Chapter 3. Special Techniques for Calculating Potentials
Given a stationary charge distribution p(r) we can, in principle, calculate the electric field:

P 1 p(r,) N ’
E(T') = 47'[80 W At dt

Where A7 = 7' — 7. This integral involves a vector as an integrand and is, in general, difficult to
calculate. In most cases it is easier to evaluate first the electrostatic potential V which is defined
as

V(R = fpﬁﬁdf
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since the integrand of the integral is a scalar. The corresponding electric field E can then be
obtained from the gradient of V since

E=-VV
The electrostatic potential V can only be evaluated analytically for the simplest charge
configurations. In addition, in many electrostatic problems, conductors are involved and the
charge distribution p is not known in advance (only the total charge on each conductor is

known).
A better approach to determine the electrostatic potential is to start with Poisson's equation

vy =-£
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Very often we only want to determine the potential in a region where p = 0. In this region
Poisson's equation reduces to Laplace's equation

V2V =0
There are an infinite number of functions that satisfy Laplace's equation and the appropriate
solution is selected by specifying the appropriate boundary conditions.

This Chapter will concentrate on the various techniques that can be used to calculate the
solutions of Laplace's equation and on the boundary conditions required to uniquely determine a
solution.



3.1. Solutions of Laplace's Equation in One-, Two, and Three Dimensions

3.1.1. Laplace's Equation in One Dimension

In one dimension the electrostatic potential V depends on only one variable x. The electrostatic
potential V(X) is a solution of the one-dimensional Laplace equation

v

dx?

The general solution of this equation is

V(x) =mx+b

where m and b are arbitrary constants. These constants are fixed when the value of the potential
is specified at two different positions.

Example 1:

Consider a one-dimensional world with two point conductors located at x = 0 m and at x = 10 m.
The conductor at x = 0 m is grounded and the conductor at x = 10 m is kept at a constant
potential of 200 V. Determine V(x).

The boundary conditions for V are

V(0) =b =0V
and

V(10) =m=+104+0=200V
m=20V/m

The first boundary condition shows that b = 0 V and the second boundary condition shows
that m = 20 VV/m. The electrostatic potential for this system of conductors is thus

V(x) =20x
The corresponding electric field can be obtained from the gradient of V

E() = -2 =-20V/m

The boundary conditions used here, can be used to specify the electrostatic potential between x =
0 m and x = 10 m but not in the region x <0 m and x > 10 m. If the solution obtained here was
the general solution for all x, then V would approach oo when x approaches infinity and V would
approach minus infinity when x approaches minus infinity.

The boundary conditions therefore provide the information necessary to uniquely define a
solution to Laplace's equation, but they also define the boundary of the region where this
solution is valid (in this example 0 m <x <10 m).

The following properties are true for any solution of the one-dimensional Laplace equation:



Property 1:
V(x) is the average of V(x + R) and V(x - R) for any R as long as x + R and x - R are located in the
region between the boundary points. This property is easy to prove:

V(x+R)+V(x—R) _ m(x+R)+b+m(x—R)+b _
2 2

This property immediately suggests a powerful analytical method to determine the solution of

Laplace's equation. If the boundary values of V are:

mx +b =V (x)

Vix=a) =V,
and

V(X = b) = Vb
then property 1 can be used to determine the value of the potential at (a + b)/2:

V(x=222) = 2+ vi)

2 2
Next we can determine the value of the potential at x = (3a + b)/4 and atx = (a + 3 b)/4 :
v _3a+b _1V _ v _a+b)_13V 1V
(=) =zl =+ v (r =) =3[+ 3%
< _a+3b>_1[v _a+b +( —b)]—1[1V+3V]
x=—5 )=z [Ve =g Ve =h) =g gkt 5l

This process can be repeated and V can be calculated in this manner at any point
between x = a and x = b (but not in the region x > b and x < a).

Property 2:
The solution of Laplace's equation can not have local maxima or minima. Extreme values must
occur at the end points (the boundaries). This is a direct consequence of property 1.

Property 2 has an important consequence: a charged particle can not be held in stable equilibrium
by electrostatic forces alone (Earnshaw's Theorem). A particle is in a stable equilibrium if it is
located at a position where the potential has a minimum value. A small displacement away from
the equilibrium position will increase the electrostatic potential of the particle, and a restoring
force will try to move the particle back to its equilibrium position. However, since there can be
no local maxima or minima in the electrostatic potential, the particle cannot be held in stable
equilibrium by just electrostatic forces.




3.1.2. Laplace's Equation in Two Dimensions

In two dimensions the electrostatic potential depends on two variables x and y. Laplace's
equation now becomes

GZV_+62V__O
ax? = 0y?

This equation does not have a simple analytical solution as the one-dimensional Laplace
equation does. However, the properties of solutions of the one-dimensional Laplace equation are
also valid for solutions of the two-dimensional Laplace equation:

Property 1:
The value of V at a point (x, y) is equal to the average value of V around this point

1
VUJ)=Z§ VRdg
circle

where the path integral is along a circle of arbitrary radius, centered at (X, y) and with radius R.
Property 2:
V has no local maxima or minima; all extremes occur at the boundaries.

3.1.3. Laplace's Equation in Three Dimensions

In three dimensions the electrostatic potential depends on three variables X, y, and z. Laplace's
equation now becomes

0% 0 0 _
ox2  0y?  0z2

This equation does not have a simple analytical solution as the one-dimensional Laplace
equation does. However, the properties of solutions of the one-dimensional Laplace equation are
also valid for solutions of the three-dimensional Laplace equation:

Property 1:
The value of V at a point (X, y, z) is equal to the average value of V around this point

Vix,y) = 36 VRZsin 0 df d¢ 19

sphere - '}td
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where the surface integral is across the surface of a sphere of
arbitrary radius, centered at (x,y,z) and with radius R.




To prove this property of V consider the electrostatic potential generated by a point
charge q located on the z axis, a distance r away from the center of a sphere of radius R (see
Figure 3.1). The potential at P, generated by charge g, is equal to

__ 1 aq
P 4me, d

where d is the distance between g and surface patch. Using the cosine rule we can express d in
terms of r, R and &

d? = z> + R? — 2zR cos 6
The potential at P due to charge q is therefore equal to
__1 q
41mey /22 + R2 — 2zR cos 6

Y

The average potential on the surface of the sphere can be obtained by integrating V}, across the
surface of the sphere. The average potential is equal to

q

4dme, z
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Vavg = W-]-VPRZ sin @ df d(l) =

which is equal to the potential due to q at the center of the sphere. Applying the principle of
superposition it is easy to show that the average potential generated by a collection of point
charges is equal to the net potential they produce at the center of the sphere.

Property 2:
The electrostatic potential V has no local maxima or minima; all extremes occur at the
boundaries.

