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Chapter 1

Series

1.1 Infinite Series

• A sequence is simply a set of quantities, one for each n, represented with an.

• A series is an indicated sum of such represented with ′
∑′

symbol.

• In general infinite series can be written as ⇒ a1 + a2 + a3 + · · ·+ an + . . .

• The geomtric series are written as ⇒ a+ ar + ar2 + · · ·+ arn−1 + . . .

• or in short notation: ⇒
∑∞
n=1 an

• The sum first of first: n term is Sn = a(1−rn)
1−r

F The sum of an infinite series is the limit of the sum of n terms as n → ∞. The sum
of series is S = limn→∞ Sn = a

1−r

F The geomtric series have a finite sum if and only if |r| < 1.
Then the series is called convergent, Otherwise it is called divergent.

• the remainder (or the remainder after n terms) is Rn = S − Sn .

Thus, limn→∞ Rn = 0.

1.2 Series Tests

• If the terms of an infinite series do not tend to zero (that is, if a limn→∞ ), the series diverges. If
limn→∞ an = 0, we must test further (Except the alternating series).

• An alternating series is an example of a conditional series.

• Its positive or negative terms (alone) diverges, thus we can control to which number (the sum, S)
such series approaches.

• Physically, We cannot stop at some point and say that the rest of the series is negligible as we
could in the bouncing ball problem in Section 1.

• But if we specify the order in which the charges are to be placed, then the sum S of the series is
determined (S is probably different from F in (8.1) unless the charges are placed alternately).

F The convergence or divergence of a series is not affected by multiplying every term of the series by
the same nonzero constant. Neither is it affected by changing a finite number of terms (for example,
omitting the first few terms).

F Two convergent series
∑∞
n=1 an and

∑∞
n=1 bn may be added (or subtracted) term by term (an+bn).

The resulting series is convergent, and its sum is obtained by adding (subtracting) the sums of the two
given series.
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F The terms of an absolutely convergent series may be rearranged in any order without affecting either
the convergence or the sum. This is not true of conditionally convergent series as we have seen in Section
8.

1.3 Power Series

It is distiguished by having a varible xn in its terms multiply by a constant.
By definition:

∞∑
n=0

an(x− a) = a0 + a1(x− a)1 + a2(x− a)2 + . . . (1.1)

.

• The radius of convergence R of Eq:1.1 depends on x values .

• We find R by the ratio test so that L < 1.

F We see then that a power series (within its interval of convergence) defines a function of x, namely
S(x).

Theorems

1. A power series may be differentiated or integrated term by term; the resulting series converges to
the derivative or integral of the function represented by the original series within the same interval
of convergence as the original series (that is, not necessarily at the endpoints of the interval).

2. Two power series may be added, subtracted, or multiplied; the resultant series converges at least
in the common interval of convergence. You may divide two series if the denominator series is not
zero at x = 0, or if it is and the zero is canceled by the numerator [as, for example, in (sinx)/x;
see (13.1)]. The resulting series will have some interval of convergence (which can be found by the
ratio test or more simply by complex variable theory—see Chapter 2, Section 7).

3. One series may be substituted in another provided that the values of the substituted series are in
the interval of convergence of the other series.

4. The power series of a function is unique, that is, there is just one power series of the form
∑∞
n=0 anx

n

which converges to a given function.

F Expanding functions can be done using Taylor series

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n (1.2)

• Maclaurin series for f(x) is a special case of Eq(1.2) where a = 0.
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Chapter 2

Complex Numbers

2.1 Introduction

The imaginary number is written as i =
√
−1. We use the term complex number to mean any one of the

whole set of numbers, real, imaginary, or combinations of the two

• The complex number can araise from the quadratic equation

az2 + bz + c = 0 (2.1)

• Where z is a unknown variable and its solution is

z =
−b±

√
b2 − 4ac

2a
(2.2)

if the discriminant d = b2 − 4ac < 0, z will be a complex number.

