
Chapter 3. Special Techniques for Calculating Potentials 
 

Given a stationary charge distribution 𝜌(𝑟) we can, in principle, calculate the electric field: 

 

𝐸⃗ (𝑟 ) =
1

4𝜋𝜀𝑜
 ∫

𝜌(𝑟′)

(∆𝑟)2
 ∆𝑟̂  𝑑𝜏′ 

Where ∆𝑟 = 𝑟 ′ − 𝑟 . This integral involves a vector as an integrand and is, in general, difficult to 

calculate. In most cases it is easier to evaluate first the electrostatic potential V which is defined 

as 

 

𝑉(𝑟 ) =
1

4𝜋𝜀𝑜
 ∫

𝜌(𝑟′)

∆𝑟
  𝑑𝜏′ 

since the integrand of the integral is a scalar. The corresponding electric field 𝐸⃗  can then be 

obtained from the gradient of V since 

𝐸⃗ = −∇⃗⃗ 𝑉 

The electrostatic potential V can only be evaluated analytically for the simplest charge 

configurations. In addition, in many electrostatic problems, conductors are involved and the 

charge distribution ρ is not known in advance (only the total charge on each conductor is 

known). 

A better approach to determine the electrostatic potential is to start with Poisson's equation 

 

∇⃗⃗ 2𝑉 = −
𝜌

𝜀𝑜
  

Very often we only want to determine the potential in a region where ρ = 0. In this region 

Poisson's equation reduces to Laplace's equation 

 

∇⃗⃗ 2𝑉 = 0 

There are an infinite number of functions that satisfy Laplace's equation and the appropriate 

solution is selected by specifying the appropriate boundary conditions.  

This Chapter will concentrate on the various techniques that can be used to calculate the 

solutions of Laplace's equation and on the boundary conditions required to uniquely determine a 

solution. 

 

 

 

 

 



3.1. Solutions of Laplace's Equation in One-, Two, and Three Dimensions 

3.1.1. Laplace's Equation in One Dimension 

In one dimension the electrostatic potential V depends on only one variable x. The electrostatic 

potential V(x) is a solution of the one-dimensional Laplace equation 

 

𝑑2𝑉

𝑑𝑥2
= 0 

The general solution of this equation is 

 

𝑉(𝑥) = mx + b 

where m and b are arbitrary constants. These constants are fixed when the value of the potential 

is specified at two different positions. 

 

Example 1: 
Consider a one-dimensional world with two point conductors located at x = 0 m and at x = 10 m. 

The conductor at x = 0 m is grounded and the conductor at x = 10 m is kept at a constant 

potential of 200 V. Determine V(x). 

 

The boundary conditions for V are 

𝑉(0) = b = 0V 
and 

𝑉(10) = m ∗ 10 + 0 = 200 V   

m = 20 𝑉/𝑚 

The first boundary condition shows that b = 0 V and the second boundary condition shows 

that m = 20 V/m. The electrostatic potential for this system of conductors is thus 

 

𝑉(𝑥) = 20𝑥 

The corresponding electric field can be obtained from the gradient of V 

 

E(x) = −
dV

dx
= −20 𝑉/𝑚  

The boundary conditions used here, can be used to specify the electrostatic potential between x = 

0 m and x = 10 m but not in the region x < 0 m and x > 10 m. If the solution obtained here was 

the general solution for all x, then V would approach ∞ when x approaches infinity and V would 

approach minus infinity when x approaches minus infinity.  

The boundary conditions therefore provide the information necessary to uniquely define a 

solution to Laplace's equation, but they also define the boundary of the region where this 

solution is valid (in this example 0 m < x < 10 m). 

 

The following properties are true for any solution of the one-dimensional Laplace equation: 



 

Property 1: 
V(x) is the average of V(x + R) and V(x - R) for any R as long as x + R and x - R are located in the 

region between the boundary points. This property is easy to prove: 

 
V(x+R)+𝑉(𝑥−𝑅)

2
=

𝑚(𝑥+𝑅)+𝑏+𝑚(𝑥−𝑅)+𝑏

2
= 𝑚𝑥 + 𝑏 = 𝑉(𝑥)  

This property immediately suggests a powerful analytical method to determine the solution of 

Laplace's equation. If the boundary values of V are: 

 

V(x = a) = Va  

and 

 

V(x = b) = Vb 

then property 1 can be used to determine the value of the potential at (a + b)/2: 

 

V (x =
a + b

2
) =

1

2
[𝑉𝑎 + 𝑉𝑏] 

Next we can determine the value of the potential at x = (3 a + b)/4 and at x = (a + 3 b)/4 : 

 

V (x =
3a + b

2
) =

1

2
[𝑉(𝑥 = 𝑎) + 𝑉 (𝑥 =

𝑎 + 𝑏

2
)] =

1

2
[
3

2
𝑉𝑎 +

1

2
𝑉𝑏] 

V (x =
a + 3b

2
) =

1

2
[𝑉(𝑥 =

𝑎 + 𝑏

2
) + 𝑉(𝑥 = 𝑏)] =

1

2
[
1

2
𝑉𝑎 +

3

2
𝑉𝑏] 

 

This process can be repeated and V can be calculated in this manner at any point 

between x = a and x = b (but not in the region x > b and x < a). 

 

Property 2: 
The solution of Laplace's equation can not have local maxima or minima. Extreme values must 

occur at the end points (the boundaries). This is a direct consequence of property 1. 

 

Property 2 has an important consequence: a charged particle can not be held in stable equilibrium 

by electrostatic forces alone (Earnshaw's Theorem). A particle is in a stable equilibrium if it is 

located at a position where the potential has a minimum value. A small displacement away from 

the equilibrium position will increase the electrostatic potential of the particle, and a restoring 

force will try to move the particle back to its equilibrium position. However, since there can be 

no local maxima or minima in the electrostatic potential, the particle cannot be held in stable 

equilibrium by just electrostatic forces. 

 

 



3.1.2. Laplace's Equation in Two Dimensions 

In two dimensions the electrostatic potential depends on two variables x and y. Laplace's 

equation now becomes 

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
= 0 

This equation does not have a simple analytical solution as the one-dimensional Laplace 

equation does. However, the properties of solutions of the one-dimensional Laplace equation are 

also valid for solutions of the two-dimensional Laplace equation: 

 

Property 1: 
The value of V at a point (x, y) is equal to the average value of V around this point 

𝑉(𝑥, 𝑦) =
1

2𝜋𝑅
∮𝑉 𝑅 𝑑𝜙 

 

where the path integral is along a circle of arbitrary radius, centered at (x, y) and with radius R. 

 

Property 2: 
V has no local maxima or minima; all extremes occur at the boundaries. 

3.1.3. Laplace's Equation in Three Dimensions 

In three dimensions the electrostatic potential depends on three variables x, y, and z. Laplace's 

equation now becomes 

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
+

𝜕2𝑉

𝜕𝑧2
= 0 

 

This equation does not have a simple analytical solution as the one-dimensional Laplace 

equation does. However, the properties of solutions of the one-dimensional Laplace equation are 

also valid for solutions of the three-dimensional Laplace equation: 

 

Property 1: 
The value of V at a point (x, y, z) is equal to the average value of V around this point 

 

𝑉(𝑥, 𝑦) =
1

4𝜋𝑅2
∮𝑉𝑅2 sin 𝜃 𝑑𝜃 𝑑𝜙 

 

where the surface integral is across the surface of a sphere of 

arbitrary radius, centered at (x,y,z) and with radius R. 

 

 

circle 

sphere 



To prove this property of V consider the electrostatic potential generated by a point 

charge q located on the z axis, a distance r away from the center of a sphere of radius R (see 

Figure 3.1). The potential at P, generated by charge q, is equal to 

 

𝑉𝑝 =
1

4𝜋𝜀𝑜

𝑞

𝑑
  

where d is the distance between q and surface patch. Using the cosine rule we can express d in 

terms of r, R and θ 

𝑑2 = 𝑧2 + 𝑅2 − 2𝑧𝑅 cos 𝜃 
The potential at P due to charge q is therefore equal to 

𝑉𝑝 =
1

4𝜋𝜀𝑜

𝑞

√𝑧2 + 𝑅2 − 2𝑧𝑅 cos 𝜃
 

 

The average potential on the surface of the sphere can be obtained by integrating 𝑉𝑝 across the 

surface of the sphere. The average potential is equal to 

 

𝑉𝑎𝑣𝑔 =
1

4𝜋𝑅2
∫𝑉𝑝𝑅

2 sin 𝜃 𝑑𝜃 𝑑𝜙 =
1

4𝜋𝜀𝑜

𝑞

𝑧
 

which is equal to the potential due to q at the center of the sphere. Applying the principle of 

superposition it is easy to show that the average potential generated by a collection of point 

charges is equal to the net potential they produce at the center of the sphere. 

 

Property 2: 
The electrostatic potential V has no local maxima or minima; all extremes occur at the 

boundaries. 

 

Example 3:  
Find the general solution to Laplace's equation in spherical coordinates, for the case 

where V depends only on r. Then do the same for cylindrical coordinates. 

 

Laplace's equation in spherical coordinates is given by 

 

∇2𝑉 =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑉

𝜕𝑟
) +

1

𝑟2 sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑉

𝜕𝜃
) +

1

𝑟2 sin2 𝜃

𝜕2𝑉

𝜕𝜙2
= 0 

 

If V is only a function of r then 
𝜕𝑉

𝜕𝜃
= 0 and 

𝜕𝑉

𝜕𝜙
= 0 

Therefore, Laplace's equation can be rewritten as 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑉

𝜕𝑟
) = 0 



The solution V of this second-order differential equation must satisfy the following first-order 

differential equation: 

𝑟2
𝜕𝑉

𝜕𝑟
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑎 

This differential equation can be rewritten as 

 
𝜕𝑉

𝜕𝑟
=

𝑎

𝑟2
 

The general solution of this first-order differential equation is 

 

𝑉(𝑟) = −
𝑎

𝑟
+ 𝑏 

where b is a constant. If V = 0 at infinity then b must be equal to zero, and consequently 

𝑉(𝑟) = −
𝑎

𝑟
 

 

Laplace's equation in cylindrical coordinates: 

 

∇2𝑉 =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑉

𝜕𝑟
) +

1

𝑟2
(
𝜕2𝑉

𝜕𝜙2
) +

𝜕2𝑉

𝜕𝑧2
= 0 

 

If V is only a function of r then 
𝜕𝑉

𝜕𝜙
= 0 and 

𝜕𝑉

𝜕𝑧
= 0 

 

Therefore, Laplace's equation can be rewritten as 

 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑉

𝜕𝑟
) = 0 

The solution V of this second-order differential equation must satisfy the following first-order 

differential equation: 

𝑟
𝜕𝑉

𝜕𝑟
= 𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

This differential equation can be rewritten as 

𝜕𝑉

𝜕𝑟
=

𝑎

𝑟
  

The general solution of this first-order differential equation is 

𝑉(𝑟) = 𝑎 ln(𝑟) + 𝑏 

where b is a constant. The constants a and b are determined by the boundary conditions. 



3.1.4. Uniqueness Theorems 

Consider a volume within which the charge density is equal to zero. Suppose that the value of the 

electrostatic potential is specified at every point on the surface of this volume.  

The first uniqueness theorem states that in this case the solution of Laplace's equation is 

uniquely defined. 