Example 3:
Find the general solution to Laplace's equation in spherical coordinates, for the case
where V depends only on r. Then do the same for cylindrical coordinates.

Laplace's equation in spherical coordinates is given by

VZV_16(26V>+ 1 6(_ 96V)+ 1 0%
“r2or\" or) T rZsing a0\ 90 r2sin2 0 02
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If V is only a function of r then 5= 0 and rri 0

Therefore, Laplace's equation can be rewritten as

10 26V)_0
rzar(r or)



The solution V of this second-order differential equation must satisfy the following first-order
differential equation:

, 0V
r“— = constant = a
or

This differential equation can be rewritten as

vV a
or 12
The general solution of this first-order differential equation is
a
Vir)=—=+b
r
where b is a constant. If V = 0 at infinity then b must be equal to zero, and consequently

V(r) = ‘%

Laplace's equation in cylindrical coordinates:

VzV_1a( 6V>+1 %V +62V_0
“ror\"ar) " 2 ap2)  09z2
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If V is only a function of r then rrie 0 and 5, =0

Therefore, Laplace's equation can be rewritten as

19 ¢ vy _
a7 ar) -

The solution V of this second-order differential equation must satisfy the following first-order
differential equation:

av
r— = a = constant
o . dar
This differential equation can be rewritten as
v _a
ar r

The general solution of this first-order differential equation is

V(r)=aln(r)+b
where b is a constant. The constants a and b are determined by the boundary conditions.



3.1.4. Uniqueness Theorems

Consider a volume within which the charge density is equal to zero. Suppose that the value of the
electrostatic potential is specified at every point on the surface of this volume.

The first uniqueness theorem states that in this case the solution of Laplace's equation is
uniquely defined.

To prove the first uniqueness theorem we will consider
what happens when there are two solutions V1 and V2 of
Laplace's equation in the volume shown in the figure.

Since V1 and V- are solutions of Laplace's equation, we V specified
know that on this
surface (&)

V2V, =0 and V2V, =0

Since both V1 and V> are solutions, they must have the
same value on the boundary. Thus Vi = V> on the
boundary of the volume.

Now consider a third function Vs, which is the difference between Vi and V>

V3 = Vz - Vl
The function Vs is also a solution of Laplace's equation. This can be demonstrated easily:

V2V, = V2V, — V2V, = 0
The value of the function V3 is equal to zero on the boundary of the volume since Vi = V- there.
However, property 2 of any solution of Laplace's equation states that it can have no local
maxima or minima and that the extreme values of the solution must occur at the boundaries.
Since Vs is a solution of Laplace's equation and its value is zero everywhere on the boundary of
the volume, the maximum and minimum value of Vs must be equal to zero. Therefore, V3 must
be equal to zero everywhere. This immediately implies that everywhere:

V1 :VZ

This proves that there can be no two different functions V1 and V- that are solutions of Laplace's
equation and satisfy the same boundary conditions.

Therefore, the solution of Laplace's equation is uniquely determined if its value is a
specified function on all boundaries of the region.

This also indicates that it does not matter how you come by your solution:

As long as (a) it is a solution of Laplace's equation, and (b) it has the correct value on the
boundaries, then it is the right and only solution.

The first uniqueness theorem can only be applied in those regions that are free of charge and
surrounded by a boundary with a known potential (not necessarily constant).

In the laboratory the boundaries are usually conductors connected to batteries to keep them at a
fixed potential. In many other electrostatic problems, we do not know the potential at the
boundaries of the system. Instead, we might know the total charge on the various conductors that



make up the system (note: knowing the total charge on a conductor does not imply a knowledge
of the charge distribution p since it is influenced by the presence of the other conductors).

In addition to the conductors that make up the system, there might be a charge
distribution p filling the regions between the conductors. For this type of system, the first
uniqueness theorem does not apply.

The second uniqueness theorem states that the electric field is uniquely determined if the
total charge on each conductor is given and the charge distribution in the regions between
the conductors is known.

Integration surfaces
The proof of the second uniqueness theorem is similar to
the proof of the first uniqueness theorem. Suppose that

there are two fields El and EZ that are solutions of
Poisson's equation in the region between the conductors.
Thus:

V.E,=£ and V.E,=2 A . e
& il ===
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Outer boundary-
could be at infinity
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where p is the charge density at the point where the
electric field is evaluated.

The surface integrals of El and EZ, evaluated using a surface that is just outside one of the
conductors with charge Qi;:

7 % . (7 Qi
fEl.d(_i:—l, szdC_i=_l
€o €o

Surface
conductor i

Surface
conductor i

The difference E; = E, — E, satisfies the following equations:
p P

V.E;=V.E,—-V.E,=———=0
3 2 1 € €
= = = Qi 0
80 80
Surface Surface Surface
conductor i conductor i conductor i

Consider the surface integral of 53 , integrated over all surfaces (the surface of all conductors
and the outer surface). Since the potential on the surface of any conductor is constant, the

electrostatic potential associated with Ez and El must also be constant on the surface of each
conductor.

Therefore, V5 = V, — V; will also be constant on the surface of each conductor. The surface
integral of V3§3 over the surface of conductor i can be written as

fV3E3dC_l)=V3fE3d(_i= 0

Surface
conductor i

Surface
conductor i



Since the surface integral of V3E3 over the surface of conductor i is equal to zero, the surface
integral of Vgﬁg over all conductor surfaces will also be equal to zero. The surface integral of
V3§3 over the outer surface will also be equal to zero since V53 = 0 on this surface. Thus:

VaEs.dd = 0
All Surface
Using product rule from chapter 1:
V. (V5E;) = V3(V.E3) + E3.VVy
The surface integral of V3E3 can be rewritten using Green's identity as

fV3E3dC_i = j-V3(v)E)3)dT+fE3VV3 dT

All surface Volume b/w Volume b/w
conductors conductors

f V3(V E3)d‘[ + f _E3.E3 dT = O
Since V. 53 = 0 from above:

E2dt=0

Volume b/w
conductors

where the volume integration is over all space between the conductors and the outer surface.
Since EZ is always positive, the volume integral of E2 can only be equal to zero if:

E2 = 0 everywhere.

This implies immediately that E, =E, everywhere, and proves the second uniqueness theorem.



3.2. Method of Images

Consider a point charge q held at a distance d above an infinite grounded conducting plane as
shown in the figure below. The electrostatic potential of this system must satisfy the following
two boundary conditions:

V(x,y,0) =0
X — 00
V(x,y,z) » 0 when {y - 0
Z — 00

A direct calculation of the electrostatic potential
cannot be carried out since the charge distribution on
the grounded conductor is unknown. Note: the charge
distribution on the surface of a grounded conductor
does not need to be zero.