• Notice the pattern if i to power of some numbers

i2 = −1, i3 = −i, i4n = 1 (2.3)

• A complex number such 3 + 5i has two parts a real part (here, 3) and an imaginary part (5).

2.2 The Complex Plane

• The rectangular coordinates representation for a complex number in the form x+ yi is (x, y).

• In the polar coordinates recall that

x = r cos θ,

y = r sin θ

(2.4)

(2.5)

• Then we have (by euler formula) assigned to z. All θ are in radian.

z = x+ yi = r(cos θ + i sin θ) = reiθ (2.6)

• The modulus or absolute value of z is

|z| = r =
√
x2 + y2 =

√
zz̄ (2.7)

2.3 Complex Algebra

• Note that in Eq:(2.7) ≥ 0, always real.

• The conjugate of z is found by substituting θ = −θ in Eq:(2.6)

z̄ = r(cos θ − i sin θ) = re−iθ (2.8)

• Inotherwords,anyequation involving complex numbers is really two equations involving real num-
bers.
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Complex Equations In other words, any equation involving complex numbers is really two equations
involving real numbers.

2.4 Complex Infinite Series

• The partial sums of a series of complex numbers will be complex numbers.

• It can be written as Sn = Xn + Yni where Xn and Yn are real.

• Convergence is defined just as real series: if Sn approaches a limit (S = X + Y i) as n → ∞, we
call the series convergent and call S its sum.

• This means that Xn → X and Yn → Y .

• It can be proved that an absolutely convergent series converges, recall that Eq:(2.7) is positive
term.

•
∑∞
n=0 z

n ia a geomtric series, with ratio = z and convergent when |z| < 1.

F Thus any of the tests given in Chapter:1 for convergence of series of positive terms may be used here
to test a complex series for absolute convergence.

2.5 Complex Power Series

They are in form of ∑
anz

n (2.9)

where z = x+ yi and an are complex numbers.

• Note that Eq:(2.9) includes the real series as a special case when y = 0.

2.6 Euler’s Formula

To derive Euler’s Formula, for real θ we have from Chapter:1

sin θ = . . .

cos θ = . . .

(2.10)

(2.11)

thus we have

eiθ = cos θ + i sin θ (2.12)

2.7 Powers and Roots of Complex Numbers

• The nth power (and nth root) of z is given by

zn = (reiθ)n = rneniθ (2.13)

• When r = 1 Eq:(2.13) becomes DeMoivre’s theorem

(eiθ)n = (cos θ + i sin θ)n = cosnθ + i sinnθ (2.14)
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2.8 The Exponential and The Trigonometric

• Although we have already defined ez by a power series ez =
∑∞
n=0

zn

n! , it is worth while to write it
in another form.

ez = ex+yi = exeyi = ex(cos y + i sin y) (2.15)

• We have already seen that there is a close relationship [Euler’s formula (2.12)] between complex
exponentials and trigonometric functions of real angles. It is useful to write this relation in another
form.

• from Eq(2.12) we can rearrange it to

sin θ =
eiθ − e−iθ

2i

cos θ =
eiθ + e−iθ

2

(2.16)

(2.17)

• It can be shown that in Eq(2.16) θ can be z a complex number.

• The rest of the trigonometric functions of z are defined in the usual way in terms of these.

F If z is a complex number, sin z and cos z can have any value we like.

2.9 Hyperbolic Functions

• Let us look at sin z and cos z for pure imaginary z in Eq(2.16), that is, z = iy:

sin yi =
e−y − ey

2i
= i

ey − e−y

2
(2.18)

cos yi =
e−y + ey

2
=
ey + e−y

2
(2.19)

• The real functions on the right have special names because these particular combinations of ex-
ponentials arise frequently in problems. They are called the hyperbolic. Their definitions for all
z:

sinh z =
ez − e−z

2

cosh z =
ez + e−z

2

(2.20)

(2.21)

• The other hyperbolic functions are definded as in normal trig. functions.

