31 Summary

LC Energy Transfer

* In an oscillating LC circuit,
instantaneous values of
the two forms of energy
are

L _q , _ L Eq.31-182
U e and Uj 5
LC Charge and Current
Oscillations
* The principle of
conservation of energy
leads to d’g 1

L—
a*  C

g =10 Eq. 31-11

* The solution of Eq. 31-11
* the angular frequency v of

the oscillations is 1
“7 VIC  Eq.31-4

Damped Oscillations

* Oscillations in an LC circuit are
damped when a dissipative element
R is also present in the circuit. Then

dq dq

1
g TRt oe=0 Eq. 31-24

* The solution of this differential
equation is

L

g = Qe "L cos(w't + &), Eq. 31-25

Alternating Currents; Forced

Oscillations

» A series RLC circuit may be set into
forced oscillation at a driving
angular frequency by an external
alternating emf

€ =¥, sin w,t. Eq. 31-28
* The current driven in the circuit is

i = I sin{awt — &) Eq. 31-29



31 Summary

Series RLC Circuits
* For a series RLC circuit with an
alternating external emf and a

resulting alternating current,
I=— & -
VR4 (X, — X))

€ Eq. 31-60&63
VR4 {mL — Va,C)
« and the phase constant is,
. 4 1; X, Eq. 31-65

* The impedance is

Z=VR+ (X, - X)

Power
* In a series RLC circuit, the average
power of the generator is,

PJ'\-_I.' - f;l:'lhﬂ =%

]
T

I .. cos d.

s

Eq. 31-61

Transformers
* Primary and secondary
voltage in a transformer is
related by
"'lrr
V.=V

=Y Eq. 31-79
L P,rlrl

* The currents through the
coils,

L=1 Eq. 31-80

™

=z|=

* The equivalent resistance
of the secondary circuit,
as seen by the generator,

IS

N, ¥ Eq. 31-82
. . -
R“”_(N )R’ !

L

Eq. 31-71&76



Chapter 32

Maxwell Equations; Magnetism
of Matter




32-1 Gauss’ Law for Magnetic Fields

A
“' The simplest magnetic structure that can exist is a magnetic dipole. Magnetic
monopoles do not exist (as far as we know).

Gauss’ law for magnetic fields is a formal way of

saying that magnetic monopoles do not exist. The N

law asserts that the net magnetic flux @z through ? L5

any closed Gaussian surface is zero: @’;

N

:bﬂ:é;ﬁwﬂ':n L s

Contrast this with Gauss’ law for electric fields, s ~

8J
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The field lines for the &y If you break a
magnetic field 5 of a Gauss’ law for magnetic fields says that magnet, each

short bar magnet. The there can be no net magnetic flux through ~ fragment becomes

red curves represent the surface because there can be no net a separate

cross sections of closed, “ tic ch » (individual i magnet, with its
three-dimensional magnetic charge ('n lvidual magnetic own north and

Gaussian surfaces. poles) enclosed by the surface. south poles.



|Z[ Checkpoint 1

The tigure here shows four closed surfaces with flat top and bottom faces and curved
sides. The table gives the areas A of the faces and the magnitudes B of the uniform
and perpendicular magnetic fields through those faces; the units of A and B are arbi-
trary but consistent. Rank the surfaces according to the magnitudes of the magnetic
flux through their curved sides, greatest first.

Surface Atop
a 2
b 2
c 2
d 2

B top

6.outward
1,inward
6.1nward

3. outward

3, inward
2, inmward
8, outward

2,outward

anie

d,b,c,a(zero)



32-2 Induced Magnetic Fields

A changing electric flux induces a magnetic field B. Maxwell’s

Law,

%E ds 4O -
- : E- —

HoEp dt

l\‘
*N'

Relates the magnetic field induced along a closed loop to the N
changing electric flux ¢ through the loop. e

The changing of the
Charging a Capacitor. electric field between

' ' i - the plat t
As an example of this sort of induction, we consider the Lo HinEial

9 magnetic field.
charging of a parallel-plate capacitor with circular J—— ;
plates. The charge on our capacitor is being increased //; x xlig xON 7
at a steady rate by a constant current /in the Va4 ili z/; ><
connecting wires. Then the electric field magnitude | EZTX

between the plates must also be increasing at a steady e x| x
rate.

< |
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\ x Wx X Xt/
(b)
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32-2 Induced Magnetic Fields

A changing electric flux induces a magnetic field B. Maxwell’s

Law, :
= . dd *
B-ds = pegg—— N

B!

| —ol

/

dt iy

/

Relates the magnetic field induced along a closed loop to the
changing electric flux ¢ - through the loop.

. ) ) The changing of the
Charging a Capacitor (continued) (  electricfield between

Figure (b) is a view of the right-hand plate of Fig. (a) from fheiplaton creatas o

9 magnetic field.

between the plates. The electric field is directed into the g
page. Let us consider a circular loop through point 1 in /’;? x x xBx \,
Figs.(a) and (b), a loop that is concentric with the Ve & xIx % 3 ><
capacitor plates and has a radius smaller than that of the |/, ET % o e
plates. Because the electric field through the loop is o xoxx S x lj'
changing, the electric flux through the loop must also be | & © . 5
changing. According to the above equation, tis changing —  x ¥77 % x/

electric flux induces a magnetic field around the loop.

(b)
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.



32-2 Induced Magnetic Fields

Ampere-Maxwell Law

§ B * djl = .I!‘{'l::'il.‘l'li.'

gives the magnetic field generated by a current /.. encircled
by a closed loop.