To prove the first uniqueness theorem we will consider 

what happens when there are two solutions V1 and V2 of 

Laplace's equation in the volume shown in the figure. 

Since V1 and V2 are solutions of Laplace's equation, we 

know that 

∇2𝑉1 = 0  and   ∇2𝑉2 = 0 

 

Since both V1 and V2 are solutions, they must have the 

same value on the boundary. Thus V1 = V2 on the 

boundary of the volume.  

Now consider a third function V3, which is the difference between V1 and V2 

𝑉3 = 𝑉2 − 𝑉1 
The function V3 is also a solution of Laplace's equation. This can be demonstrated easily: 

∇2𝑉3 = ∇2𝑉2 − ∇2𝑉1 = 0 
The value of the function V3 is equal to zero on the boundary of the volume since V1 = V2 there. 

However, property 2 of any solution of Laplace's equation states that it can have no local 

maxima or minima and that the extreme values of the solution must occur at the boundaries. 

Since V3 is a solution of Laplace's equation and its value is zero everywhere on the boundary of 

the volume, the maximum and minimum value of V3 must be equal to zero. Therefore, V3 must 

be equal to zero everywhere. This immediately implies that everywhere:  

𝑉1 = 𝑉2 

This proves that there can be no two different functions V1 and V2 that are solutions of Laplace's 

equation and satisfy the same boundary conditions.  

Therefore, the solution of Laplace's equation is uniquely determined if its value is a 

specified function on all boundaries of the region.  

This also indicates that it does not matter how you come by your solution:  

As long as (a) it is a solution of Laplace's equation, and (b) it has the correct value on the 

boundaries, then it is the right and only solution. 

 

The first uniqueness theorem can only be applied in those regions that are free of charge and 

surrounded by a boundary with a known potential (not necessarily constant).  

In the laboratory the boundaries are usually conductors connected to batteries to keep them at a 

fixed potential. In many other electrostatic problems, we do not know the potential at the 

boundaries of the system. Instead, we might know the total charge on the various conductors that 



make up the system (note: knowing the total charge on a conductor does not imply a knowledge 

of the charge distribution ρ since it is influenced by the presence of the other conductors).  

In addition to the conductors that make up the system, there might be a charge 

distribution ρ filling the regions between the conductors. For this type of system, the first 

uniqueness theorem does not apply.  

The second uniqueness theorem states that the electric field is uniquely determined if the 

total charge on each conductor is given and the charge distribution in the regions between 

the conductors is known. 

 

The proof of the second uniqueness theorem is similar to 

the proof of the first uniqueness theorem. Suppose that 

there are two fields 𝐸⃗ 1 and 𝐸⃗ 2 that are solutions of 

Poisson's equation in the region between the conductors. 

Thus: 

∇⃗⃗ . 𝐸⃗ 1 =
𝜌

𝜀𝑜
   and   ∇⃗⃗ . 𝐸⃗ 2 =

𝜌

𝜀𝑜
 

 

where ρ is the charge density at the point where the 

electric field is evaluated.  

The surface integrals of 𝐸⃗ 1 and 𝐸⃗ 2, evaluated using a surface that is just outside one of the 

conductors with charge Qi,: 

∫ 𝐸⃗ 1. 𝑑𝑎 =
𝑄𝑖

𝜀𝑜
  ;   ∫ 𝐸⃗ 2. 𝑑𝑎 =

𝑄𝑖

𝜀𝑜
 

 

The difference 𝐸⃗ 3 = 𝐸⃗ 2 − 𝐸⃗ 1 satisfies the following equations: 

∇⃗⃗ . 𝐸⃗ 3 = ∇⃗⃗ . 𝐸⃗ 2 − ∇⃗⃗ . 𝐸⃗ 1 =
𝜌

𝜀𝑜
−

𝜌

𝜀𝑜
= 0 

 

∫𝐸⃗ 3. 𝑑𝑎 = ∫ 𝐸⃗ 2. 𝑑𝑎 − ∫ 𝐸⃗ 1. 𝑑𝑎 =
𝑄𝑖

𝜀𝑜
−

𝑄𝑖

𝜀𝑜
= 0 

 

Consider the surface integral of 𝐸⃗ 3 , integrated over all surfaces (the surface of all conductors 

and the outer surface). Since the potential on the surface of any conductor is constant, the 

electrostatic potential associated with 𝐸⃗ 2 and 𝐸⃗ 1 must also be constant on the surface of each 

conductor.  

Therefore, 𝑉3 = 𝑉2 − 𝑉1 will also be constant on the surface of each conductor. The surface 

integral of 𝑉3𝐸⃗ 3 over the surface of conductor i can be written as 

∫𝑉3𝐸⃗ 3. 𝑑𝑎 = 𝑉3 ∫ 𝐸⃗ 3. 𝑑𝑎 = 0 

Surface 

conductor i 
Surface 

conductor i 

Surface 

conductor i 

Surface 

conductor i 

Surface 

conductor i 

Surface 

conductor i 

Surface 

conductor i 



Since the surface integral of 𝑉3𝐸⃗ 3 over the surface of conductor i is equal to zero, the surface 

integral of 𝑉3𝐸⃗ 3 over all conductor surfaces will also be equal to zero. The surface integral of 

𝑉3𝐸⃗ 3 over the outer surface will also be equal to zero since 𝑉3 = 0 on this surface. Thus: 

∫𝑉3𝐸⃗ 3. 𝑑𝑎 = 0 

 

Using product rule from chapter 1: 

∇⃗⃗ . (𝑉3𝐸⃗ 3) = 𝑉3(∇⃗⃗ . 𝐸⃗ 3) + 𝐸⃗ 3. ∇⃗⃗ 𝑉3 

The surface integral of 𝑉3𝐸⃗ 3 can be rewritten using Green's identity as 

∫𝑉3𝐸⃗ 3. 𝑑𝑎 = ∫𝑉3(∇⃗⃗ . 𝐸⃗ 3)𝑑𝜏 + ∫ 𝐸⃗ 3. ∇⃗⃗ 𝑉3  𝑑𝜏 

 

 

∫𝑉3(∇⃗⃗ . 𝐸⃗ 3)𝑑𝜏 + ∫−𝐸⃗ 3. E⃗⃗ 3  𝑑𝜏 = 0 

Since ∇⃗⃗ . 𝐸⃗ 3 = 0 from above: 

∫𝐸3
2  𝑑𝜏 = 0 

 

where the volume integration is over all space between the conductors and the outer surface. 

Since 𝐸3
2 is always positive, the volume integral of 𝐸3

2 can only be equal to zero if: 

𝐸3
2 = 0 everywhere.  

This implies immediately that 𝐸⃗ 2 = 𝐸⃗ 1 everywhere, and proves the second uniqueness theorem. 
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3.2. Method of Images 
Consider a point charge q held at a distance d above an infinite grounded conducting plane as 

shown in the figure below. The electrostatic potential of this system must satisfy the following 

two boundary conditions: 

𝑉(𝑥, 𝑦, 0) = 0 

𝑉(𝑥, 𝑦, 𝑧) → 0 𝑤ℎ𝑒𝑛 {
𝑥 → ∞
𝑦 → ∞
𝑧 → ∞

 

 

A direct calculation of the electrostatic potential 

cannot be carried out since the charge distribution on 

the grounded conductor is unknown. Note: the charge 

distribution on the surface of a grounded conductor 

does not need to be zero. 

 

Consider a second system, consisting of two point charges 

+q and -q, located at z = d and z = -d, respectively as shown 

in figure 2. The electrostatic potential generated by these 

two charges can be calculated directly at any point in space.  

At a point P = (x, y, 0) on the xy plane the electrostatic 

potential is equal to 

𝑉(𝑥, 𝑦, 0) =
1

4𝜋𝜀𝑜
[

𝑞

√𝑥2 + 𝑦2 + 𝑑2
+

−𝑞

√𝑥2 + 𝑦2 + 𝑑2
] = 0 

 

The potential of this system at infinity will approach zero since the potential generated by each charge will decrease as 1/
r .  

Therefore, the electrostatic potential generated by the two charges satisfies the same boundary 

conditions as the original system in Fig.1.  

Since the charge distribution in the region z > 0 (bounded by the xy plane boundary and the 

boundary at infinity) for the two systems is identical, the corollary of the first uniqueness 

theorem states that the electrostatic potential in this region is uniquely defined.  

Therefore, if we find any function that satisfies the boundary conditions and Poisson's equation, 

it will be the right answer. Consider a point (x, y, z) with z > 0. The electrostatic potential at this 

point can be calculated easily for the charge distribution shown in Figure 3.5. It is equal to 

𝑉(𝑥, 𝑦, 0) =
1

4𝜋𝜀𝑜
[

𝑞

√𝑥2 + 𝑦2 + (𝑧 − 𝑑)2
+

−𝑞

√𝑥2 + 𝑦2 + (𝑧 + 𝑑)2
] 

 

Since this solution satisfies the boundary conditions, it must be the correct solution in the 

region z > 0 for the system shown in Fig. 1.  



This technique of using image charges to obtain the electrostatic potential in some region of 

space is called the method of images. 

 

The electrostatic potential can be used to calculate the charge distribution on the grounded 

conductor. Since the electric field inside the conductor is equal to zero, the boundary condition 

for 𝐸⃗  shows that the electric field right outside the conductor is equal to 

𝑬⃗⃗ 𝒐𝒖𝒕𝒔𝒊𝒅𝒆 =
𝝈

𝜺𝒐
𝒏̂ 

where σ is the surface charge density and  is the unit vector normal to the surface of the 

conductor. Expressing the electric field in terms of the electrostatic potential V we can rewrite 

this equation as 

𝝈 = 𝜺𝒐𝑬𝒛 = −𝜺𝒐

𝝏𝑽

𝝏𝒛
|
𝒛=𝟎

 

 

Substituting the solution for V in this equation we find 

𝝈 = −
𝒒

𝟒𝝅
[

−(𝑧 − 𝑑)

(𝑥2 + 𝑦2 + (𝑧 − 𝑑)2)
3
2

+
(𝑧 + 𝑑)

(𝑥2 + 𝑦2 + (𝑧 + 𝑑)2)
3
2

]

𝒛=𝟎

= −
𝒒

𝟐𝝅

𝒅

(𝒙𝟐 + 𝒚𝟐 + 𝒅𝟐)𝟑/𝟐
 

 

The induced charge distribution is negative and the charge density is greatest at (x = 0, y = 0, z = 

0). The total charge on the conductor can be calculated by surface integrating of σ: 

𝑄𝑡𝑜𝑡𝑎𝑙 = ∫𝜎𝑑𝑎 = ∫ ∫ 𝜎(𝑟)𝑟 𝑑𝑟 𝑑𝜃
∞

0

2𝜋

0

 

Where 𝑟 = √𝑥2 + 𝑦2. By substituting the expression for σ in the integral we obtain 

𝑄𝑡𝑜𝑡𝑎𝑙 = −𝑞𝑑 ∫
1

(𝑟2 + 𝑑2)
3
2

 𝑟𝑑𝑟 = 𝑞𝑑
1

(𝑟2 + 𝑑2)
1
2

|
∞

0
0

∞

= 𝑞𝑑 [0 −
1

𝑑
] = −𝑞 

 

As a result of the induced surface charge on the conductor, the point charge q will be attracted 

towards the conductor.  

Since the electrostatic potential generated by the charge and image-charge system is the same as 

the charge-conductor system in the region where z > 0, the associated electric field (and 

consequently the force on point charge q) will also be the same.  

