: so Eq.31-12 gives us

q = Q cos wt. (31-19)
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(Note that this cosine function does indeed yield maximum
q (= Q) when r = 0.) To get the potential difference v(),
we divide both sides of Eq. 31-19 by C to write

g4 _ —— COS wl,

C C
and then use Eq. 25-1 to write
(31-20)

Here, V- 1s the amplitude of the oscillations in the potential
difference v across the capacitor.
Next, substituting v = v; from Eq. 31-18, we find

ve = Ve cos wt.

(31-21)

vy = Vcos wt.

We can evaluate the right side of this equation by first not-
ing that the amplitude V is equal to the initial (maximum)
potential difference of 57 V across the capacitor. Then we
find w with Eq. 31-4:

1 1

T VIC  [(0.012H)(L5 X 10~ F)]*>
= 7454 rad/s = 7500 rad/s.

Thus, Eq.31-21 becomes

vp = (57 V) cos(7500 rad/s)z. (Answer)

(b) What is the maximum rate (di/dt),,, at which the current
i changes in the circuit?

KEY IDEA

With the charge on the capacitor oscillating as in Eq. 31-12,
the current is in the form of Eq. 31-13. Because ¢ = 0, that
equation gives us
[ = —w( sin wt.

Calculations: Taking the derivative, we have

di d

7; =— (—wQ sin wt) = —w?Q cos wt.
We can simplify this equation by substituting CV for Q

(because we know C and V. but not Q) and 1/VLC for w
according to Eq. 31-4. We get

di 1 Ve
E = _E CV,cos wt = ——< cos .

This tells us that the current changes at a varying (sinu-
soidal) rate, with its maximum rate of change being

Ve STV
L 0.012H

= 4750 A/s = 4800 Als. (Answer)



31-2 Damped Oscillation in an RLC circuit

To analyze the oscillations of this circuit, we write an ‘L( g f
equation for the total electromagnetic energy U in the R
circuit at any instant. Because the resistance does not

store electromagnetic energy, we can write

Li? g-* [. ' L
. £ 2 2C

Now, however, this total energy decreases as energy is
transferred to thermal energy. The rate of that transfer is,

ayv _ _ap A series RLC circuit. As the
dt charge contained in the
where the minus sign indicates that U decreases. By circuit oscillates back and
differentiating ¢ with respect to time and then substituting  forth through the resistance,
the result we eventually get, 4%  dg 1 electromagnetic energy is
L TR -+ 7a=0 dissipated as thermal energy,
L : : : damping (decreasing the
which is the differential equation for damped ; L
s : . amplitude of) the oscillations.
oscillations in an RLC circuit.

Charge Decay. The solution to above Eq. is ¢ = Q¢ cos(w't + ¢)
inwhich o =V - (R2L)? and » = 1VLC..



Sample Problem 31.02 Damped RLC circuit: charge amplitude

A series RLC circuit has inductance L = 12 mH, capaci-
tance C = 1.6 uF, and resistance R = 1.5 ) and begins to
oscillate at time ¢ = 0.

(a) At what time 7 will the amplitude of the charge oscilla-
tions in the circuit be 50% of its initial value? (Note that we
do not know that initial value.)

KEY IDEA

Solving for 7 and then substituting given data yield

2L (2)(12 x 10~ H)(In 0.50)
— —~=1n0.50 = —
t ——1n0.50 —~0

= 0.0111 s = 11 ms. (Answer)

(b) How many oscillations are completed within this time?

KEY IDEA

The amplitude of the charge oscillations decreases expo-
nentially with time 7: According to Eq. 31-25, the charge
amplitude at any time 7 is Qe ®"2L_in which Q is the ampli-
tude at time r = 0.

Calculations: We want the time when the charge amplitude
has decreased to 0.50Q— that is, when

Qe R2L = 0.500.

We can now cancel Q (which also means that we can answer
the question without knowing the initial charge). Taking the
natural logarithms of both sides (to eliminate the exponen-
tial function), we have

Rt

_I = In 0.50.

The time for one complete oscillation is the period T =

27w, where the angular frequency for LC oscillations is
given by Eq.31-4 (0 = 1/VLC).

Calculation: In the time interval At = 0.0111 s, the number
of complete oscillations is

Ar Ar
T 27VI.C
_ 0.0111s ~ 13,
27[(12 X 1073 H)(1.6 X 107° F)]'”? )
(Answer)

Thus, the amplitude decays by 50% in about 13 complete
oscillations. This damping is less severe than that shown in
Fig. 31-3, where the amplitude decays by a little more than
50% in one oscillation.