Consider a second system, consisting of two point charges <
+q and -q, located at z = d and z = -d, respectively as shown

in figure 2. The electrostatic potential generated by these

two charges can be calculated directly at any point in space. d

*-+g

At a point P = (x, y, 0) on the xy plane the electrostatic
potential is equal to d
1 - 4
V(x,y,0) = q + q =0 *
dme, | \[x2 +y2 +d2 x4+ y? +d?

The potential of this system at infinity will approach zero since the potential generated by each charge will decrea
r.

Therefore, the electrostatic potential generated by the two charges satisfies the same boundary
conditions as the original system in Fig.1.

Since the charge distribution in the region z > 0 (bounded by the xy plane boundary and the
boundary at infinity) for the two systems is identical, the corollary of the first uniqueness
theorem states that the electrostatic potential in this region is uniquely defined.

Therefore, if we find any function that satisfies the boundary conditions and Poisson's equation,
it will be the right answer. Consider a point (x, y, z) with z > 0. The electrostatic potential at this
point can be calculated easily for the charge distribution shown in Figure 3.5. It is equal to
q —q
_|_
e, |\Jx2 +y2 + (z—d)2  Jx2+y2 + (z+d)?

V(x,y,0) =

Since this solution satisfies the boundary conditions, it must be the correct solution in the
region z > 0 for the system shown in Fig. 1.



This technique of using image charges to obtain the electrostatic potential in some region of
space is called the method of images.

The electrostatic potential can be used to calculate the charge distribution on the grounded
conductor. Since the electric field inside the conductor is equal to zero, the boundary condition
for E shows that the electric field right outside the conductor is equal to

— o _
Eoutside =—n
[
where ¢ is the surface charge density and 7 is the unit vector normal to the surface of the

conductor. Expressing the electric field in terms of the electrostatic potential V we can rewrite
this equation as

av
o=¢E,= _8"5 .
z=

Substituting the solution for V in this equation we find

q —(z—4d) (z+d) q d

g =—— 3+ 3 e
Tloz+y2+ -2 (x2+y2+ (z+d)?)2 o 2m (x* + y? + d?)3/2

The induced charge distribution is negative and the charge density is greatestat (x =0,y =0,z =
0). The total charge on the conductor can be calculated by surface integrating of o:

2w 0
Qtotal = fada = f f o(r)rdrdb
0 0

Where r = \/x2 + y2. By substituting the expression for ¢ in the integral we obtain

[0e]

1 1
Qeotar = —qd | ————— rdr =qd———

0 (r2+d2)2 (r2 + d?)zl, = qd [0 B ]

As a result of the induced surface charge on the conductor, the point charge g will be attracted
towards the conductor.

Since the electrostatic potential generated by the charge and image-charge system is the same as
the charge-conductor system in the region where z > 0, the associated electric field (and
consequently the force on point charge q) will also be the same.

The force exerted on point charge g can be obtained immediately by calculating the force exerted
on the point charge by the image charge. This force is equal to
1 g% .

fo_ L €
41e, (2d)?



The total electrostatic energy of the charge and grounded conductor and charge image-charge
system is not the same.

The electric field in the image-charge system is present everywhere, and the magnitude of the
electric field at (x, y, z) will be the same as the magnitude of the electric field at (X, y, -z). On the
other hand, in the real system the electric field will only be non-zero in the region with z > 0.
Since the electrostatic energy of a system is proportional to the volume integral of EZthe
electrostatic energy of the real system will be 1/2 of the electrostatic energy of the image-charge
system (only 1/2 of the total volume has a non-zero electric field in the real system).

The electrostatic energy of the image-charge system is equal to

q 1 ¢
4me,2d  4me,2d
The electrostatic energy of the real system is therefore equal to

1 ¢q*

4mte, 4d
The electrostatic energy of the real system can also be obtained by calculating the work required
to be done to assemble the system. In order to move the charge q to its final position we will
have to exert a force opposite to the force exerted on it by the grounded conductor. The work
done to move the charge from infinity along the z axis to z = d is equal to

Wimage =—qAV = —q *

1
W= Ewimage =

= —_— Z = —_— — J—
4te, ), 42> ame, 4z | 41re, 4d

d
1 d qZ 1 _qZ 1 q2

which is identical to the result obtained using the electrostatic potential energy of the image-
charge system.



Example 4:
A point charge q is situated a distance s from the center of a grounded conducting sphere of
radius R as shown in the figure.

a) Find the potential everywhere.

b) Find the induced surface charge on the sphere, as
function of g. Integrate this to get the total induced
charge.

c) Calculate the electrostatic energy of this
configuration.

a) We can imagine a completely different configuration consisting of two charges, g and q’.

Where:
ere PN
) R
q=——9q r w d
Located at: / '.d' N
.-’ﬂ'-__ﬂ o
2 ’
S L V| -
a b q q

To the right of the center of the sphere as shown in the second figure.

Now the potential at a distance r from the origin due to these two point charges is:
1 [qg 4 q 1 R

- 4me, IE * dal|- 4me, d ad’]

Now this potential vanishes everywhere on the surface of the sphere (that was removed to place

the image charge)

p

- -

d=7#—-d andd =#—b

d =+/r2+a? —2arcosf

d' =72+ b2 — 2br cos O
. q [ 1 3 R
dme, IWr2 + a2 — 2arcos® avr2 + b2 — 2brcos 6

Y

When r=R on the surface of the sphere:




1 R
o = e | |
P 47T€o VR? + a? — 2aR cos 0 a\/R2 + b2 — 2bR cos 6

Since
RZ
b=—
a
L [ 1 R ]
P~ 4me, [VRZ ¥ a2 — 2aR ) ; -
Olv +a aR cos 6 a\/R2+R_2—2R—RCOSQ
a a
1 R
V= } -

4me, |WVRZ+ a2 —2aRcos8 4R 7T RZ “2aRcos 8
a

Thus we conclude that the configuration of charge and image charge produces an electrostatic
potential that is zero at any point on a sphere with radius R and centered at the origin.

Therefore, this charge configuration produces an electrostatic potential that satisfies exactly the
same boundary conditions as the potential produced by the charge-sphere system.