The force exerted on point charge q can be obtained immediately by calculating the force exerted 

on the point charge by the image charge. This force is equal to 

𝐹 = −
1

4𝜋𝜀𝑜

𝑞2

(2𝑑)2
𝑘̂ 

 



The total electrostatic energy of the charge and grounded conductor and charge image-charge 

system is not the same.  

The electric field in the image-charge system is present everywhere, and the magnitude of the 

electric field at (x, y, z) will be the same as the magnitude of the electric field at (x, y, -z). On the 

other hand, in the real system the electric field will only be non-zero in the region with z > 0. 

Since the electrostatic energy of a system is proportional to the volume integral of 𝐸2the 

electrostatic energy of the real system will be 1/2 of the electrostatic energy of the image-charge 

system (only 1/2 of the total volume has a non-zero electric field in the real system).  

The electrostatic energy of the image-charge system is equal to 

𝑾𝒊𝒎𝒂𝒈𝒆 = −𝒒∆𝑽 = −𝒒 ∗
𝟏

𝟒𝝅𝜺𝒐

𝒒

𝟐𝒅
= −

𝟏

𝟒𝝅𝜺𝒐

𝒒𝟐

𝟐𝒅
 

The electrostatic energy of the real system is therefore equal to 

𝑾 =
𝟏

𝟐
𝑾𝒊𝒎𝒂𝒈𝒆 = −

𝟏

𝟒𝝅𝜺𝒐

𝒒𝟐

𝟒𝒅
 

The electrostatic energy of the real system can also be obtained by calculating the work required 

to be done to assemble the system. In order to move the charge q to its final position we will 

have to exert a force opposite to the force exerted on it by the grounded conductor. The work 

done to move the charge from infinity along the z axis to z = d is equal to 

𝑾 =
𝟏

𝟒𝝅𝜺𝒐
∫

𝒒𝟐

𝟒𝒛𝟐
𝒅𝒛

𝒅

∞

=
𝟏

𝟒𝝅𝜺𝒐

−𝒒𝟐

𝟒𝒛
|
∞

𝒅

= −
𝟏

𝟒𝝅𝜺𝒐

𝒒𝟐

𝟒𝒅
 

 

which is identical to the result obtained using the electrostatic potential energy of the image-

charge system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 4: 
A point charge q is situated a distance s from the center of a grounded conducting sphere of 

radius R as shown in the figure.  

a) Find the potential everywhere. 

b) Find the induced surface charge on the sphere, as 

function of q. Integrate this to get the total induced 

charge. 

c) Calculate the electrostatic energy of this 

configuration. 

    

a) We can imagine a completely different configuration consisting of two charges, q and 𝑞’. 
Where: 

𝑞’ = −
𝑅

𝑎
𝑞 

Located at: 

𝑏 =
𝑅2

𝑎
 

 

To the right of the center of the sphere as shown in the second figure. 

Now the potential at a distance r from the origin due to these two point charges is: 

𝑉𝑝 =
1

4𝜋𝜀𝑜
 [

𝑞

𝑑
+

𝑞′

𝑑′
] =

𝑞

4𝜋𝜀𝑜
 [

1

𝑑
−

𝑅

𝑎𝑑′
] 

Now this potential vanishes everywhere on the surface of the sphere (that was removed to place 

the image charge) 

𝑑 = 𝑟 − 𝑎   and 𝑑 ′ = 𝑟 − 𝑏⃗  

𝑑 = √𝑟2 + 𝑎2 − 2𝑎𝑟 cos 𝜃 

𝑑′ = √𝑟2 + 𝑏2 − 2𝑏𝑟 cos 𝜃 

𝑉𝑝 =
𝑞

4𝜋𝜀𝑜
 [

1

√𝑟2 + 𝑎2 − 2𝑎𝑟 cos 𝜃
−

𝑅

𝑎√𝑟2 + 𝑏2 − 2𝑏𝑟 cos 𝜃
] 

 

When r=R on the surface of the sphere: 

 



 

𝑉𝑝 =
𝑞

4𝜋𝜀𝑜
 [

1

√𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃
−

𝑅

𝑎√𝑅2 + 𝑏2 − 2𝑏𝑅 cos 𝜃
] 

Since  

𝑏 =
𝑅2

𝑎
 

𝑉𝑝 =
𝑞

4𝜋𝜀𝑜
 

[
 
 
 

1

√𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃
−

𝑅

𝑎√𝑅2 +
𝑅4

𝑎2 − 2
𝑅2

𝑎 𝑅 cos 𝜃]
 
 
 

 

𝑉𝑝 =
𝑞

4𝜋𝜀𝑜
 [

1

√𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃
−

𝑅

𝑎
𝑅
𝑎 √𝑎2 + 𝑅2 − 2𝑎𝑅 cos 𝜃

] = 0 

 

Thus we conclude that the configuration of charge and image charge produces an electrostatic 

potential that is zero at any point on a sphere with radius R and centered at the origin.  

Therefore, this charge configuration produces an electrostatic potential that satisfies exactly the 

same boundary conditions as the potential produced by the charge-sphere system. 

  

The surface charge density σ on the sphere can be obtained from the boundary conditions of  

𝐸⃗ 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 − 𝐸⃗ 𝑖𝑛𝑠𝑖𝑑𝑒 = 𝐸⃗ 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 =
𝜎

𝜀𝑜
𝑟̂ 

𝜎 = 𝜀𝑜𝐸𝑟 = −𝜀𝑜

𝜕𝑉

𝜕𝑟
 

Substituting the general expression for V into this equation we obtain 

𝜎 = −𝜀𝑜

𝑞

4𝜋𝜀𝑜

𝜕

𝜕𝑟
[ [

1

√𝑟2 + 𝑎2 − 2𝑎𝑟 cos 𝜃
−

𝑅

𝑎√𝑟2 + 𝑏2 − 2𝑏𝑟 cos 𝜃
]]

𝑟=𝑅

 

 

𝜎 = −
𝑞

4𝜋
[−

2𝑟 − 2𝑎 cos 𝜃

2(𝑟2 + 𝑎2 − 2𝑎𝑟 cos 𝜃)
3
2

−
−𝑅 ∗ (2𝑟 − 2𝑏 cos 𝜃)

𝑎 ∗ 2(𝑟2 + 𝑏2 − 2𝑏𝑟 cos 𝜃)
3
2

]

𝑟=𝑅

 

𝑏 =
𝑅2

𝑎
 

𝜎 = −
𝑞

4𝜋

[
 
 
 
 

−
𝑟 − 𝑎 cos 𝜃

(𝑟2 + 𝑎2 − 2𝑎𝑟 cos 𝜃)
3
2

−
−𝑅 ∗ (𝑟 −

𝑅2

𝑎 cos 𝜃)

𝑎 ∗ (𝑟2 +
𝑅4

𝑎2 −
2𝑅2

𝑎 𝑟 cos 𝜃)

3
2

]
 
 
 
 

𝑟=𝑅

 



 

𝜎 = −
𝑞

4𝜋

[
 
 
 
 

−
𝑅 − 𝑎 cos 𝜃

(𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃)
3
2

−
−𝑅 ∗ (𝑅 −

𝑅2

𝑎 cos 𝜃)

𝑎 ∗ (𝑅2 +
𝑅4

𝑎2 −
2𝑅3

𝑎 cos 𝜃)

3
2

]
 
 
 
 

 

 

𝜎 = −
𝑞

4𝜋
[−

𝑅 − 𝑎 cos 𝜃

(𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃)
3
2

−
−𝑅2 ∗ (1 −

𝑅
𝑎 cos 𝜃)

𝑎 ∗
𝑅3

𝑎3 (𝑎2 + 𝑅2 − 2𝑅𝑎 cos 𝜃)
3
2

]  

𝜎 = −
𝑞

4𝜋
[−

𝑅 − 𝑎 cos 𝜃

(𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃)
3
2

+
𝑎2 − 𝑅𝑎 cos 𝜃

𝑅(𝑎2 + 𝑅2 − 2𝑅𝑎 cos 𝜃)
3
2

] 

𝜎 = −
𝑞

4𝜋
[
−𝑅2 + 𝑎𝑅 cos 𝜃 − 𝑎𝑅 cos 𝜃 + 𝑎2

𝑅(𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃)
3
2

] = −
𝑞

4𝜋𝑅
[

𝑎2 − 𝑅2

(𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃)
3
2

] 

 

The total charge on the sphere can be obtained by integrating σ over the surface of the sphere. 

The result is 

𝑄 = ∫𝜎𝑑𝑎 = ∫−
𝑞

4𝜋𝑅
[

𝑎2 − 𝑅2

(𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃)
3
2

] 𝑅2 sin 𝜃 𝑑𝜃 𝑑𝜙 

𝑄 = −
𝑞𝑅(𝑎2 − 𝑅2)

2
∫

1

(𝑅2 + 𝑎2 − 2𝑎𝑅 cos 𝜃)
3
2

sin 𝜃 𝑑𝜃 
𝜋

0

 

cos 𝜃 = 𝑦 , −sin 𝜃 𝑑𝜃 = 𝑑𝑦 

= +
𝑞𝑅(𝑎2 − 𝑅2)

2
 [

(𝑅2 + 𝑎2 − 2𝑎𝑅𝑦)−
1
2

(−
1
2) (−2𝑎𝑅)

]

1

−1

 

=
𝑞𝑅(𝑎2 − 𝑅2)

2
∗

1

𝑎𝑅 
[

1

𝑎 + 𝑅
−

1

𝑎 − 𝑅
]  

𝑄 =
𝑞(𝑎2 − 𝑅2)

2
∗

1

𝑎 
[

−2𝑅

(𝑎2 − 𝑅2)
] = −

𝑞𝑅

𝑎
= 𝑞′ 

The force on q due to the sphere would be same as the force between q and the image charge: 

𝐹 =
1

4𝜋𝜀𝑜

𝑞𝑞′

(𝑎 − 𝑏)2
=

1

4𝜋𝜀𝑜

𝑞 (
𝑞𝑅
𝑎 )

(𝑎 − 𝑅2/𝑎)2
=

1

4𝜋𝜀𝑜

𝑞2𝑅𝑎

(𝑎2 − 𝑅2)2
 

 



The total energy of the system would be to bring in the charge from infinity to point a. 

𝑊 = ∫
1

4𝜋𝜀𝑜

𝑞2𝑅 ∗ 𝑟

(𝑟2 − 𝑅2)2
𝑑𝑟

𝑎

∞

 

Let 𝑟2 = 𝑦 then 2𝑟 𝑑𝑟 = 𝑑𝑦 , 𝑟 → ∞ , 𝑦 → ∞ and for 𝑟 → 𝑎 , 𝑦 → 𝑎2 

 

𝑊 =
𝑞2𝑅

8𝜋𝜀𝑜
∫

𝑑𝑦

(𝑦 − 𝑅2)2

𝑎2

∞

=
𝑞2𝑅

8𝜋𝜀𝑜
∗

(𝑦 − 𝑅2)−1

−1
|
∞

𝑎2

 

𝑊 = −
1

8𝜋𝜀𝑜

𝑅𝑞2

(𝑎2 − 𝑅2)
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.3. Separation of Variables 

3.3.1. Separation of variables: Cartesian coordinates 

A powerful technique very frequently used to solve partial differential equations is separation of 

variables, which is very helpful tool in solving partial differential equations. This method is 

particularly useful when the potential at the boundaries is known and we are to solve it within 

that region. 