• Thus from Eq(2.18) we have:

sin yi = i sinh y

cos yi = cosh y

(2.22)

(2.23)
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Chapter 3

Linear Algebra

3.1 Introduction

• problems in various fields of science and mathematics involve the solution of sets of linear equations.
Suppose you have solved two simultaneous linear equations and have found x = 2 and y = −3.
We can think of x = 2, y = −3 as the point (2,−3) in the (x, y) plane. Since two linear equations
represent two straight lines, the solution is then the point of intersection of the lines.

• The language of vectors is very useful in studying sets of simultaneous equations. Quantities such
as the velocity of an object, which have both magnitude and direction. Such quantities are called
vectors; contrast them with such quantities as mass, which have magnitude only and are called
scalars.

• Vector formulas are independent of the choice of coordinate system.

• A vector equation in two dimensions is equivalent to two component equations.

3.2 Matrices: Row Reduction

• A matrix (plural: matrices) is just a rectangular array of quantities, such as

A =

[
1 5 −2
−3 0 6

]
(3.1)

• The A letter does not have a numerical value; it simply stands for the array.

• To indicate a number in the array, we will write Aij where i is the row number and j is the column
number.

• We will call a matrix with m rows and n columns as m by n matrix.

• Transpose of a Matrix We write:

A =

 1 −3
5 0
−2 6

 (3.2)

and call AT the transpose of the matrix A in Matrix(3.1).

• To transpose a matrix, we simply write the rows as columns.

• Not that, (AT )ij = Aji

• Consider the set of equations of: 
2x− z = 2

6x+ 5y + 3z = 7

2x− y = 4

(3.3)
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• Let’s agree in organizing them in standard form, each column be for a specific variable.

• There are three markable matricies to extract from (3.3); first one is the matrix of the coefficients

M =

2 0 −1
6 5 3
2 −1 0

 (3.4)

Also, there are 3× 1 matrices, r and k.

r =

xy
z

 , k =

2
7
4

 (3.5)

• The Eqs(3.3) can be written in matrix as Mr = k.

• Now we want to write Eqs(3.3) in an augmented matrix

A =

2 0 −1 2
6 5 3 7
2 −1 0 4

 (3.6)

and then solve it by the row reduction with the following elementary row operations:

1. Interchange two rows.

2. Multiply (or divide) a row by a (nonzero) constant.

3. Add a multiple of one row to another; this includes subtracting, that is, using
a negative multiple.

(3.7)

• If the last row in a rediced augmented matrix is like 0× z = 5, which cannot be true for any finite
number on z, then it is called inconsistent.

• Rank of a Matrix The number of nonzero rows remaining when a matrix has been row reduced
is called the rank of the matrix.

1. If (rankM) < (rankA), the equations are inconsistent and there is no solu-
tion.

2. If (rankM) = (rankA) = n(# of unknowns), there is one solution.

3. If (rankM) = (rankA) = R < n, then R unknowns can be found in terms
of the remaining n−R unknowns.

(3.8)

3.3 Determinants; Carmer’s Rule

For a square matrix, however, there is a useful number called the determinant of the matrix.

• For a 2× 2 Matrix:

A =

[
a b
c d

]
, detA =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc (3.9)

• If we remove one row and one column from a determinant of order n, we have a determinant of
order n− 1.

• When removing the row and column containing the element aij and call the remaining determinant
Mij , which is called the minor of aij .

• The cofactor of aij is:

Cij = (−1)i+jMij (3.10)
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• In general, for n× n matrix we have,

detA =

n∑
j=1

aijCij , where j is fixed (3.11)

• The signs goes like

∣∣∣∣∣∣∣
+ −
− +

.. .

∣∣∣∣∣∣∣.
F The value of a determinant : Multiply each element of one row (or one column) by its cofactor and
add the results.

Useful Fact About Determinants:

1. If each element of one row (or one column) of a determinant is multiplied by a number
k, the value of the determinant is multiplied by k.