The surface charge density o on the sphere can be obtained from the boundary conditions of £

- - - n
Eoutsiaze — Einsiaze = Eoutside = g_r
0
5 aVv
0=¢kE, =—¢,—
obr ° 5

Substituting the general expression for V into this equation we obtain

1 R
o=—¢
47T€oa7‘[[\/r Zta?—Z2arcosf avr? + b2 —2brcos6l| _
q 2r — 2a cos 0 —R x (2r — 2b cos9)
o="7"|" 3 3
A 2(r2+a? —2arcos0)z ax2(r?+hb%—2brcos0)zl _,
RZ
b=—
a
[ R? ]
~ qI r — acos@ —R*(r—;cos@) |
R P 3 3
+ a? — 2ar cos 0)2 (2 R%* 2R? )2
ax*|\ré+-————rcosf
a a r=R



[ R? |
q | R —acosf _R*<R_7COSH) I
UZ_E|_ 2 2 3 4 3 3
— 2 2
l (R%? 4+ a? — 2aR cos 0) a*<R2+R—2—2icose>J
a a
R
. q R —acos6 _RZ*(l_ECOSQ)
% Tan|” ERE 3
(R?2+ a%? —2aRcosB)z ax ?(a2 + R? — 2Ra cos 0)2
q R —acos® a? — Racos 6
o=—o-|- 3+ 3
(R?+ a? —2aRcos0)2 R(a?+ R? —2RacosB)2
q [—R? + aR cos @ — aR cos 0 + a? q a’ — R? ]
o =—— 3 = — 3
Am R(R? + a? — 2aR cos 0)2 4mR (R? 4+ a? — 2aR cos 0)2

The total charge on the sphere can be obtained by integrating o over the surface of the sphere.

The result is
q a’ — R?
Q=jada=j—4R =| R*sin 6 d6 d¢
T (R%? + a? — 2aR cos 0)2
R(a* —R?») (™ 1
Q——q ( > ) 3sin6 do
0 (R? 4+ a? — 2aR cos 0)2
cos@ =y ,—sinfdf =dy
1711
. qR(a? — R?) |(R? + a? — 2aRy) 2
- 1
T D e
gR(a®? —R?) 1 [ 1 1 ]
= % —— J—
2 aR la+R a-—R
qa®—R?) 11 -2R qrR
Q = *k — > > = —_—= q
2 a L(a? — R?) a
The force on q due to the sphere would be same as the force between g and the image charge:
, qRr
v 1 qq 1 q ( a ) 1 q*Ra

- 4me, (a — b)? - 4me, (a — R?/a)?  4me, (a? — R?)?



The total energy of the system would be to bring in the charge from infinity to point a.
W= fa 1  qg?R=x*r p
), Ame, (r2 — R2)2 r

Letr? =ythen2rdr =dy,r > o,y > oandforr - a,y - a?

2
W TR f“z dy _¢*R -
8rme, J,, (y —R?)? 8mg, -1 -

1 Rq?

w = 1

" 8re, (a? — R?)



3.3. Separation of Variables

3.3.1. Separation of variables: Cartesian coordinates

A powerful technique very frequently used to solve partial differential equations is separation of
variables, which is very helpful tool in solving partial differential equations. This method is
particularly useful when the potential at the boundaries is known and we are to solve it within
that region.

Example 5:

Two infinite, grounded, metal plates lie parallel to the xz-plane, one aty = 0, the other aty = a as
shown in the figure. The left end, at x = 0, is closed off with an infinite strip insulated from the
two plates and maintained at a specified potential Vo(y). Find the potential inside this "slot".

The electrostatic potential in the slot must satisfy the Laplace’s equation. Since V is independent
of z so we will use 2D Laplace’s equation:

9%V 9%V

522 -|‘a—y2 0

The boundary conditions are:

1. V(x, y = 0) = 0 (grounded bottom plate).

2. V(x, y =a) =0 (grounded top plate).

3.V(x=0,y) =Vo(y) (plate at x = 0).

4.V — 0 when X — oo,

These four boundary conditions specify the value of the potential on all boundaries surrounding
the slot and are therefore sufficient to uniquely determine the solution of Laplace's equation

inside the slot. Therefore, if we find one solution of Laplace's equation satisfying these boundary
conditions than it must be the correct one.



Consider solutions of the following form: V(x,y) = X(x)Y (y)

If this is a solution of the two-dimensional Laplace equation than we must require that

92 9%
——Z XY + ay? [X()Y ()] =0

0x?
92X (x) 92Y (v)
Y(y) 32 + X(x) 3y =0
1 9%2X(x) 1 0%°Y(y)
X 022 TYo) ay2

The first term of the left-hand side of this equation depends only on x while the second term
depends only ony. Therefore, if this equation must hold for all x and y in the slot we must
require that

1 d’X(x) C. = Constant
X dxz -0 T onstan
1 d?Y(y)
— = (C, = Constant
Y(y) dyz 2 onstan
Cl + CZ = 0

The differential equation for X can be rewritten as:

d?X(x)
pre C,X(x) =0
If C1 is a negative number then this equation can be rewritten as:
d?X(x)
I +k?X(x) =0

where k? = -C1 . The most general solution of this equation is
X(x) = Acos(kx) + B sin(kx)

However, this function is an oscillatory function and does not satisfy boundary condition # 4,
which requires that V approaches zero when x approaches infinity. We therefore conclude
that C; cannot be a negative number.

If C1 is a positive number then the differential equation for X can be written as:
d?X(x)
: . dx?
The most general solution of this equation is
X(x) = Ae** + Be™H*
This solution will approach zero when x approaches infinity if A = 0. Thus

—k?2X(x) =0



X(x) = Be ¥

The solution for Y can be obtained by solving the following differential equation:

0%Y (y)
3y - —k*Y ()

Since (; is positive C, has to be negative because C; + C, = 0

The most general solution of this equation is
Y(x) = Csin(ky) + D cos(ky)

Therefore, the general solution for the electrostatic potential V(x,y) is equal to
V(x,y) = X(x)Y(y) = e **(C sin(ky) + D cos(ky))

where we have absorbed the constant B into the constants C and D. The constants C and D must
be chosen such that the remaining three boundary conditions (1, 2, and 3) are satisfied.

The first boundary condition requires that V(x, y = 0) = 0:
V(x,y = 0) = e **(Csin(0) + D cos(0)) = De ** =0

which requires that D = 0. The second boundary condition requires that V(x, y = a) = 0:
V(x,y = a) = e **(Csin(ka)) = 0

which requires that sin(ka) = 0. This condition limits the possible values of k to positive
integers:

ka=nm: k= %  wheren = 1,2,3, ...

Note: negative values of k are not allowed as exp(-kx) approaches zero at infinity only if k > 0.
To satisfy boundary condition # 3 we must require that

V(x =0,y) = Csin(ky) =V, ()

This last expression suggests that the only time at which we can find a solution of Laplace's
equation that satisfies all four boundary conditions has the form e ~** sin(ky) when
V,(y) happens to have the form sin(ky).

However, since k can take on an infinite number of values, there will be an infinite number of
solutions to Laplace's equation satisfying boundary conditions # 1, # 2 and # 4. The most general
form of the solution of Laplace's equation will be a linear superposition of all possible solutions.
Thus



Vix,y) = ZCe a sm(nny)

Boundary condition # 3 can now be wrltten as

V(x—Oy)—ZCsm )=Vo(Y)
This is a Fourier sine series and we can use a mathematlcal trick to find the coefficients Ci.