 

Example 5:  
Two infinite, grounded, metal plates lie parallel to the xz-plane, one at y = 0, the other at y = a as 

shown in the figure. The left end, at x = 0, is closed off with an infinite strip insulated from the 

two plates and maintained at a specified potential Vo(y). Find the potential inside this "slot". 

 

 

The electrostatic potential in the slot must satisfy the Laplace’s equation. Since V is independent 

of z so we will use 2D Laplace’s equation:  

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
= 0 

 

The boundary conditions are: 

 

1. V(x, y = 0) = 0 (grounded bottom plate). 

 

2. V(x, y = a) = 0 (grounded top plate). 

 

3. V(x = 0, y) = V0(y) (plate at x = 0). 

 

4. V → 0 when x → ∞. 

 

These four boundary conditions specify the value of the potential on all boundaries surrounding 

the slot and are therefore sufficient to uniquely determine the solution of Laplace's equation 

inside the slot. Therefore, if we find one solution of Laplace's equation satisfying these boundary 

conditions than it must be the correct one.  



Consider solutions of the following form: 𝑉(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) 

 

If this is a solution of the two-dimensional Laplace equation than we must require that 

𝜕2

𝜕𝑥2
[𝑋(𝑥)𝑌(𝑦)] +

𝜕2

𝜕𝑦2
[𝑋(𝑥)𝑌(𝑦)] = 0 

𝑌(𝑦)
𝜕2𝑋(𝑥)

𝜕𝑥2
+ 𝑋(𝑥)

𝜕2𝑌(𝑦)

𝜕𝑦2
= 0 

1

𝑋(𝑥)

𝜕2𝑋(𝑥)

𝜕𝑥2
+

1

𝑌(𝑦)

𝜕2𝑌(𝑦)

𝜕𝑦2
= 0 

 

 

The first term of the left-hand side of this equation depends only on x while the second term 

depends only on y. Therefore, if this equation must hold for all x and y in the slot we must 

require that 

1

𝑋(𝑥)

𝑑2𝑋(𝑥)

𝑑𝑥2
= 𝐶1 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

1

𝑌(𝑦)

𝑑2𝑌(𝑦)

𝑑𝑦2
= 𝐶2 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐶1 + 𝐶2 = 0 
 

The differential equation for X can be rewritten as: 

𝑑2𝑋(𝑥)

𝑑𝑥2
− 𝐶1𝑋(𝑥) = 0 

If C1 is a negative number then this equation can be rewritten as: 

𝑑2𝑋(𝑥)

𝑑𝑥2
+ 𝑘2𝑋(𝑥) = 0 

where k2 = -C1 . The most general solution of this equation is 

𝑋(𝑥) = 𝐴 cos(𝑘𝑥) + 𝐵 sin(𝑘𝑥) 

 

However, this function is an oscillatory function and does not satisfy boundary condition # 4, 

which requires that V approaches zero when x approaches infinity. We therefore conclude 

that C1 cannot be a negative number.  

If C1 is a positive number then the differential equation for X can be written as: 

𝑑2𝑋(𝑥)

𝑑𝑥2
− 𝑘2𝑋(𝑥) = 0 

The most general solution of this equation is 

𝑋(𝑥) = 𝐴𝑒𝑘𝑥 + 𝐵𝑒−𝑘𝑥 
This solution will approach zero when x approaches infinity if A = 0. Thus 



𝑋(𝑥) = 𝐵𝑒−𝑘𝑥 
 

The solution for Y can be obtained by solving the following differential equation: 

𝜕2𝑌(𝑦)

𝜕𝑦2
= −𝑘2𝑌(𝑦) 

Since 𝐶1 is positive 𝐶2 has to be negative because 𝐶1 + 𝐶2 = 0 

The most general solution of this equation is 

𝑌(𝑥) = 𝐶 sin(𝑘𝑦) + 𝐷 cos(𝑘𝑦) 

 

Therefore, the general solution for the electrostatic potential V(x,y) is equal to 

𝑉(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) = 𝑒−𝑘𝑥(𝐶 sin(𝑘𝑦) + 𝐷 cos(𝑘𝑦)) 
 

where we have absorbed the constant B into the constants C and D. The constants C and D must 

be chosen such that the remaining three boundary conditions (1, 2, and 3) are satisfied.  

The first boundary condition requires that V(x, y = 0) = 0: 

𝑉(𝑥, 𝑦 = 0) = 𝑒−𝑘𝑥(𝐶 sin(0) + 𝐷 cos(0)) = 𝐷𝑒−𝑘𝑥 = 0 

 

which requires that D = 0. The second boundary condition requires that V(x, y = a) = 0: 

𝑉(𝑥, 𝑦 = 𝑎) = 𝑒−𝑘𝑥(𝐶 sin(𝑘𝑎)) = 0 

 

which requires that sin(𝑘𝑎) = 0. This condition limits the possible values of k to positive 

integers: 

𝑘𝑎 = 𝑛𝜋  ;  𝑘 =
𝑛𝜋

𝑎
 , where 𝑛 = 1,2,3, … 

 

Note: negative values of k are not allowed as exp(-kx) approaches zero at infinity only if k > 0.  

To satisfy boundary condition # 3 we must require that 

𝑉(𝑥 = 0, 𝑦) = 𝐶 sin(𝑘𝑦) = 𝑉𝑜(𝑦) 

 

This last expression suggests that the only time at which we can find a solution of Laplace's 

equation that satisfies all four boundary conditions has the form 𝑒−𝑘𝑥 sin(𝑘𝑦) when 

𝑉𝑜(𝑦) happens to have the form sin(𝑘𝑦).  

However, since k can take on an infinite number of values, there will be an infinite number of 

solutions to Laplace's equation satisfying boundary conditions # 1, # 2 and # 4. The most general 

form of the solution of Laplace's equation will be a linear superposition of all possible solutions. 

Thus 



𝑉(𝑥, 𝑦) = ∑𝐶𝑖𝑒
−

𝑛𝜋
𝑎

𝑥 sin (
𝑛𝜋

𝑎
𝑦)

𝑛

𝑖=1

 

Boundary condition # 3 can now be written as 

𝑉(𝑥 = 0, 𝑦) = ∑𝐶𝑖 sin (
𝑛𝜋

𝑎
𝑦)

𝑛

𝑖=1

= 𝑉𝑜(𝑦) 

This is a Fourier sine series and we can use a mathematical trick to find the coefficients Ci.  

Multiplying both sides by sin (
𝑛′𝜋

𝑎
𝑦) and integrating each side between y = 0 and y = a we 

obtain 

∑𝐶𝑖 ∫ sin (
𝑛𝜋

𝑎
𝑦) sin (

𝑛′𝜋

𝑎
𝑦)𝑑𝑦

𝑎

0

𝑛

𝑖=1

= ∫ sin (
𝑛′𝜋

𝑎
𝑦) 𝑉𝑜(𝑦)𝑑𝑦

𝑎

0

 

∫ sin (
𝑛′𝜋

𝑎
𝑦) sin (

𝑛𝜋

𝑎
𝑦) 𝑑𝑦

𝑎

0

= {
0       𝑓𝑜𝑟    𝑛′ ≠ 𝑛
𝑎

2
      𝑓𝑜𝑟    𝑛′ = 𝑛

 

The integral on the left-hand side of this equation is equal to zero for all values of 𝑛’ except 

for 𝑛’ = 𝑛. Thus 

∑𝐶𝑖 ∫ sin (
𝑛′𝜋

𝑎
𝑦) sin (

𝑛𝜋

𝑎
𝑦) 𝑑𝑦

𝑎

0

𝑛

𝑖=1

= 𝐶𝑛

𝑎

2
= ∫ sin (

𝑛′𝜋

𝑎
𝑦) 𝑉𝑜(𝑦)𝑑𝑦

𝑎

0

 

𝐶𝑛 =
2

𝑎
∫ sin (

𝑛′𝜋

𝑎
𝑦) 𝑉𝑜(𝑦)𝑑𝑦

𝑎

0

 

The coefficients Cn are called the Fourier coefficients of 𝑉𝑜(𝑦). The solution of Laplace's 

equation in the slot is therefore equal to 

𝑉(𝑥, 𝑦) = ∑𝐶𝑖𝑒
−

𝑛𝜋
𝑎

𝑥 sin (
𝑛𝜋

𝑎
𝑦)

𝑛

𝑖=1

 

where 

𝐶𝑛 =
2

𝑎
∫ sin (

𝑛′𝜋

𝑎
𝑦) 𝑉𝑜(𝑦)𝑑𝑦

𝑎

0

 

 

Now consider the special case where 𝑉𝑜(𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑉𝑜, then the coefficient Cn would be: 

  

𝐶𝑛 =
2

𝑎
𝑉𝑜 ∫ sin (

𝑛′𝜋

𝑎
𝑦)  𝑑𝑦

𝑎

0

 

𝐶𝑛 =
2

𝑛𝜋
𝑉𝑜(1 − cos(𝑛𝜋)) = {

0    𝑖𝑓    𝑛 = 𝑒𝑣𝑒𝑛

4𝑉𝑜

𝑛𝜋
   𝑖𝑓   𝑛 = 𝑜𝑑𝑑

 



And hence the solution to Laplace’s equation will be: 

𝑉(𝑥, 𝑦) =
4𝑉𝑜

𝜋
∑

1

𝑛
𝑒−(

𝑛𝜋
𝑎

𝑥) sin (
𝑛𝜋

𝑎
𝑦)

𝑛=1,3,5,…

 

The figure below is the 2D plot of this solution: 

 

The figure below shows how the first few terms in the Fourier series combine to make a better 

and better approximation to the constant 𝑉𝑜. 

(a) is n=1 only, (b) include n up to 5, (c) includes n up to 10 and (d) include n up to 100.  

 

 

 



 

Charge density on the strip at x=0 

For the infinite slot determine the charge density 𝜎(𝑦) on the strip at x=0, assuming it is a 

conductor at constant potential 𝑉𝑜. 

 

The electrostatic potential in the slot is equal to 

𝑉(𝑥, 𝑦) =
4𝑉𝑜

𝜋
∑

1

𝑛
𝑒−(

𝑛𝜋
𝑎

𝑥) sin (
𝑛𝜋

𝑎
𝑦)

𝑛=1,3,5,…

 

The charge density at the plate at x = 0 can be obtained 

using the boundary condition for the electric field at a 

boundary: 

𝐸𝑥=0+ − 𝐸𝑥=0− = 𝐸𝑥=0+ =
𝜎

𝜀𝑜
𝑛̂ 

 

where 𝑛̂ is directed along the positive x axis. Since 𝐸⃗ = −∇⃗⃗ 𝑉 this boundary condition can be 

rewritten as: 

𝜕𝑉

𝜕𝑥
|
𝑥=0+

= −
𝜎

𝜀𝑜
 

Differentiating V(x,y) with respect to x: 

𝜕𝑉

𝜕𝑥
=

4𝑉𝑜

𝜋
∑

1

𝑛
(−

𝑛𝜋

𝑎
) 𝑒

−(
𝑛𝜋
𝑎

𝑥)
sin (

𝑛𝜋

𝑎
𝑦)

𝑖=1,3,5,…

 

 

At the x = 0 boundary, we get: 

𝜕𝑉

𝜕𝑥
|
𝑥=0+

= −
4𝑉𝑜

𝑎
∑ sin (

𝑛𝜋

𝑎
𝑦)

𝑛=1,3,5,…

 

 

The charge density σ on the x = 0 strip is therefore equal to 

𝜎 = −𝜀𝑜

𝜕𝑉

𝜕𝑥
|
𝑥=0+

=
4𝑉𝑜𝜀𝑜

𝑎
∑ sin (

𝑛𝜋

𝑎
𝑦)

𝑛=1,3,5,…

 

 

 

 

 

 

 



Example 6: 

An infinite long rectangular metal pipe (sides a and b) is grounded but one end at x=0, 

is maintained at a specific potential Vo(y,z) as shown in the figure below. Find the 

potential inside the pipe. 