2. The value of a determinant is zero if

(a) all elements of one row (or column) are zero; or if

(b) two rows (or two columns) are identical; or if

(c) two rows (or two columns) are proportional.

3. If two rows (or two columns) of a determinant are interchanged, the value of the
determinant changes sign.

4. The value of a determinant is unchanged if

(a) rows are written as columns and columns as rows; or if

(b) we add to each element of one row, k times the corresponding element of another
row, where k is any number (and a similar statement for columns).

(3.12)

Carmer’s Rule This is a formula in terms of determinants for the solution of n linear equations in n
unknowns when there is exactly one solution.
Let’s start with the following equations: {

a1x+ b1y = c1

a2x+ b2y = c2
(3.13)

If we multiply the first equation by b2, the second by b1, and then subtract the results and solve for x,
we get if (a1b2 − a2b1 6= 0)

x =
c1b2 − c2b1
a1b2 − a2b1

, y =
a1c2 − a2c1
a1b2 − a2b1

(3.14)

Using the definition (3.9) we can write Eq.(3.14)

x =

∣∣∣∣c1 b1
c2 b2

∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣ =
1

D

∣∣∣∣c1 b1
c2 b2

∣∣∣∣ , y =

∣∣∣∣a1 c1
a2 c2

∣∣∣∣∣∣∣∣a1 b1
a2 b2

∣∣∣∣ =
1

D

∣∣∣∣a1 c1
a2 c2

∣∣∣∣ , D 6= 0 (3.15)

F To remember it, the denominator for both x and y is the determinant of the coefficients,for the
numerator for x replace its column with the k matrix (constants column), and do so for y.
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This method of solution of a set of linear equations is called Cramer’s rule. It may be used
to solve n equations in n unknowns if D 6= 0; the solution then consists of one value for each
unknown. The denominator determinant D is the n by n determinant of the coefficients
when the equations are arranged in standard form. The numerator determinant for each
unknown is the determinant obtained by replacing the column of coefficients of that unknown
in D by the constant terms from the right-hand sides of the equations. Then to find the
unknowns, we must evaluate each of the determinants and divide.

(3.16)

Rank of Matrix Here is another way to find the rank of a matrix. A submatrix means a matrix
remaining if we remove some rows and/or remove some columns from the original matrix. To find the
rank of a matrix, we look at all the square submatrices and find their determinants. The order of the
largest nonzero determinant is the rank of the matrix.

3.4 Vectors

Notation We shall indicate a vector by a boldface letter (for example, A) and a component of a vector
by a subscript (for example Ax is the 4 component of A). For handwriting you should write a vector

with an arrow (like, ~A).

Magnitude of a Vector The length of the arrow representing a vector A is called the length or the
magnitude of A (written |A| or A) or the norm of A (written ||A||). Note the use of A to mean the
magnitude of A.

• By the Pythagorean theorem, we find

A = | ~A| =
√
A2
x +A2

y +A2
z (3.17)

Addition of Vectors There two ways to add vectors: Addition of Vectors by the parallelogram law:
To find ~A+ ~B, place the tail of ~B at the head of ~A and draw the vector from the tail of ~A to the head
of ~B. Or by adding their components togather, like Ax +Bx and Ay +By. They follow:

~A+ ~B = ~B + ~A, (commutative law for addition); (3.18)

( ~A+ ~B) + ~C = ~A+ ( ~B + ~C), (associative law for addition). (3.19)

• In other words, vectors may be added together by the usual laws of algebra. They can be multiplied
by a number. Ane we can define vectors substraction so:

~A− ~B = ~A+ (− ~B)

• The zero vector is a vector of zero magnitude; its components are all zero and it does not have a
direction.
A vector of length or magnitude 1 is called a unit vector. Then for any ~A 6= 0, the vector ~A/| ~A| is a
unit vector.

Figure 3.1: The unit
basis vectors in a
rectangular system.