Multiplying both sides by sin (na—" y) and integrating each side betweeny =0andy = a we

obtain
n ! a !/
Z fsm )sin il dyzf sin nny V,(y)dy
a 0 a ?

l:

1
fa ' (nn )d _2 for n' #n
0sm - sin Y y—E ;L

for n'=n

The integral on the left-hand side of this equation is equal to zero for all values of n" except
forn = n. Thus

nCa_n’n n p C_a_n’n V (v)d

5 [ o025 an ()i -3 (25 i
2 (¢ (n'm

Cn=a]0 SIH<TJ’> Vo(y)dy

The coefficients Cy, are called the Fourier coefficients of V,(y). The solution of Laplace's
equation in the slot is therefore equal to

n
_ N Ce e g (M
Vix,y) = ZCie a sm( " y)
i=1

2 (¢ (n'm
C"=Ejo sin{ —y Vo(y)dy

Now consider the special case where V, (y) = constant = V,, then the coefficient C, would be:

2 @ (n'm
anal/;,[) sin ay dy

0 if n=even

where

2
C, = Ev"(l — cos(nm)) = 4,
— if n=odd
nm



And hence the solution to Laplace’s equation will be:

4V, 1
Vix,y) = ?O z Ee_(%x) sin (%y)
n=1,3,5,...

The figure below is the 2D plot of this solution:

V/Vo

The figure below shows how the first few terms in the Fourier series combine to make a better
and better approximation to the constant V,.

(@) is n=1 only, (b) include n up to 5, (c) includes n up to 10 and (d) include n up to 100.

V/Vo

0 02 04 0.6 0.8 1

via



Charge density on the strip at x=0

For the infinite slot determine the charge density a(y) on the strip at x=0, assuming it is a
conductor at constant potential V/,.

The electrostatic potential in the slot is equal to

4V, 1
Vix,y) = ?0 Z - e~ (a*) sin (%y)
n=1,3,5,..

The charge density at the plate at x = 0 can be obtained
using the boundary condition for the electric field at a
boundary:

A~

Ex=0+ = Ex=0- = Ex=o+ =—1

g
€o

where 7 is directed along the positive x axis. Since E = —VV this boundary condition can be
rewritten as:

av
dx
Differentiating V(x,y) with respect to x:

A z l(_E)e‘(%x)sin(%Y)

0x T a

()

x=0+ €o

At the x = 0 boundary, we get:

=— o sin (% y)

The charge density o on the x = 0 strip is therefore equal to

av =4V;€0 Z sin(%y)

g = —an
n=1,3,5,...

x=0+



Example 6:

An infinite long rectangular metal pipe (sides a and b) is grounded but one end at x=0,
Is maintained at a specific potential Vo(y,z) as shown in the figure below. Find the
potential inside the pipe.

y

Solution:

Since there is no charge enclosed in the pipe, we can us
Laplace’s equation and solve for V:

Vo o) —j=1 =

orv o o _
a2 T ayz oz
The boundary conditions are:

(i) V=0wheny=0

(i)  V=0wheny=a

(ili)  V=0when z=0

(iv) V=0when z=Db

(v) V=0whenx = oo

(vi) V=V,(y,z)ywhenx =20

Let’s assume the solution of the Laplace’s equation is following:
V=Xx)Y()Z(z)

The Laplace’s equation becomes

2 aZ 62
T2 XY OIZ@] + 5 Y OIZ@) + 57 XY ()Z(@)] = 0
02X (x) %Y (y) 0°Z(z) _
YO)ZE) g+ X2 s 2+ XY 0) 5 = 0

1 0%°X(x) 1 0%Y(y) 1 0°Z(2) _
X 022 TYG) 0y? | Z(n) 072

12X _ . 1 2%YG) .1 2%2(2) _
X)) axz 1 y(@) ayz T 27z az2 ~ 3

Similar to the previous example, boundary condition (v) suggests that ¢, has to be a
positive constant, whereas C» and Csz are negative.



C2=_k2;C3=_lz; and61=k2+lz

d?x(x)
dx2

= (2 + 1K) TR =Y 2D = 127(2)
X(X) =Aer2+lzx+Be— k2+1%2x

Y(y) = Csin(ky) + D cos(ky)
Z(z) = E sin(lz) + F cos(lz)

a) Boundary condition (v) [V=0 when x = oo] gives that A=0.
b) Boundary condition (i) [V=0 when y = 0] gives that D=0.

C) Boundary condition (iii) [V=0 when z = 0] gives that F=0.
d) Boundary condition (ii) [V=0 when y=a] gives that k = %
e) Boundary condition (iv) [V=0 when z=a] gives that | = %.

So our solution reduces to:
X(x) = Be~ k2+12x
Y(y) = Csin(ky)
Z(z) = E sin(lz)
Or

Vix,y,z) = Ce_n< (g)2+(%)2>x sin (%y) sin (% Z)

The general solution will be the linear combination of all the possible values of n and
m:

o ) () ) nm mm
Vix,y,z) = Z Z Cpme ( @ %) > sin (Fy) sin (Tz)
n=1m=1
The last boundary condition (vi) [V = V,(y, z) when x = 0] implies that:
SIS nm mn
V(0,y,z) = Z Zl Cpm Sin (; y) sin (T Z) =V,(y,2)
n=1m=

To determine C,,,,,, let’s multiply the above expression with sm( ) and sin (T, z)
and integrate:



(0e] (o]
n=1m=1

c J‘afb (n'm )\ (nn ) o (m'm )\ (mrt )d p
nmoosmaysmaysmbzsmbz ydz
a b o (n'm\ | (m'm
=f f V,(y,z)sin|—y |sin|——z ) dy dz
o Jo a b
@ [(n'm . /nm dv =
J; e WP sm(;y) Y= for n'=n

0 for n"#n
a
2

b m'r i 0 for m#m
fsin — sin(— )dy= b
0 2

b b

c a b janV . (nn ) _ (mn )d p
¥ — % — = —_— —_—
nm ¥ 5 %5 ) »(y,2z) sin 2 y ) sin 5 z) dydz

c _4fafbV _(nrt)_(mn)dd
nm = ) »(y,Z) sin " y ) sin 5 z) dydz
So

n 2 m 2
pa— + —_

V(x,y,2) = Y2, 22, Cume n< @) )x sin (%" y) sin (% z) along with the constant Cp,p,
is the solution of our problem.