Solution: 

Since there is no charge enclosed in the pipe, we can us 

Laplace’s equation and solve for V: 

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
+

𝜕2𝑉

𝜕𝑧2
= 0 

The boundary conditions are: 

(i) V=0 when y=0 

(ii) V=0 when y=a 

(iii) V=0 when z=0 

(iv) V=0 when z=b 

(v) V=0 when 𝑥 = ∞ 

(vi) 𝑉 = 𝑉𝑜(𝑦, 𝑧) when 𝑥 = 0 

 

Let’s assume the solution of the Laplace’s equation is following: 

𝑉 = 𝑋(𝑥)𝑌(𝑦)𝑍(𝑧) 

The Laplace’s equation becomes 

𝜕2

𝜕𝑥2
[𝑋(𝑥)𝑌(𝑦)𝑍(𝑧)] +

𝜕2

𝜕𝑦2
[𝑋(𝑥)𝑌(𝑦)𝑍(𝑧)] +

𝜕2

𝜕𝑧2
[𝑋(𝑥)𝑌(𝑦)𝑍(𝑧)] = 0 

𝑌(𝑦)𝑍(𝑧)
𝜕2𝑋(𝑥)

𝜕𝑥2
+ 𝑋(𝑥)𝑍(𝑧)

𝜕2𝑌(𝑦)

𝜕𝑦2
+ 𝑋(𝑥)𝑌(𝑦)

𝜕2𝑍(𝑧)

𝜕𝑧2
= 0 

1

𝑋(𝑥)

𝜕2𝑋(𝑥)

𝜕𝑥2
+

1

𝑌(𝑦)

𝜕2𝑌(𝑦)

𝜕𝑦2
+

1

𝑍(𝑧)

𝜕2𝑍(𝑧)

𝜕𝑧2
= 0 

 

1

𝑋(𝑥)

𝜕2𝑋(𝑥)

𝜕𝑥2 = 𝐶1 ;  
1

𝑌(𝑦)

𝜕2𝑌(𝑦)

𝜕𝑦2 = 𝐶2 ; 
1

𝑍(𝑧)

𝜕2𝑍(𝑧)

𝜕𝑧2 = 𝐶3 

With 𝐶1 + 𝐶2 + 𝐶3 = 0 

Similar to the previous example, boundary condition (v) suggests that 𝐶1 has to be a 

positive constant, whereas C2 and C3 are negative. 



𝐶2 = −𝑘2 ; 𝐶3 = −𝑙2 ;  and 𝐶1 = 𝑘2 + 𝑙2 

𝑑2𝑋(𝑥)

𝑑𝑥2 = (𝑘2 + 𝑙2)𝑋(𝑥) ; 
𝑑2𝑌(𝑦)

𝑑𝑦2
= 𝑘2𝑌(𝑦) ; 

𝑑2𝑍(𝑧)

𝑑𝑧2
= 𝑙2𝑍(𝑧) 

𝑋(𝑥) = 𝐴𝑒√𝑘2+𝑙2𝑥 + 𝐵𝑒−√𝑘2+𝑙2𝑥 

𝑌(𝑦) = 𝐶 sin(𝑘𝑦) + 𝐷 cos(𝑘𝑦) 

𝑍(𝑧) = 𝐸 sin(𝑙𝑧) + 𝐹 cos(𝑙𝑧) 

a) Boundary condition (v) [V=0 when 𝑥 = ∞] gives that A=0. 

b) Boundary condition (i) [V=0 when 𝑦 = 0] gives that D=0. 

c) Boundary condition (iii) [V=0 when 𝑧 = 0] gives that F=0. 

d) Boundary condition (ii) [V=0 when y=a] gives that 𝑘 =
𝑛𝜋

𝑎
. 

e) Boundary condition (iv) [V=0 when z=a] gives that 𝑙 =
𝑚𝜋

𝑏
. 

So our solution reduces to: 

𝑋(𝑥) = 𝐵𝑒−√𝑘2+𝑙2𝑥 

𝑌(𝑦) = 𝐶 sin(𝑘𝑦) 

𝑍(𝑧) = 𝐸 sin(𝑙𝑧) 

Or 

𝑉(𝑥, 𝑦, 𝑧) = 𝐶𝑒
−𝜋(√(

𝑛
𝑎
)
2
+(

𝑚
𝑏

)
2
)𝑥

sin (
𝑛𝜋

𝑎
𝑦) sin (

𝑚𝜋

𝑏
𝑧) 

The general solution will be the linear combination of all the possible values of n and 

m: 

𝑉(𝑥, 𝑦, 𝑧) = ∑ ∑ 𝐶𝑛𝑚𝑒
−𝜋(√(

𝑛
𝑎
)
2
+(

𝑚
𝑏

)
2
)𝑥

sin (
𝑛𝜋

𝑎
𝑦) sin (

𝑚𝜋

𝑏
𝑧)

∞

𝑚=1

∞

𝑛=1

 

The last boundary condition (vi) [𝑉 = 𝑉𝑜(𝑦, 𝑧) when 𝑥 = 0] implies that: 

𝑉(0, 𝑦, 𝑧) = ∑ ∑ 𝐶𝑛𝑚 sin (
𝑛𝜋

𝑎
𝑦) sin (

𝑚𝜋

𝑏
𝑧)

∞

𝑚=1

∞

𝑛=1

= 𝑉𝑜(𝑦, 𝑧) 

To determine 𝐶𝑛𝑚, let’s multiply the above expression with sin (
𝑛′𝜋

𝑎
𝑦) and sin (

𝑚′𝜋

𝑏
𝑧) 

and integrate:  



∑ ∑ 𝐶𝑛𝑚 ∫ ∫ sin (
𝑛′𝜋

𝑎
𝑦) sin (

𝑛𝜋

𝑎
𝑦) sin (

𝑚′𝜋

𝑏
𝑧) sin (

𝑚𝜋

𝑏
𝑧)

𝑏

0

𝑎

0

 𝑑𝑦 𝑑𝑧

∞

𝑚=1

∞

𝑛=1

= ∫ ∫ 𝑉𝑜(𝑦, 𝑧) sin (
𝑛′𝜋

𝑎
𝑦) sin (

𝑚′𝜋

𝑏
𝑧)

𝑏

0

𝑎

0

 𝑑𝑦 𝑑𝑧 

∫ sin (
𝑛′𝜋

𝑎
𝑦) sin (

𝑛𝜋

𝑎
𝑦)𝑑𝑦

𝑎

0

= {
0       𝑓𝑜𝑟    𝑛′ ≠ 𝑛
𝑎

2
      𝑓𝑜𝑟    𝑛′ = 𝑛

 

∫ sin (
𝑚′𝜋

𝑏
𝑦) sin (

𝑚𝜋

𝑏
𝑦)𝑑𝑦

𝑏

0

= {
0       𝑓𝑜𝑟    𝑚′ ≠ 𝑚
𝑏

2
      𝑓𝑜𝑟    𝑚′ = 𝑚

 

 

𝐶𝑛𝑚 ∗
𝑎

2
∗

𝑏

2
= ∫ ∫ 𝑉𝑜(𝑦, 𝑧) sin (

𝑛𝜋

𝑎
𝑦) sin (

𝑚𝜋

𝑏
𝑧)

𝑏

0

𝑎

0

 𝑑𝑦 𝑑𝑧 

𝐶𝑛𝑚 =
4

𝑎𝑏
∫ ∫ 𝑉𝑜(𝑦, 𝑧) sin (

𝑛𝜋

𝑎
𝑦) sin (

𝑚𝜋

𝑏
𝑧)

𝑏

0

𝑎

0

 𝑑𝑦 𝑑𝑧 

So  

𝑉(𝑥, 𝑦, 𝑧) = ∑ ∑ 𝐶𝑛𝑚𝑒
−𝜋(√(

𝑛

𝑎
)
2
+(

𝑚

𝑏
)
2
)𝑥

sin (
𝑛𝜋

𝑎
𝑦) sin (

𝑚𝜋

𝑏
𝑧)∞

𝑚=1
∞
𝑛=1  along with the constant 𝐶𝑛𝑚 

is the solution of our problem. 

In case  𝑉𝑜(𝑦, 𝑧) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑉𝑜, then we can find 𝐶𝑛𝑚 as:  

𝐶𝑛𝑚 =
4𝑉𝑜

𝑎𝑏
∫ sin (

𝑛𝜋

𝑎
𝑧) 𝑑𝑦 ∫ sin (

𝑚𝜋

𝑏
𝑧)

𝑏

0

𝑎

0

𝑑𝑧 = {

0           𝑖𝑓 𝑛 𝑜𝑟 𝑚 𝑎𝑟𝑒 𝑒𝑣𝑒𝑛
16𝑉0

𝜋2𝑛𝑚
      𝑖𝑓 𝑛 𝑎𝑛𝑑 𝑚 𝑎𝑟𝑒 𝑜𝑑𝑑

 

So 

𝑉(𝑥, 𝑦, 𝑧) = ∑
16𝑉0

𝜋2𝑛𝑚
𝑒

−𝜋(√(
𝑛
𝑎
)
2
+(

𝑚
𝑏

)
2
)𝑥

sin (
𝑛𝜋

𝑎
𝑦) sin (

𝑚𝜋

𝑏
𝑧)

𝑛,𝑚=1,3,5,…

 

Notice that successive terms decrease rapidly due to 𝑒
−𝜋(√(

𝑛

𝑎
)
2
+(

𝑚

𝑏
)
2
)𝑥

 term, so reasonable 

approximation would be to keep only the first few terms. 

  



3.3.2. Separation of variables: spherical coordinates 

For a spherical symmetric system, we can solve Laplace's equation using spherical coordinates. 