Vectors in Terms of Components We consider a set of rectangular axes as
in Fig.(3.1) let ı̂ be a unit vector in the positive x direction; ̂ and k̂ in y and z

positive direction. For ~A

~A = Ax ı̂+Ay ̂+Az k̂ (3.20)

The vectors ı̂, ̂, k̂ are called unit basis vectors.

10



Multiplication of Vectors There are two kinds of product of two vectors.
One, called the scalar product (or dot product or inner product), gives a
result which is a scalar; the other, called the vector product (or cross product),
gives a vector answer.

Scalar Product For vectors ~A, and ~B, and the angle θ(≤ 180◦) between them,
we have:

~A · ~B = (̂ıAx + ̂Ay + k̂Az) · (̂ıBx + ̂By + k̂Bz)

~A · ~B = | ~A|| ~B| cos θ = AxBx +AyBy +AzBz (3.21)

The dot product in Eq.(3.21) holds the commutative law.
And the distributive law.

• A vector dot itself gives its magnitude:

~A · ~A = | ~A|2 cos 0 = |A|2 = A2

Perpendicular and Parallel Vectors If two vectors are perpendicular, then cos θ = 0; thus

~A · ~B = AxBx +AyBy +AzBz = 0, if ~A and ~B are perpendicular vectors.

Ax
Bx

=
Ay
By

=
Az
Bz

, if ~A and ~B are perpendicular vectors.
(3.22)

Vector Product The vector or cross product of ~A and ~B is written ~A× ~B. By definition, ~A× ~B is a
vector whose magnitude and direction are given as follows:

| ~A× ~B| = | ~A|| ~B| sin θ,

The direction of ~A× ~B is perpendicular to the plane of ~A and ~B, using right-hand rule
(3.23)

Intresting properties:

~A× ~B = − ~B × ~A not commutative,

~A× ~B = 0 if ~A and ~B are parallel or antiparallel,

~A× ~A = 0 for any ~A

(3.24)

F A good way to remember the basis-unit vectors cross-product is to write them cyclically. Reading
around the circle counterclockwise (positive θ direction), we get the positive products (for example,

ı̂ × ̂ = k̂); reading the other way we get the negative products (for example, ı̂ × k̂ = −̂). This works
with the right-haned systems.

To write A × B in component form we need the distributive law, namely

~A× ( ~B + ~C) = ~A× ~B + ~A× ~c (3.25)

Thus we have:

~A× ~B = (̂ıAx + ̂Ay + k̂Az)× (̂ıBx + ̂By + k̂Bz)

= ı̂(AyBz −AzBy) + ̂(AzBx −AxBz) + k̂(AxBy −AyBx)

=

∣∣∣∣∣∣
ı̂ ̂ k̂
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣
(3.26)
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3.5 Lines and Planes

In analytic geometry a point is a set of three coordinates (x, y, z); we shall think of this point as the

head of a vector ~r = ı̂x+ ̂y+ k̂z with tail at the origin. In two dimensions, we write the equation of a
straight line through (x0, y0) with slope m as

y − y0
x− x0

= m (3.27)

• Suppose, instead of the slope, we are given a vector in the direction of the line, say ~A = ı̂a+ ̂b. Then
the line through (x0, y0) and parallel to ~A we can write its equation. If we have two points on the line
from (x0, y0) to any point (x, y), then the vector ~r − ~r0 with components x− x0 and y − y0:

~r − ~r0 = (x− x0)̂ı+ (y − y0)̂ (3.28)

Since this vector is parallel to ~A, then their components are proportional, so (for a, b 6= 0):

x− x0
a

=
y − y0
b

or
y − y0
x− x0

=
b

a
(3.29)

The equation is for a given line, see tht Eq.(3.27) and Eq.(3.29) are identical.