In case V,(y,z) = constant = V,, then we can find C,,,,, as:

4V (@ e b i 0 if nor mare even
—_9 in(— in(— =1{ 16V,
Crm =2 o sm(az)dyjo Sm(b z)dz { = ®  if nand mare odd
m2nm
So
~ 16V, -nl @ +F) ) nm \ nm
Vix,y,z) = Z v e sin (7 y) sin (T Z)

n,m=1,3,5,...

n\2 m 2
Notice that successive terms decrease rapidly due to e_n< @ () >x term, so reasonable
approximation would be to keep only the first few terms.



3.3.2. Separation of variables: spherical coordinates
For a spherical symmetric system, we can solve Laplace's equation using spherical coordinates.

Assuming the system has azimuthal symmetry (Z—; = 0) Laplace's equation would be:
16(26V)+ 1 6( 98V> 0
r2or\' or)” rZsing o0 20

Multiplying both sides by r? we get:

a(zav)+ 1 6( 06V>_0
or r or sin@ 06 sin 06

Let’s consider the solution of Laplace’s equation is a function of r and 8, such that:

V(r,8) = R(r)0(0)
Substituting this "solution™ into Laplace's equation we obtain

@(9) ( aR)+ R 6( 06(&)) 0
-\ ar) Tsneag 935

Dividing each term of this equation by R (r)0(8) we get:

1 0( aR) 1 6( 96@)_0
R() ar \ 0(0) sina 96 \""% 39

The first term in this expression depends only on the distance r while the second term depends
only on the angle 6. This equation can only be true for all r and 4 if:

U LL W
ma("ﬁ)—”)

! a< 96®>— I(L+1
0(0) smg oo \"N05g) = ~IEAD

and

Consider a solution for R of the following form:

d/ oR
- (r E) I+ DR()

This equation has a general solution:

B
R(r) = Art +

T'l+1

Similarly angular equation can be written as:



d(' ed@)— I(1 + 1) sin 6 ©(6)
d@ Sin d@ = Sin

The solution to this equation are the Legendre polynomials in the variable cos 6
0(0) = P;(cos )
Where P;(x) are defined by Rodrigues formula:

P = o () G-

2 \dx

The first few Legendre polynomials are written as:
Py(x) =1
Pi(x) =x

Py(x) = (3x* —1)/2

Py(x) = (5x3 — 3x)/2

P, (x) = (35x* —30x% + 3)/8
Ps(x) = (63x> — 70x3 + 15x)/8

So the most general solution for Laplace’s equation can be written as:

o

By

V(r,8) = R(r)0(0) = Z (Alrl + m) P, cos(6)

=0



Example 7:

The potential at the surface of a sphere is given by V,(8) = k cos(38), where k is some constant.
Find the potential inside and outside the sphere, as well as the surface charge density ¢(8) on the
sphere. (Assume that there is no charge inside or outside of the sphere.)

The most general solution of Laplace's equation in spherical coordinates is

o

B
V(r,0) =R(r)0(0) = z (Alrl + ﬁ) P, cos(6)

=0

First consider the region inside the sphere (r <R). In this region B; = 0 otherwise potential
would be infinity at r = 0. Thus

V(r,0) = Z A;rt P cos(0)
1=0

The potential at r = R is therefore equal to

V(r,0) = Z AR P, cos(8) = k cos(36)
=0

Using trigonometric relations, we can rewrite cos(36) as

8 3
cos(36) = 4cos®0 —3cosh = §P3(cos 0) — gPl(cos 0)
Substituting this in the above equation for V(r, 6):

c 8k 3k
V(r,0) = Z A;R' P, cos(0) = k cos(36) = ?P3 (cos ) — ?Pl(cos 0)
1=0

This equation immediately shows that A; = 0 except for [ = 1 or 3.
3k 8k

So Al = —ﬁandAg T

The electrostatic potential inside the sphere is therefore equal to

8k 3k
V(r,0) = 0 P;(cos0) — ﬁrPl(cos 0)

Now consider the region outsider the sphere (r > R). In this region A; = 0 otherwise
V(r,8) would be infinity at r = co.

Hence

o)

B,
V(r,0) = Z rlTPl cos(6)

=0



The potential at r = R is therefore equal to

- B, 8k 3k
V(r,0) = ZWPI cos(0) = ?Pg (cos8) — ?Pl(cos 0)

=0

This implies that B, = 0 except when [ = 1 or 3, which gives:

5 - 3kR2
1_8k5

B, = —R*
37 5

The electrostatic potential outside the sphere is thus equal to

8k _, 3k _,
V(r,0) = mR P;(cos 0) _ﬁR P;(cos0)

The charge density on the sphere can be obtained using the boundary conditions for the electric
field at a boundary:

Er=R+ - Er=R+ = O-if) 7
Since E = —VV this boundary condition can be rewritten as:
av av o(0)
or r=R+ or reR+ €o

The first term on the left-hand side of this equation can be calculated using the electrostatic
potential just obtained:

. 6k k
[ R P;(cos0) + —R P, (cos 0)] — (6P, (cos 6) — 32P;(cos 0))
aT' r=R+ SR

In the same manner we obtain

= - ( - rPs(cos 6) — %TP (cos 9)) 4k —1%P3(cos ) — %P (cos 0)]
orl,—g- Or 5R3 3 1 5R3 3 1
av 24k 3k k
I . (5R P3(cos 6) — = P (cos 0)) =5 [24P5 (cos 6) — 3Py (cos 0)]
So,
Z_‘: - ZZ o 5£R (6P1(cos 6) — 32P;(cos 9)) — 5£R [24P5(cos 8) — 3P;(cos 6)]

(@) = —l;—R [9P;(cos 8) — 56P;(cos 6)]



Laplace’s equation in Cylindrical Coordinates:

Solve Laplace's equation by separation of variables in cylindrical coordinates, assuming there is
no dependence on z (cylindrical symmetry). Make sure that you find all solutions to the radial
equation. Does your result accommodate the case of an infinite line charge?

For a system with cylindrical symmetry the electrostatic potential does not depend on z. This
immediately implies that Z—Z = 0. Under this assumption Laplace's equation reads

16(6V) 162V_0

ror\"ar) Y r2ag2

Consider as a possible solution of V:

V(r,¢) = R(ra(¢)

Substituting this solution into Laplace's equation we get:

a(@) @ [ OR\ R(r)d%a(d)
- a(’"ﬁ)ﬂ—z—aw =0

Multiplying each term in this equation by r? and dividing by R(r)a(¢) we get:

r 9 0Ry 1 9%a($)
%505)%@ 02

r 9 ( 0R) _ _ 1 d%a(p) _
R B (r ) = constant =y and ——

ap) a9z

First consider the case in which = —m? < 0 . The differential equation for a(¢) can be
rewritten as

ar

0%a(e)
a2
The most general solution of this differential solution is:
am(p) = C,e™® + D, e ™

However, in cylindrical coordinates we require that any solution for a given ¢ is equal to the
solution for ¢ + 2m. Obviously this condition is not satisfied for this solution, and we conclude
that = m? > 0 . The differential equation for a(¢) can be rewritten as:

0%a(e)
dp?
The most general solution of this differential solution is:
am (@) = Cp, cos(me) + D,, sin(mg)
The condition that a(¢) = a(¢ + 2m) requires that m is an integer.