Thus, the two equations (the other being Maxwell’'s Law)
that specify the magnetic field B produced by means other
than a magnetic material (that is, by a current and by a
changing electric field) give the field in exactly the same
form. We can combine the two equations into the single

Ampere’s law,

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.

equation: 1o
E e dv = E + i The induggd E direction here is opposite the
% Hofo ™ 4 Fotenc induced B direction in the preceding figure.

When there is a current but no change in electric flux (such as with a wire carrying a
constant current), the first term on the right side of Eq. is zero, and so the Eq.
reduces to Ampere’s law. When there is a change in electric flux but no current
(such as inside or outside the gap of a charging capacitor), the second term on the
right side of Eq. is zero, and so Eq. reduces to Maxwell’s law of induction.



IZ Checkpoint 2

The figure shows graphs of the electric field magnitude
E versus time ¢ for four uniform electric fields, all con-
tained within identical circular regions as in Fig. 32-5b. a
Rank the fields according to the magnitudes of the
magnetic fields they induce at the edge of the region,

greatest first.

a,c. b, d (zero)



Sample Problem 32.01

A parallel-plate capacitor with circular plates of radius R is
being charged as in Fig. 32-3a.

(a) Derive an expression for the magnetic field at radius r
for the case r = R.

KEY IDEAS

A magnetic field can be set up by a current and by induction
due to a changing electric flux; both effects are included in
Eq. 32-5. There is no current between the capacitor plates
of Fig. 32-5, but the electric flux there is changing. Thus,
Eq.32-5 reduces to

- dP
§ B-ds= M()SDTIE~

We shall separately evaluate the left and right sides of this
equation.

(32-6)

Left side of Eq. 32-6: We choose a circular Amperian loop
with a radius r = R as shown in Fig. 32-5b because we want
to evaluate the magnetic field for r = R—that is, inside the
capacitor. The magnetic field B atall points along the loop is
tangent to the loop, as is the path element 5. Thus, B and
ds are either parallel or antiparallel at each point of the
loop. For simplicity, assume they are parallel (the choice
does not alter our outcome here). Then

é;ﬁ-d§=f“}!;BdscosO°=ﬂgBds.

Magnetic field induced by changing electric field

Due to the circular symmetry of the plates, we can also as-
sume that B has the same magnitude at every point around
the loop. Thus, B can be taken outside the integral on the
right side of the above equation. The integral that remains is
$ ds, which simply gives the circumference 277 of the loop.
The left side of Eq.32-6is then (B)(27r).

Right side of Eq. 32-6: We assume that the electric field
E is uniform between the capacitor plates and directed per-
pendicular to the plates. Then the electric flux @ through
the Amperian loop is EA, where A is the area encircled by
the loop within the electric field. Thus, the right side of Eq.
32-61s upey d(EA)/dt.

Combining results: Substituting our results for the left and
right sides into Eq. 32-6, we get

d(EA)
(B)(27r) = o8 —dr
Because A is a constant, we write d(EA) as A dE;so we have

dE
(B)(2mr) = poeoA d

(32-7)
The area A that is encircled by the Amperian loop within
the electric field is the full area 7r? of the loop because the
loop’s radius r is less than (or equal to) the plate radius R.
Substituting 7772 for A in Eq. 32-7 leads to, for r = R,

MoEplr dE

B =
2 dt

(Answer) (32-8)



This equation tells us that, inside the capacitor, B increases
linearly with increased radial distance r, from 0 at the cen-
tral axis to a maximum value at plate radius R.

(b) Evaluate the field magnitude B for r = R/S = 11.0 mm
and dE/dr = 1.50 X 10> V/m -s.
Calculation: From the answer to (a), we have
1 dE
B = ) MD&]"T
=147 X 1077 T - m/A)(8.85 X 1072 C¥N - m?)
X (11.0 X 1073 m)(1.50 X 10" V/m - s)
=9.18 X 107 T.

(c) Derive an expression for the induced magnetic field for
the case r = R.

(Answer)

Calculation: Our procedure is the same as in (a) except we
now use an Amperian loop with a radius r that is greater
than the plate radius R, to evaluate B outside the capacitor.
Evaluating the left and right sides of Eq. 32-6 again leads to
Eq. 32-7. However, we then need this subtle point: The elec-
tric field exists only between the plates, not outside the
plates. Thus, the area A that is encircled by the Amperian

loop in the electric field is nor the full area 7r? of the loop.
Rather, A is only the plate area 7R”.

Substituting 7R for A in Eq. 32-7 and solving the result
for B give us,for r = R,

MogoR? ﬂ
2r dt

This equation tells us that, outside the capacitor, B
decreases with increased radial distance r, from a maximum
value at the plate edges (where r = R). By substituting r =
R into Eqgs. 32-8 and 32-9, you can show that these equations
are consistent; that is, they give the same maximum value of
B at the plate radius.

The magnitude of the induced magnetic field calculated in
(b) is so small that it can scarcely be measured with simple ap-
paratus. This is in sharp contrast to the magnitudes of induced
electric fields (Faraday’s law), which can be measured easily.
This experimental difference exists partly because induced
emfs can easily be multiplied by using a coil of many turns. No
technique of comparable simplicity exists for multiplying in-
duced magnetic fields. In any case, the experiment suggested
by this sample problem has been done, and the presence of the
induced magnetic fields has been verified quantitatively.

B = (Answer) (32-9)