• Since ~r − ~r0 and ~A are parallel, thus they are only differen by a factor of t, so

~r − ~r0 = ~At or ~r = ~r0 + ~At (3.30)

Then theier components form:

x− x0 = at

y − y0 = bt
or

x = x0 + at

y = y0 + bt
(3.31)

Eliminating t yields the equation of the line in Eq.(3.29)

• In three dimensions, we want the equations of a straight line through a given point (x0, y0, z0) and

parallel to a given vector ~A = aı̂+b̂+ck̂. If (x, y, z) is any point on the line, the vector joining (x0, y0, z0)

and (x, y, z) is parallel to ~A. Then,

x− x0
a

=
y − y0
b

=
z − z0
c

a, b, c 6= 0

x− x0
a

=
y − y0
b

, z = z0 if say c = 0
(3.32)

Figure 3.2:

The paramtric equations for a line, see Fig.(3.5), from Eq.(3.32)

~r = ~r0 + ~At or


x = x0 + at

y = y0 + bt

z = z0 + ct

(3.33)

• Suppose we want the equation of a straight line L through the point (x0, y0)

and perpendicular to a given vector ~N = aı̂ + b̂. Let the vector in Eq.(3.28)

lies along the line but to be perpendicular to ~N . Recall from (3.22), we have

(~r − ~r0) · ~N = 0, thus their components

a(x− x0) + b(y − y0) = 0 or
y − y0
x− x0

= −a
b

(3.34)

This is the equation for a line that is perpendicular to ~N
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• In 3D, we can use this method to assign an equation for a plne. Suppose that two points on the
plane, (x0,0 , z0) and (x, y, z) is any point and represented by the vector in (3.28).

If ~N = aı̂+ b̂+ ck̂ is a normal vector to the plane, we have (~r − ~r0) · ~N = 0, so

a(x− x0) + b(y − y0) + c(z − z0) = 0,

ax+ by + cz = d where d = ax0 + by0 + cz0
(3.35)

3.6 Matrix Operations

In Section 2 we used matrices simply as arrays of numbers. Now we want to go farther into the subject
and discuss the meaning and use of multiplying a matrix by a number and of combining matrices by
addition, subtraction, multiplication, and even (in a sense) division.

Matrix Equations Two matrices are only equal if they are identical, for example,[
w m
r k

]
=

[
4 5i
5 0

]
(3.36)

then w = 4, m = 5i, r = 5, k = 0.
Remeber this consept in the equation z = x+ iy = 2− 3i is equivalent to the two real equations x = 2,
y = −3;
a vector equation in three dimensions is equivalent to three component equations.

Multiplication of a Matrix by a Number We can write a vector ~A = aı̂ + b̂ + ck̂ in matrix-like
way,

A =

ab
c

 a column matrix or column vector,

AT =
[
a b c

]
called a row matrix or row vector.

(3.37)

The row matrix AT is the transpose of the column matrix A

• Suppose we multiply the vector ~A by a constant C, them C ~A = aCı̂ + bC̂ + cCk̂ and its matrix
becomes

A =
[
aC bC cC

]
(3.38)

F Thus when a matrix is multiplied by a number each element is multiplied by it.

Multiplying a matrix by a number k means multiplying every element by k,
But multiplying just one row of a determinant by k multiplies the determinant by k. Thus
det kA = k2 detA for a 2 by 2 matrix.

Addition of Matrices When we add vectors algebraically, we add them by components. Matrices
are added in the same way, but by adding corresponding elements. If the two matrices have different m
by n, we say that the sum is undefined or meaningless.

Multiplication of Matrices Let us start by defining the product of two matrices,

AB =

[
a b
c d

] [
e f
g h

]
=

[
ae+ bg af + bh
ce+ dg cf + dh

]
= C (3.39)

Each row for each column. :“row times column”.

The element in row i and column j of the product matrix AB
is equal to row i of A times column j of B. In index notation

(AB)ij =
∑
k

AikBkj (3.40)
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The product AB (in that order) can be found if and only if the number of elements in a row
of A equals the number of elements in a column of B; the matrices A, B in that order are
then called conformable.
(Observe that the number of rows in A and of columns in B have nothing to do with the
question of whether we can find AB or not.)