—-m?a($) =0

+m2a(¢) =0



Now consider the radial function R(r):

T 0 OR _ _ _ 2
Ry a7 (r ar) =constant =y =m* >0

The general solution for this equation would be:
R(r) = Ar¥
Substituting this solution into the previous differential equation we get:

r 6( B(Ark)> 1 i

1
(Akrk) = T k2Ark=1 = |2 = m?

Arkar\" or )T arkiar
r d _ 1 d _ 1 0 _ 1 _
Fg[;‘g(flrﬁ ]] :Wﬁ(’( kAr" ']) = ﬁx(k’flr;‘]: ?szlrk ==

Therefore, the constant k can take on the following two values:
k,=mandk_=-m

The most general solution for ®7) under the assumption that »* =0 is therefore
B
Rp(r) =Apr™+ r_z
Now consider the solutions for R(r) when m? = 0. In this case we require that:

T (R _ e —m? = 2 (r20) =
R(r)ar(rar)—constant—y—m =0 or pl Ul =0

Which requires: r‘;—f = constan = a, which implies that:
OR a,
or r
If a, = 0 then the solution of this differential equation is
R(r) = b, = constant
If a, # 0 then the solution of this differential equation is
R(r) = a,In(r) + b,

Combining the solutions obtained for m? = 0 with the solutions obtained for m? > 0, we
conclude that the most general solution for R(r) is:

— N m Bm
R(r) =a,In(r) + b, + Apr™ + —r
m=1

Therefore, the most general solution of Laplace's equation for a system with cylindrical
symmetry is

V(r,¢) =a,In(r) + b, + 2 [(Amrm + %) (Cy, cos(me) + D,,, sin(me)) ]



Example 8:
A charge density 0 = a sin(5¢) is glued over the surface of an infinite cylinder of
radius R. Find the potential inside and outside the cylinder.

The electrostatic potential can be obtained using the general solution of Laplace's equation for a
system with cylindrical symmetry. In the region inside the cylinder the coefficient B,,, =0
otherwise V(r, ¢) — oo at r = 0, and for the same reason a, = 0.

So the general solution to Laplace equation will reduce to:

Vin(r' ¢) = bo,in + z [rm(Cm,in cos(mqb) + Dm,in Siﬂ(ﬂld))) ]
m=1

In the region outside the cylinder the coefficients 4,, = 0 and a, = 0. Thus

SR
Vout (T, ¢) = bo,out + Z [T‘_m (Cm,out Cos (md)) + Dm,out Sin(md))) ]
m=1

Since V (r, ¢) must approach 0 when r approaches infinity, we must also require that b, o, = 0.

Sl
Vout(r, 9) = z [r_m (Cm,out cos(m¢) + Dy out sin(m(j))) ]
m=1

-]

Differentiating V (r, ¢) in the region r > R and setting r = R we obtain

The charge density on the surface of the cylinder is equal to

av av
o=l 2

orly_g, Or

ov
or

= Z [_ % (Cm,out cos(m¢) + Dm,out Siﬂ(ﬂl(ﬁ)) ]

m=1

7"=R+

Differentiating V (r, ¢) in the region r <R and setting r = R we obtain

[0e]

Z [—mRm‘l(Cm,m cos(me) + Dy in sin(mqb)) ]

=Ry =1

ov
or

The charge density on the surface of the cylinder is therefore equal to

- m m
0(¢) =& Z [(W Cm.out + mRm_lcin,m) cos(mqb) + (W Dm,out + mRm_lDin,m) Sin(m¢) ]
m=1
Since the charge density is proportional to sin(5¢) we can conclude immediately that C;,, ,,, =
Coutm = 0 forall mand that Dy, ,,, = Dyyyen = 0 for all m except m=5.



Therefore the charge density is:

6(®) = 0z Dsoue + 5R*Dyns ) sin(59) = asin(59)

5 4 a
FDS,out + 5R Din,5 = g

A second relation between D;, s and D, 5 can be obtained using the condition that the
electrostatic potential is continuous at any boundary. This requires that

Vin (T', ¢) = Vout (r, ¢)

. 1 .
bo,in + R5D5,in sin(5¢) = FDS,out sin(5¢)

Thus, by o = 0 and Dyyes = R¥Dyy s

We now have two equations with two unknown, D;,, s and D, 5 , which can be solved with the
following result:

a 1

—_2 pe6
EF and Dout,S =—R

D« =
in,5 10¢,

The electrostatic potential inside the cylinder is thus equal to

Vin(r, @) = rSDS,in sin(5¢)
5

r "
Vin(r: @) = 15~ g sin(59)
The electrostatic potential outside the cylinder is thus equal to
Ds out .
Vour (r, ) = =5 sin(5¢)

a R®
Vout(r: ¢) = 10¢ T'5 Sln(S(;b)
o



3.4. Multipole Expansions

Consider a given charge distribution p as shown in the figure
and the potential at point P is:

1 (p@)
V(P) = dt’
P) 4re, f S '
where s is the distance between P and an infinitesimal segment E‘ﬁ*g

of the charge distribution. We can write d:

! 2 !
r r
s2=12+7"%—2rr' cosf = r? (1 + <7> -2 <7> cos 9’)

s=ry(1+¢&)wheree = (%’) (%’ —2cos 9’)

This equation can be rewritten as

1 1 1
s TVli+e

At large distances from the charge distribution » > r' and consequently% &« 1. Using the
binomial expansion:
n! n(n-1) nn-1)(n-2) .
[(1 + 0" = Tpoo(B)xk = Xio k!(n_k)!xk =1+nx+——x"+ % ] ;
1 1 3 5
=1l—--e+-e?——e3+--

Vite 2 '8 16

we can rewrite 1/d as
1 11 1/r"\ (7' 5 o' +3 ™\ (' 5 o' 2 50/ (1 5 o' 3+
s T 2\r r cos 8\ r r cos 16 [\ r r cos
L RS YA VN r’2(3 2 1)+ _15: AR
plag= 5\ 7 cos " 2cos > == 0 " . (cos8")
n=

Where 6’ is the angle between r and r”,

Using this expansion of 1/d we can rewrite the electrostatic potential at P as

1 N 1 ! m ! !
V(P) = 4718021*"“ fp(r )r'"B,(cos ") dt
n=0
This expression is valid for all r (not only > r’ ). However, if r==» then the potential at P will
be dominated by the first non-zero term in this expansion. This expansion is known as
the multipole expansion. In the limit of »==» only the first terms in the expansion need to be
considered:
1
4me,

1 ’ ’ 1 N . ’ I 1 I\A. 12 3 2 nr 1 ’
V(P) = [;fp(r)dr +r—2fp(r)r cos@'drt +r—3fp(r T (Ecos 6 _E> dt +]



The first term in this expression, proportional to 1/r, is called the monopole term. The second
term in this expression, proportional to 1/r?, is called the dipole term. The third term in this
expression, proportional to 1/r3, is called the quadrupole term.