Assuming the system has azimuthal symmetry (
𝜕𝑉

𝜕𝜙
= 0) Laplace's equation would be: 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑉

𝜕𝑟
) +

1

𝑟2 sin 𝜃
 
𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑉

𝜕𝜃
) = 0 

 

Multiplying both sides by r2 we get: 

𝜕

𝜕𝑟
(𝑟2

𝜕𝑉

𝜕𝑟
) +

1

sin 𝜃
 
𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑉

𝜕𝜃
) = 0 

 

Let’s consider the solution of Laplace’s equation is a function of r and 𝜃, such that: 

𝑉(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃) 

 

Substituting this "solution" into Laplace's equation we obtain 

Θ(𝜃)
𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) +

𝑅

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
) = 0 

 

Dividing each term of this equation by 𝑅(𝑟)Θ(𝜃) we get: 

1

R(r)

𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) +

1

Θ(θ) sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
) = 0 

 

The first term in this expression depends only on the distance r while the second term depends 

only on the angle θ. This equation can only be true for all r and θ if: 

1

R(r)

𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) = 𝑙(𝑙 + 1) 

1

Θ(θ) sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕Θ

𝜕𝜃
) = −𝑙(𝑙 + 1) 

and 

 

Consider a solution for R of the following form: 

𝑑

𝑑𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) = 𝑙(𝑙 + 1)𝑅(𝑟) 

 

This equation has a general solution: 

𝑅(𝑟) = 𝐴𝑟𝑙 +
𝐵

𝑟𝑙+1
  

Similarly angular equation can be written as: 



𝑑

𝑑𝜃
(sin 𝜃

𝑑Θ

𝑑𝜃
) = −𝑙(𝑙 + 1) sin 𝜃 Θ(θ) 

 

The solution to this equation are the Legendre polynomials in the variable cos 𝜃 

Θ(θ) = 𝑃𝑙(cos 𝜃) 

Where 𝑃𝑙(𝑥) are defined by Rodrigues formula: 

𝑃𝑙(𝑥) =
1

2𝑙𝑙!
 (

𝑑

𝑑𝑥
)

𝑙

(𝑥2 − 1)𝑙 

The first few Legendre polynomials are written as: 

𝑃0(𝑥) = 1 

𝑃1(𝑥) = 𝑥 

𝑃2(𝑥) = (3𝑥2 − 1)/2 

𝑃3(𝑥) = (5𝑥3 − 3𝑥)/2 

𝑃4(𝑥) = (35𝑥4 − 30𝑥2 + 3)/8 

𝑃5(𝑥) = (63𝑥5 − 70𝑥3 + 15𝑥)/8 

 

So the most general solution for Laplace’s equation can be written as: 

𝑉(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃) = ∑(𝐴𝑙𝑟
𝑙 +

𝐵𝑙

𝑟𝑙+1
)𝑃𝑙 cos(𝜃)

∞

𝑙=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 7: 

The potential at the surface of a sphere is given by 𝑉𝑜(𝜃) = 𝑘 cos(3𝜃), where k is some constant. 

Find the potential inside and outside the sphere, as well as the surface charge density 𝜎(𝜃) on the 

sphere. (Assume that there is no charge inside or outside of the sphere.) 

 

The most general solution of Laplace's equation in spherical coordinates is 

𝑉(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃) = ∑(𝐴𝑙𝑟
𝑙 +

𝐵𝑙

𝑟𝑙+1
)𝑃𝑙 cos(𝜃)

∞

𝑙=0

 

 

First consider the region inside the sphere (r < R). In this region 𝐵𝑙 = 0 otherwise potential 

would be infinity at r = 0. Thus 

𝑉(𝑟, 𝜃) = ∑𝐴𝑙𝑟
𝑙 𝑃𝑙 cos(𝜃)

∞

𝑙=0

 

 

The potential at r = R is therefore equal to 

𝑉(𝑟, 𝜃) = ∑𝐴𝑙𝑅
𝑙 𝑃𝑙 cos(𝜃)

∞

𝑙=0

= 𝑘 cos(3𝜃) 

 

Using trigonometric relations, we can rewrite cos(3𝜃) as 

cos(3𝜃) = 4 cos3 𝜃 − 3 cos 𝜃 =
8

5
𝑃3(cos 𝜃) −

3

5
𝑃1(cos 𝜃) 

Substituting this in the above equation for 𝑉(𝑟, 𝜃): 

𝑉(𝑟, 𝜃) = ∑𝐴𝑙𝑅
𝑙 𝑃𝑙 cos(𝜃)

∞

𝑙=0

= 𝑘 cos(3𝜃) =
8𝑘

5
𝑃3(cos 𝜃) −

3𝑘

5
𝑃1(cos 𝜃) 

 

This equation immediately shows that 𝐴𝑙 = 0 except for 𝑙 = 1 𝑜𝑟 3. 

So  𝐴1 = −
3𝑘

5𝑅
 and 𝐴3 =

8𝑘

5𝑅3
 

The electrostatic potential inside the sphere is therefore equal to 

𝑉(𝑟, 𝜃) =
8𝑘

5𝑅3
𝑟3𝑃3(cos 𝜃) −

3𝑘

5𝑅
𝑟𝑃1(cos 𝜃) 

 

Now consider the region outsider the sphere (r > R). In this region 𝐴𝑙 = 0 otherwise 

𝑉(𝑟, 𝜃) would be infinity at 𝑟 = ∞.  

Hence  

𝑉(𝑟, 𝜃) = ∑
𝐵𝑙

𝑟𝑙+1
𝑃𝑙 cos(𝜃)

∞

𝑙=0

 



The potential at r = R is therefore equal to 

𝑉(𝑟, 𝜃) = ∑
𝐵𝑙

𝑅𝑙+1
𝑃𝑙 cos(𝜃)

∞

𝑙=0

=
8𝑘

5
𝑃3(cos 𝜃) −

3𝑘

5
𝑃1(cos 𝜃) 

 

This implies that 𝐵𝑙 = 0 except when 𝑙 = 1 𝑜𝑟 3, which gives: 

𝐵1 = −
3𝑘

5
𝑅2 

𝐵3 =
8𝑘

5
𝑅4 

The electrostatic potential outside the sphere is thus equal to 

𝑉(𝑟, 𝜃) =
8𝑘

5𝑟4
𝑅4𝑃3(cos 𝜃) −

3𝑘

5𝑟2
𝑅2𝑃1(cos 𝜃) 

 

The charge density on the sphere can be obtained using the boundary conditions for the electric 

field at a boundary: 

𝐸⃗ 𝑟=𝑅+ − 𝐸⃗ 𝑟=𝑅+ =
𝜎(𝜃)

𝜀𝑜
𝑟̂ 

Since 𝐸⃗ = −∇⃗⃗ 𝑉 this boundary condition can be rewritten as: 

𝜕𝑉

𝜕𝑟
|
𝑟=𝑅+

−
𝜕𝑉

𝜕𝑟
|
𝑟=𝑅+

= −
𝜎(𝜃)

𝜀𝑜
 

 

The first term on the left-hand side of this equation can be calculated using the electrostatic 

potential just obtained: 

𝜕𝑉

𝜕𝑟
|
𝑟=𝑅+

= [−
32𝑘

5𝑟5
𝑅4𝑃3(cos 𝜃) +

6𝑘

5𝑟3
𝑅2𝑃1(cos 𝜃)]

𝑟=𝑅+
=

𝑘

5𝑅
(6𝑃1(cos 𝜃) − 32𝑃3(cos 𝜃)) 

 

In the same manner we obtain 

𝜕𝑉

𝜕𝑟
|
𝑟=𝑅−

=
𝜕

𝜕𝑟
(

8𝑘

5𝑅3
𝑟3𝑃3(cos 𝜃) −

3𝑘

5𝑅
𝑟𝑃1(cos 𝜃)) = [

24𝑘

5𝑅3
𝑟2𝑃3(cos 𝜃) −

3𝑘

5𝑅
𝑃1(cos 𝜃)]

𝑟=𝑅−
 

𝜕𝑉

𝜕𝑟
|
𝑟=𝑅−

= (
24𝑘

5𝑅
𝑃3(cos 𝜃) −

3𝑘

5𝑅
𝑃1(cos 𝜃)) =

𝑘

5𝑅
[24𝑃3(cos 𝜃) − 3𝑃1(cos 𝜃)] 

So, 

𝜕𝑉

𝜕𝑟
|
𝑟=𝑅+

−
𝜕𝑉

𝜕𝑟
|
𝑟=𝑅−

=
𝑘

5𝑅
(6𝑃1(cos 𝜃) − 32𝑃3(cos 𝜃)) −

𝑘

5𝑅
[24𝑃3(cos 𝜃) − 3𝑃1(cos 𝜃)] 

 

𝜎(𝜃) = −
𝑘𝜀𝑜

5𝑅
[9𝑃1(cos 𝜃) − 56𝑃3(cos 𝜃)] 

 



Laplace’s equation in Cylindrical Coordinates: 
Solve Laplace's equation by separation of variables in cylindrical coordinates, assuming there is 

no dependence on z (cylindrical symmetry). Make sure that you find all solutions to the radial 

equation. Does your result accommodate the case of an infinite line charge? 

 

For a system with cylindrical symmetry the electrostatic potential does not depend on z. This 

immediately implies that 
𝜕𝑉

𝜕𝑧
= 0 . Under this assumption Laplace's equation reads 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑉

𝜕𝑟
) +

1

𝑟2

𝜕2𝑉

𝜕𝜙2
 = 0 

 

Consider as a possible solution of V: 

𝑉(𝑟, 𝜙) = 𝑅(𝑟)𝛼(𝜙) 

 

Substituting this solution into Laplace's equation we get: 

 

𝛼(𝜙)

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑅

𝜕𝑟
) +

𝑅(𝑟)

𝑟2

𝜕2𝛼(𝜙)

𝜕𝜙2
= 0 

Multiplying each term in this equation by r2 and dividing by 𝑅(𝑟)𝛼(𝜙) we get: 

 

𝑟

𝑅(𝑟)

𝜕

𝜕𝑟
(𝑟

𝜕𝑅

𝜕𝑟
) +

1

𝛼(𝜙)

𝜕2𝛼(𝜙)

𝜕𝜙2
= 0 

𝑟

𝑅(𝑟)

𝜕

𝜕𝑟
(𝑟

𝜕𝑅

𝜕𝑟
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝛾  and 

1

𝛼(𝜙)

𝜕2𝛼(𝜙)

𝜕𝜙2 = −𝛾   

First consider the case in which = −𝑚2 < 0 . The differential equation for 𝛼(𝜙) can be 

rewritten as 

𝜕2𝛼(𝜙)

𝜕𝜙2
− 𝑚2𝛼(𝜙) = 0 

The most general solution of this differential solution is: 

𝛼𝑚(𝜙) = 𝐶𝑚𝑒𝑚𝜙 + 𝐷𝑚𝑒−𝑚𝜙 

However, in cylindrical coordinates we require that any solution for a given 𝜙 is equal to the 

solution for 𝜙 + 2𝜋. Obviously this condition is not satisfied for this solution, and we conclude 

that = 𝑚2 ≥ 0 . The differential equation for 𝛼(𝜙) can be rewritten as: 

𝜕2𝛼(𝜙)

𝜕𝜙2
+ 𝑚2𝛼(𝜙) = 0 

The most general solution of this differential solution is: 

𝛼𝑚(𝜙) = 𝐶𝑚 cos(𝑚𝜙) + 𝐷𝑚 sin(𝑚𝜙) 

The condition that 𝛼(𝜙) = 𝛼(𝜙 + 2𝜋)  requires that m is an integer.  