[A,B] = AB −BA = commutator of A and B. (3.41)

Zero Matrix The zero or null matrix means one with all its elements equal to zero. It is often
abbreviated by 0, but we must be careful about this

Identity Matrix or Unit Matrix This is a square matrix with every element of the main diagonal
equal to 1 and all other elements equal to zero. For example

I =

1 0 0
0 1 0
0 0 1

 (3.42)

In multiplication, a unit matrix acts like the number 1, that is, if A is any matrix and I is the unit
matrix conformable with A in the order in which we multiply, then IA = AI = A.

Operations with Determinants we multiply determinants the same way we multiply matrices.

detAB = detBA = detA · detB (3.43)

Applications of Matrix Multiplication We can now write sets of simultaneous linear equations in
a very simple form using matrices. Consider the matrix equation2 6 −3

7 4 4
2 1 7

xy
z

 =

5
4
2

 (3.44)

By matrices multiplication, 2x+ 6y − 3z
7x+ 4y + 4z
2x+ y + 8z

 =

5
4
2

 (3.45)

Recall from (3.6), then we get 
2x+ 6y − 3z = 5,

7x+ 4y + 4z = 4,

2x+ y + 8z = 2

(3.46)

Consequently (3.44) is the matrix form for the set of equations in (3.46), if

M =

2x+ 6y − 3z
7x+ 4y + 4z
2x+ y + 8z

 , r =

xy
z

 , k =

5
4
2

 (3.47)

then we can write the (3.44) as Mr = k or
∑
j Mijri = ki.

Inverse of a Matrix Inverse of a Matrix The reciprocal or inverse of a number x is x−1 such that
the product xx−1 = 1. We define the inverse of a matrix M (if it has one) as the matrix M−1 such that
MM−1 and M−1M are both equal to a unit matrix I.

• Note that only square matrices can have inverses (otherwise we could not multiply both MM−1 and
M−1M). Actually, some square matrices do not have inverses either.
You can see from (3.43) that if M−1M = I, then (detM−1)(detM) = det I = 1. If two numbers have
product = 1, then neither of them is zero; thus detM 6= 0 is a requirement for M to have an inverse.
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• If a matrix has an inverse we say that it is invertible; if it doesn’t have an inverse, it is called
singular. We can find the inverse of a matrix as

M−1 =
1

detM
CT (3.48)

3.7 Linear Combinations, Functions, and Opreators

• Given two vectors ~A and ~B, the vector 3 ~A − 2 ~B is called a linear combination of ~A and ~B. In
general, a linear combination of ~A and ~B means a ~A + b ~B where a and b are scalars. Geometrically,
if ~A and ~B have the same tail and do not lie along a line, then they determine a plane. All linear
combinations of ~A and ~B lie in the plane.

• It is also true that every vector in the plane can be written as a linear combination of ~A and ~B. The
vector ~r = xî+ yĵ + zk̂ with tail at the origin (which we used in writing equations of lines and planes)

is a linear combination of the unit basis vectors ı̂, ̂, k̂.

A function of a vector, f(~r) ia called linear if

f(~r1 + ~r2) = f(~r1) + f(~r2), and f(a~r) = af(~r)

where a is a scalar.

(3.49)

Figure 3.3:

• Note, f(~r) = |~r| is not a linear function, because the length of the sum of two
vectors is not in general the sum of their lengths. That is,

f(~r1 + ~r2) = |~r1 + ~r2| 6= |~r1|+ |~r2| = f(~r1) + f(~r2)

as in Fig.(3.3). Also noticw that we call y = ms+ b a linear a equation, however
the function f(x) = mx+ b is not linear by the test (3.49) (unless b = 0).

• Now consider vector function of a vector ~r

~F (~r) is a linear vector function if

~F (~r1 + ~r2) = ~F (~r1) + ~F (~r2) and ~F (a~r) = a~F (~r)

where a is a scalar.

(3.50)

• Recall that from calculus:

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x) and

s

dx
[kf(x)] = k

d

dx
f(x)

where k is a constant

(3.51)

This is silimilar to (3.49), then we call d/dx a linear opreator. An operator or operation simply
means a rule or some kind of instruction telling us what to do with whatever follows it. In other words,
a linear operator is a linear function, so

O is a linear operator if

O(A+B) = O(A) +O(B) and O(kA) = kO(A)

where k is a number

(3.52)

15



Matrix Operators, Linear Transformations Consider the following equation set{
X = ax+ by

Y = cx+ dy
or

[
X
Y

]
=

[
a b
c d

] [
x
y

]
or R = Mr (3.53)

where a, b, c, and d are constants. For every point (x, y), these equations results a point (X,Y ).
If we think of each point of the (x, y) plane being moved to some other point (the origin not being

moved), we can call this process a mapping or transformation of the plane into itself. All the
information about this transformation is contained in the matrix M . We say that this matrix is an
operator which maps the plane into itself.

Figure 3.4: fixed co-
ordinates axes

Figure 3.5: A fixed
vector

• Any matrix can be thought of as an operator on (conformable) column ma-
trices r. From (3.52), M is a linear operator.

• We can interpreted Eqs.(3.53) geometrically in two ways. In Fig.(3.4) The

vector ~r has been changed to the vector ~R by the transformation (3.53).

• However, in Fis.(3.5) two sets of coordinates axes (x, y) and (x′, y′), and one

vector ~r = ~r′. The transformation can ve written as{
x′ = ax+ by

y′ = cx+ dy
or

[
z′

y′

]
=

[
a b
c d

] [
x
y

]
or r′ = Mr (3.54)

Orthogonal Transformations This is a special case of a linear transformation
which preserves the length of a vector. In (3.54) is an orthogonal transformation
if

x′2 + y′2 = x2 + y2 (3.55)

then either it is reflected or rotated. The matrix M of an orthogonal transfor-
mation is called an orthogonal matrix. The inverse of an orthogonal matrix
equals its transpose.

M−1 = MT , M is orthogonal (3.56)

From Eq.(3.54) and (3.55)

x′2 + y′2 = (ax+ by)2 + (cx+ dy)2

= (a2 + c2)x2 + 2(ab+ cd)xy + (b2 + d2)y2 ≡ x2 + y2

Thus we must have a2 + c2 = b2 + d2 = 1, ab+ cd = 0

MMT =

[
a c
b d

] [
a b
c d

]
=

[
a2 + c2 ab+ cd
ab+ cd b2 + d2

]
≡
[
1 0
0 1

]
Let Eq.(3.56) be MMT = I and from Eq.(3.43) we have

detMTM = detMT detM

and detMT = detM

so detM2 = detMTM = det I = 1

detM = ±1 (3.57)

F detM = 1 corresponds geometrically to a rotation, and detM = −1 means that a reflection is
involved.
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Figure 3.6: Vectors
rotation with an an-
gle θ

Figure 3.7: Axes ro-
tation

Rotations in 2 Dimensions In Fig.(3.6) we have two vectors ~R and ~r which
is rotated by θ. we can write in matrix their transformation as[

X
Y

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
(3.58)

• However for axes rotation as in Fig.(3.7) we have[
x′

y′

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
(3.59)

• Both Eq.(3.58) and Eq.(3.59) are called rotation equations and the matrices
that contain θ are called rotation matrices. Also notice that Eq.(3.58) and
Eq.(3.59) are inverses of each other.

Rotations and Reflections in 3 Dimensions For a vector ~r = 〈x, y, z〉. The
the following matrix is a rotation about z − axis,cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 (3.60)

And the following is a rotation and reflection about xy − planecos θ − sin θ 0
sin θ cos θ 0

0 0 −1

 (3.61)
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