Now consider the radial function  𝑅(𝑟): 

𝑟

𝑅(𝑟)

𝜕

𝜕𝑟
(𝑟

𝜕𝑅

𝜕𝑟
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝛾 = 𝑚2 > 0  

The general solution for this equation would be: 

𝑅(𝑟) = 𝐴𝑟𝑘 

Substituting this solution into the previous differential equation we get: 

𝑟

𝐴𝑟𝑘

𝜕

𝜕𝑟
(𝑟

𝜕(𝐴𝑟𝑘)

𝜕𝑟
) =

1

𝐴𝑟𝑘−1

𝜕

𝜕𝑟
(𝐴𝑘𝑟𝑘) =

1

𝐴𝑟𝑘−1
𝑘2𝐴𝑟𝑘−1 = 𝑘2 = 𝑚2 

 

Therefore, the constant k can take on the following two values: 

𝑘+ = 𝑚 and 𝑘− = −𝑚 

The most general solution for  under the assumption that  is therefore 

𝑅𝑚(𝑟) = 𝐴𝑚𝑟𝑚 +
𝐵𝑚

𝑟𝑚
 

Now consider the solutions for 𝑅(𝑟) when 𝑚2 = 0 . In this case we require that: 

𝑟

𝑅(𝑟)

𝜕

𝜕𝑟
(𝑟

𝜕𝑅

𝜕𝑟
) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝛾 = 𝑚2 = 0   or   

𝜕

𝜕𝑟
(𝑟

𝜕𝑅

𝜕𝑟
) = 0 

Which requires: 𝑟
𝜕𝑅

𝜕𝑟
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛 = 𝑎𝑜 which implies that: 

𝜕𝑅

𝜕𝑟
=

𝑎𝑜

𝑟
 

If 𝑎𝑜 = 0 then the solution of this differential equation is 

𝑅(𝑟) = 𝑏𝑜 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

If 𝑎𝑜 ≠ 0  then the solution of this differential equation is 

𝑅(𝑟) = 𝑎𝑜 ln(𝑟) + 𝑏𝑜  

Combining the solutions obtained for 𝑚2 = 0 with the solutions obtained for 𝑚2 > 0 , we 

conclude that the most general solution for 𝑅(𝑟) is: 

𝑅(𝑟) = 𝑎𝑜 ln(𝑟) + 𝑏𝑜 + ∑ [𝐴𝑚𝑟𝑚 +
𝐵𝑚

𝑟𝑚
]

∞

𝑚=1

 

Therefore, the most general solution of Laplace's equation for a system with cylindrical 

symmetry is 

𝑉(𝑟, 𝜙) = 𝑎𝑜 ln(𝑟) + 𝑏𝑜 + ∑ [(𝐴𝑚𝑟𝑚 +
𝐵𝑚

𝑟𝑚
) (𝐶𝑚 cos(𝑚𝜙) + 𝐷𝑚 sin(𝑚𝜙)) ]

∞

𝑚=1

 



Example 8: 

A charge density 𝜎 = 𝑎 𝑠𝑖𝑛(5𝜙) is glued over the surface of an infinite cylinder of 

radius R. Find the potential inside and outside the cylinder. 
 

The electrostatic potential can be obtained using the general solution of Laplace's equation for a 

system with cylindrical symmetry. In the region inside the cylinder the coefficient 𝐵𝑚 =o 

otherwise 𝑉(𝑟, 𝜙) → ∞ at 𝑟 = 0, and for the same reason 𝑎𝑜 = 0.  

So the general solution to Laplace equation will reduce to: 

𝑉𝑖𝑛(𝑟, 𝜙) = 𝑏𝑜,𝑖𝑛 + ∑[𝑟𝑚(𝐶𝑚,𝑖𝑛 cos(𝑚𝜙) + 𝐷𝑚,𝑖𝑛 sin(𝑚𝜙)) ]

∞

𝑚=1

 

 

In the region outside the cylinder the coefficients 𝐴𝑚 = 0 and 𝑎𝑜 = 0. Thus 

𝑉𝑜𝑢𝑡(𝑟, 𝜙) = 𝑏𝑜,𝑜𝑢𝑡 + ∑ [
1

𝑟𝑚
(𝐶𝑚,𝑜𝑢𝑡 cos(𝑚𝜙) + 𝐷𝑚,𝑜𝑢𝑡 sin(𝑚𝜙)) ]

∞

𝑚=1

 

Since 𝑉(𝑟, 𝜙) must approach 0 when r approaches infinity, we must also require that 𝑏𝑜,𝑜𝑢𝑡 = 0.  

𝑉𝑜𝑢𝑡(𝑟, 𝜙) = ∑ [
1

𝑟𝑚
(𝐶𝑚,𝑜𝑢𝑡 cos(𝑚𝜙) + 𝐷𝑚,𝑜𝑢𝑡 sin(𝑚𝜙)) ]

∞

𝑚=1

 

The charge density on the surface of the cylinder is equal to 

𝜎(𝜙) = −𝜀𝑜 [
𝜕𝑉

𝜕𝑟
|
𝑟=𝑅+

−
𝜕𝑉

𝜕𝑟
|
𝑟=𝑅−

] 

Differentiating 𝑉(𝑟, 𝜙) in the region r > R and setting r = R we obtain 

 

𝜕𝑉

𝜕𝑟
|
𝑟=𝑅+

= ∑ [−
𝑚

𝑅𝑚+1
(𝐶𝑚,𝑜𝑢𝑡 cos(𝑚𝜙) + 𝐷𝑚,𝑜𝑢𝑡 sin(𝑚𝜙)) ]

∞

𝑚=1

 

 

Differentiating 𝑉(𝑟, 𝜙) in the region r < R and setting r = R we obtain 

 

𝜕𝑉

𝜕𝑟
|
𝑟=𝑅+

= ∑[−𝑚𝑅𝑚−1(𝐶𝑚,𝑖𝑛 cos(𝑚𝜙) + 𝐷𝑚,𝑖𝑛 sin(𝑚𝜙)) ]

∞

𝑚=1

 

The charge density on the surface of the cylinder is therefore equal to 

𝜎(𝜙) = 𝜀𝑜 ∑ [(
𝑚

𝑅𝑚+1
𝐶𝑚,𝑜𝑢𝑡 + 𝑚𝑅𝑚−1𝐶𝑖𝑛,𝑚) cos(𝑚𝜙) + (

𝑚

𝑅𝑚+1
𝐷𝑚,𝑜𝑢𝑡 + 𝑚𝑅𝑚−1𝐷𝑖𝑛,𝑚) sin(𝑚𝜙) ]

∞

𝑚=1

 

Since the charge density is proportional to sin (5𝜙) we can conclude immediately that 𝐶𝑖𝑛,𝑚 =
𝐶𝑜𝑢𝑡,𝑚 = 0 for all m and that 𝐷𝑖𝑛,𝑚 = 𝐷𝑜𝑢𝑡,𝑚 = 0  for all m except m=5.  



Therefore the charge density is: 

𝜎(𝜙) = 𝜀𝑜 (
5

𝑅6
𝐷5,𝑜𝑢𝑡 + 5𝑅4𝐷𝑖𝑛,5) sin(5𝜙) = 𝑎 sin(5𝜙) 

 

5

𝑅6
𝐷5,𝑜𝑢𝑡 + 5𝑅4𝐷𝑖𝑛,5 =

𝑎

𝜀𝑜
 

A second relation between 𝐷𝑖𝑛,5  and 𝐷𝑜𝑢𝑡,5 can be obtained using the condition that the 

electrostatic potential is continuous at any boundary. This requires that 

𝑉𝑖𝑛(𝑟, 𝜙) = 𝑉𝑜𝑢𝑡(𝑟, 𝜙) 

𝑏𝑜,𝑖𝑛 + 𝑅5𝐷5,𝑖𝑛 sin(5𝜙) =
1

𝑅5
𝐷5,𝑜𝑢𝑡 sin(5𝜙) 

 

Thus, 𝑏𝑖𝑛,0 = 0  and  𝐷𝑜𝑢𝑡,5 = 𝑅10𝐷𝑖𝑛,5 

We now have two equations with two unknown, 𝐷𝑖𝑛,5  and 𝐷𝑜𝑢𝑡,5 , which can be solved with the 

following result: 

𝐷𝑖𝑛,5 =
𝑎

10𝜀𝑜

1

𝑅4   and  𝐷𝑜𝑢𝑡,5 =
𝑎

10𝜀𝑜
𝑅6 

 

The electrostatic potential inside the cylinder is thus equal to 

𝑉𝑖𝑛(𝑟, 𝜙) = 𝑟5𝐷5,𝑖𝑛 sin(5𝜙) 

𝑉𝑖𝑛(𝑟, 𝜙) =
𝑎

10𝜀𝑜

𝑟5

𝑅4
sin(5𝜙) 

The electrostatic potential outside the cylinder is thus equal to 

𝑉𝑜𝑢𝑡(𝑟, 𝜙) =
𝐷5,𝑜𝑢𝑡

𝑟5
sin(5𝜙) 

𝑉𝑜𝑢𝑡(𝑟, 𝜙) =
𝑎

10𝜀𝑜

𝑅6

𝑟5
sin(5𝜙) 

 

 

 

 

 

 

 

 

 



3.4. Multipole Expansions 
Consider a given charge distribution ρ as shown in the figure 

and the potential at point P is: 

𝑉(𝑃) =
1

4𝜋𝜀𝑜
∫

𝜌(𝑟′)

𝑠
 𝑑𝜏′ 

 

where 𝑠 is the distance between P and an infinitesimal segment 

of the charge distribution. We can write 𝑑: 

𝑠2 = 𝑟2 + 𝑟′2 − 2𝑟𝑟′ cos 𝜃 = 𝑟2 (1 + (
𝑟′

𝑟
)

2

− 2(
𝑟′

𝑟
) cos 𝜃′) 

𝑠 = 𝑟√(1 + 𝜀) where 𝜀 = (
𝑟′

𝑟
) (

𝑟′

𝑟
− 2 cos 𝜃′) 

This equation can be rewritten as 

1

𝑠
=

1

𝑟

1

√1 + 𝜀
 

At large distances from the charge distribution 𝑟 ≫ 𝑟′ and consequently 
𝑟′

𝑟
≪ 1 . Using the 

binomial expansion: 

[(1 + 𝑥)𝑛 = ∑ (𝑛
𝑘
)𝑥𝑘𝑛

𝑘=0 = ∑
𝑛!

𝑘!(𝑛−𝑘)!
𝑥𝑘𝑛

𝑘=0 = 1 + 𝑛𝑥 +
𝑛(𝑛−1)

2!
𝑥2 +

𝑛(𝑛−1)(𝑛−2)

3!
𝑥3 … ] : 

1

√1 + 𝜀
= 1 −

1

2
𝜀 +

3

8
𝜀2 −

5

16
𝜀3 + ⋯ 

we can rewrite 1/d as 

1

𝑠
≈

1

𝑟
[1 −

1

2
(
𝑟′

𝑟
) (

𝑟′

𝑟
− 2 cos 𝜃′) +

3

8
[(

𝑟′

𝑟
)(

𝑟′

𝑟
− 2 cos 𝜃′)]

2

−
5

16
[(

𝑟′

𝑟
)(

𝑟′

𝑟
− 2 cos 𝜃′)]

3

+ ⋯] 

 

1

𝑠
≈

1

𝑟
[1 −

1

2
(
𝑟′

𝑟
) cos 𝜃′ + (

𝑟′

𝑟
)

2

(
3

2
cos2 𝜃 −

1

2
) + ⋯] =

1

𝑟
∑ (

𝑟′

𝑟
)

𝑛

𝑃𝑛(cos 𝜃′) 

∞

𝑛=0

 

Where 𝜃′ is the angle between 𝑟 and 𝑟′, 

Using this expansion of 1/d we can rewrite the electrostatic potential at P as 

𝑉(𝑃) =
1

4𝜋𝜀𝑜
∑

1

𝑟𝑛+1
 

∞

𝑛=0

∫𝜌(𝑟′)𝑟′𝑛𝑃𝑛(cos 𝜃′) 𝑑𝜏′ 

This expression is valid for all r (not only ≫ 𝑟′ ). However, if  then the potential at P will 

be dominated by the first non-zero term in this expansion. This expansion is known as 

the multipole expansion. In the limit of  only the first terms in the expansion need to be 

considered: 

𝑉(𝑃) =
1

4𝜋𝜀𝑜
[
1

𝑟
∫𝜌(𝑟′) 𝑑𝜏′ +

1

𝑟2
∫𝜌(𝑟′) 𝑟′ cos 𝜃′ 𝑑𝜏′ +

1

𝑟3
∫𝜌(𝑟′)𝑟′2 (

3

2
cos2 𝜃′ −

1

2
)  𝑑𝜏′ + ⋯] 



 

The first term in this expression, proportional to 1/r, is called the monopole term. The second 

term in this expression, proportional to 1/r2, is called the dipole term. The third term in this 

expression, proportional to 1/r3, is called the quadrupole term. 

3.4.1. The monopole term. 

If the total charge of the system is non zero then the electrostatic potential at large distances is 

dominated by the monopole term: 

𝑉(𝑃) =
1

4𝜋𝜀𝑜

1

𝑟
∫𝜌(𝑟′) 𝑑𝜏′ =

1

4𝜋𝜀𝑜

𝑄

𝑟
 

 

where Q is the total charge of the charge distribution. 

The electric field associated with the monopole term can be obtained by calculating the gradient 

of V(P): 

𝐸⃗ (𝑃) = −∇⃗⃗ 𝑉(𝑃) = −
1

4𝜋𝜀𝑜
𝑄∇⃗⃗ (

1

𝑟
) =

1

4𝜋𝜀𝑜

𝑄

𝑟2
  

3.4.2. The dipole term. 

If the total charge of the charge distribution is equal to zero (Q = 0) then the monopole term in 

the multipole expansion will be equal to zero. In this case, the dipole term will dominate the 

electrostatic potential at large distances 

𝑉(𝑃) =
1

4𝜋𝜀𝑜

1

𝑟2
∫𝜌(𝑟′) 𝑟′ cos𝜃′ 𝑑𝜏′ 

Since θ’ is the angle between  and  we can rewrite  as 

𝑟′ cos 𝜃′ = 𝑟̂. 𝑟 ′ 
The electrostatic potential at P can therefore be rewritten as 

𝑉(𝑃) =
1

4𝜋𝜀𝑜

𝑟̂

𝑟2
. ∫ 𝜌(𝑟′) 𝑟 ′𝑑𝜏′ =

1

4𝜋𝜀𝑜

𝑝 . 𝑟̂

𝑟2
 

In this expression  is the dipole moment of the charge distribution which is defined as 

𝑝 = ∫𝜌(𝑟′) 𝑟 ′𝑑𝜏′ 

The dipole moment depends on the geometry (size, shape, and density) of the charge 

distribution. Similar expression for the dipole moment can be written for point, line and surface 

charge distributions as well. 

For collection of point charges: 

𝑝 = ∑𝑞𝑖𝑟𝑖
′

𝑛

𝑖=1

 

For the physical dipole consisting of a ±𝑞,  

𝑝 = 𝑞𝑟 +
′ − 𝑞𝑟 −

′ = 𝑞(𝑟 +
′ − 𝑟 −

′) = 𝑞𝑑  

Where 𝑑  is a vector from the negative charge to the positive charge. 



Origin of Coordinates in Multipole Expansion: 

A point charge at the origin constitutes a pure monopole but if the point charge is not at the 

origin of a coordinates system then it is no longer a pure 

monopole.  

For example, charge in the figure below has a dipole moment 

𝑝 = 𝑞𝑑𝑗̂ so there will be a dipole term in its potential. 

The monopole potential (
1

4𝜋𝜀𝑜

𝑞

𝑟
 ) is not correct for this 

configuration rather the potential would be: (
1

4𝜋𝜀𝑜

𝑞

𝑠
 ) 

When we expand s in terms of r we will get all kind of powers 

not just the first power. 

The monopole term will not change because the total charge is independent of the coordinate 

system but dipole and higher moments will change. 

Let’s say if the origin is shifted by amount a as shown in the 

figure then: 

𝑝̅ = ∫ 𝑟̅ ′𝜌(𝑟 ′)𝑑𝜏′ = ∫ 𝑟̅ ′𝜌(𝑟 ′)𝑑𝜏′ = ∫(𝑟 ′ − 𝑎 )𝜌(𝑟 ′)𝑑𝜏′ 

𝑝̅ = ∫𝑟 ′𝜌(𝑟 ′)𝑑𝜏′ − 𝑎 ∫  𝜌(𝑟 ′)𝑑𝜏′ = 𝑝 − 𝑎 𝑄 

𝑝̅ = 𝑝 − 𝑎 𝑄 

If the total charge Q=0 then 𝑝̅ = 𝑝 , as in figure(a) below where total charge is zero so dipole 

moment is simply 𝑞𝑑 . 

But in the case of figure (b), the total charge is 

not zero, so dipole moment will depend on the 

origin we choose. 

 

 

The electric field of a Dipole 

If we choose a coordinate system where 𝑝  lies at the origin and points in the z-direction, then the 

electric field associated with the dipole term can be obtained by calculating the gradient of 𝑉(𝑃): 

𝑉(𝑃) =
1

4𝜋𝜀𝑜

𝑝 . 𝑟̂

𝑟2
=

1

4𝜋𝜀𝑜

𝑝 cos𝜃

𝑟2
 

𝐸𝑟(𝑃) = −
𝜕𝑉(𝑃)

𝜕𝑟
=

2𝑝cos𝜃

4𝜋𝜀𝑜 

1

𝑟3 ;  𝐸𝜃(𝑃) = −
1

𝑟

𝜕𝑉(𝑃)

𝜕𝜃
=

𝑝sin𝜃

4𝜋𝜀𝑜 

1

𝑟3 ;  

𝐸𝜙(𝑃) = −
1

𝑟 sin𝜃

𝜕𝑉(𝑃)

𝜕𝜙
= 0 

𝐸⃗ 𝑑𝑖𝑝𝑜𝑙𝑒(𝑟, 𝜃) =
1

4𝜋𝜀𝑜 

𝑝

𝑟3
(2 cos 𝜃 𝑟̂ + sin𝜃  𝜃) 



Dipole moments are vectors and they add vectorially, for example if there are two dipoles with 

dipole moments 𝑝 1 and 𝑝 2 then the net dipole moment of the system would be: 

𝑝 𝑛𝑒𝑡 = 𝑝 1 + 𝑝 2 
 

In the figure there are four charges shown on the corner of a square, 

what is the net dipole moment for this arrangement: 

𝑝 𝑛𝑒𝑡 = 0 

↑ +↓= 0  or  → +←= 0 

 

 

Example 9: A “pure” dipole p is situated at the origin, pointing in the z-direction. 

(a) What is the force on a point charge q at (a,0,0) (Cartesian coordinates)? 

(b) What is the force on q at (0,0,a)? 

(c) How much work does it take to move charge q from (a,0,0) to (0,0,a)? 

 

Solution:  

(a)  The charge q is locate at 𝑟 = 𝑎 and 𝜃 = 𝜋/2, so  

𝐸⃗ 𝑑𝑖𝑝𝑜𝑙𝑒(𝑟, 𝜃) =
1

4𝜋𝜀𝑜 

𝑝

𝑟3 (2 cos 𝜃 𝑟̂ + sin 𝜃 𝜃) =
1

4𝜋𝜀𝑜 

𝑝

𝑎3
𝜃 

 

𝐸⃗ 𝑑𝑖𝑝𝑜𝑙𝑒(𝑥, 𝑦, 𝑧) =
1

4𝜋𝜀𝑜 

𝑝

𝑎3
(−𝑧̂) = −

1

4𝜋𝜀𝑜 

𝑝

𝑎3
𝑧̂ 

𝐹 = 𝑞𝐸⃗ = −
1

4𝜋𝜀𝑜 

𝑞𝑝

𝑎3
𝑧̂ 

(b)  The charge q is locate at 𝑟 = 𝑎 and 𝜃 = 0, so  

𝐸⃗ 𝑑𝑖𝑝𝑜𝑙𝑒(𝑟, 𝜃) =
1

4𝜋𝜀𝑜 

𝑝

𝑟3 (2 cos𝜃 𝑟̂ + sin𝜃  𝜃) =
1

2𝜋𝜀𝑜 

𝑝

𝑎3
𝑟̂ =

1

2𝜋𝜀𝑜 

𝑝

𝑎3
𝑧̂ 

𝐹 = 𝑞𝐸⃗ =
1

2𝜋𝜀𝑜 

𝑞𝑝

𝑎3
𝑧̂ 

(c) 𝑊 = 𝑞∆𝑉 = 𝑞[𝑉(0,0, 𝑎) − 𝑉(𝑎, 0,0)] = 𝑞 [
1

4𝜋𝜀𝑜

𝑝 cos0

𝑎2
−

1

4𝜋𝜀𝑜

𝑝 cos(𝜋/2)

𝑎2
] =

1

4𝜋𝜀𝑜

𝑞𝑝

𝑎2
  



Example 10: 

A thin insulating rod, running from z=-a to z=+a, carries the following line charges: 

(a) 𝜆 = 𝜆𝑜 cos (
𝜋𝑧

2𝑎
) 

(b) 𝜆 = 𝜆𝑜 sin (
𝜋𝑧

𝑎
) 

(c) 𝜆 = 𝜆𝑜 cos (
𝜋𝑧

𝑎
) 

In each case find the leading term in the multipole expansion. 

Solution: 

a) The total charge on the rod is equal to 

 

Since , the monopole term will dominate the electrostatic potential at large distances. Thus 

 

b) The total charge on the rod is equal to zero. Therefore, the electrostatic potential at large 

distances will be dominated by the dipole term (if non-zero). The dipole moment of the rod is 

equal to 

 

Since the dipole moment of the rod is not equal to zero, the dipole term will dominate the 

electrostatic potential at large distances. Therefore 

 

c) For this charge distribution the total charge is equal to zero and the dipole moment is equal to 

zero. The electrostatic potential of this charge distribution is dominated by the quadrupole term. 

 

The electrostatic potential at large distance from the rod will be equal to 

 

 

 

  



Example 11: 
Four particles (one of charge q, one of charge 3q, and two of charge -2q) are placed as shown in 

Figure 3.12, each a distance d from the origin. Find a simple 

approximate formula for the electrostatic potential, valid at a 

point P far from the origin. 

 

 

 

 

 

Solution: 

The total charge of the system is equal to zero and therefore the monopole term in the multipole 

expansion is equal to zero. The dipole moment of this charge distribution is equal to 

 

 

The Cartesian coordinates of P are 

 

 
 

 
 

 

The scalar product between  and  is therefore 

 

 

The electrostatic potential at P is therefore equal to 

 

 
 

 

 

 

  



Example 12: 
A charge Q is distributed uniformly along the z axis from z = -a to z =a. Show that the electric 

potential at a point  is given by 

 

 

for r > a. 

 

The charge density along this segment of the z axis is equal to 

 

 

Therefore, the nth moment of the charge distribution is equal to 

 

 

This equation immediately shows that 

 

 
 

 

 

The electrostatic potential at P is therefore equal to 

 

 

 