3.4.1. The monopole term.

If the total charge of the system is non zero then the electrostatic potential at large distances is
dominated by the monopole term:

Q

4mte, T

1 1
V(P) = - ;fp(r’) dt' =

[

where Q is the total charge of the charge distribution.
The electric field associated with the monopole term can be obtained by calculating the gradient

of V(P):
ow(h)=L 2

r) Ame,r?

= — 1
E(P)=-W(P) = - —
3.4.2. The dipole term.

If the total charge of the charge distribution is equal to zero (Q = 0) then the monopole term in
the multipole expansion will be equal to zero. In this case, the dipole term will dominate the
electrostatic potential at large distances

p(r')r'cos@'drt’

V(P) =7
Since @ is the angle between 7 and 7 we can rewrite r'cosé as

r'cos®' = 7.7’
The electrostatic potential at P can therefore be rewritten as

VP = , 1 p.#
P) = p(r) 7 = e, r2
In this expression P is the dipole moment of the charge distribution which is defined as
= fp(r’) 7'dt’

The dipole moment depends on the geometry (size, shape, and density) of the charge
distribution. Similar expression for the dipole moment can be written for point, line and surface
charge distributions as well.

For collection of point charges:

n
= Z Qi1

i=1
For the physical dipole consisting of a +q, /
p=qi —qil = q(F{ — ) = qd

Where d is a vector from the negative charge to the positive charge.




Origin of Coordinates in Multipole Expansion:

A point charge at the origin constitutes a pure monopole but if the point charge is not at the
origin of a coordinates system then it is no longer a pure

monopole. -
For example, charge in the figure below has a dipole moment .
p = qdj so there will be a dipole term in its potential. . x,x’;r
I /"Jz"f [

The monopole potential ( L 2) is not correct for this e J ;

4mey T | d .
configuration rather the potential would be: ( ! g) 7 q )

4TEY S

When we expand s in terms of r we will get all kind of powers v
not just the first power.

The monopole term will not change because the total charge is independent of the coordinate
system but dipole and higher moments will change.

|

Let’s say if the origin is shifted by amount a as shown in the

figure then:
v
p= f%’p(?’)dr’ = f%'p(?’)d‘[’ = f(?’ —a)p(@)drt’ ) dv
T
5= #pGdr —d [ piar =5 - do : )

p=p-dQ
If the total charge QfO then p = 7, as in figure(a) below where total charge is zero so dipole
moment is simply qd.
But in the case of figure (b), the total charge is

not zero, so dipole moment will depend on the
origin we choose. d a a
*——Pho
—q q q % q
(a) (b)

The electric field of a Dipole

If we choose a coordinate system where p lies at the origin and points in the z-direction, then the
electric field associated with the dipole term can be obtained by calculating the gradient of V (P):

1 p# 1 pcos@ z
2

V(P) =

Ame, r? 4Ame, T

ov(P) _ 2pc059i. 10V(P) _ psinf 1 |

Eg(P) = —= =

E.(P) = —

or 4me, 13’ r 90 4me, 13’ 8 7 !
1 av(P) !
Ey(P) = ———2 P g p |
rsinf 0d¢ ~ T
AN ! y

Edipole(r, 0) = r% (2cos@# +sinf ) o BNy

4me,



Dipole moments are vectors and they add vectorially, for example if there are two dipoles with
dipole moments p, and p, then the net dipole moment of the system would be:

ﬁnet = ﬁl + 52

In the figure there are four charges shown on the corner of a square, —-q +g
what is the net dipole moment for this arrangement:
ﬁnet =0
T+l=0 or - +e=0 +q -

Example 9: A “pure” dipole p is situated at the origin, pointing in the z-direction.

(a) What is the force on a point charge q at (a,0,0) (Cartesian coordinates)?
(b) What is the force on g at (0,0,a)?
(c) How much work does it take to move charge g from (a,0,0) to (0,0,a)?

Solution:

(@ Thechargeqislocateatr =aand 8 = m/2, SO

Egivol (r,9)=iﬁ(2cosef+sin9 0) = L
wpote 4me, 13 4te, ad
r = sinfcos@X+sinfsing§ + cosd z,
0 = cosfcos¢pX+cosfsing¥ —sindz,
¢ = —sin¢gX+cosgy,
= P, . 1 »,
Eaipote (.7, 2) = 4me, E(_Z) - _47'[80 3
- - 1
F = qE = — g'\
4me, a
(b) Thecharge qislocateatr = aand 8 = 0, so
= 14 NIV 1 p._ 1T p,
Edipote(r,0) = pre r_3(2 cosOf +sinf 6) = o, B = ome, @
- - 1
F=qF=—2X;
2ne, a

(C) W = qAV = q[V(O’O’ a) — V(a, O’O)] =q [ 1 M_LM — L@

dme, a? 4me,  a® 4me, a?



Example 10:

A thin insulating rod, running from z=-a to z=+a, carries the following line charges:

(@ A= 24,cos (g)
(b) 1 = 1, sin (%)
(c) A =4, cos (%)
In each case find the leading term in the multipole expansion.

Solution:
a) The total charge on the rod is equal to
O = J':/idz = J':/in cos[ -);T-j- }'Iz = %—S—An
Since @« =0, the monopole term will dominate the electrostatic potential at large distances. Thus
1 4a 1
=i

4ae, T

Ve

b) The total charge on the rod is equal to zero. Therefore, the electrostatic potential at large
distances will be dominated by the dipole term (if non-zero). The dipole moment of the rod is
equal to

n

.
A
b g o

p= J‘: zAdz = f:nz./l,, sm[%}dz =

Since the dipole moment of the rod is not equal to zero, the dipole term will dominate the
electrostatic potential at large distances. Therefore

1 2a% . 1
Aﬂr—?cosﬁ

4w, T

V
c) For this charge distribution the total charge is equal to zero and the dipole moment is equal to
zero. The electrostatic potential of this charge distribution is dominated by the quadrupole term.

‘o, oo, (xZ) 4a® |
I?=_[ lAdZ=J‘ zAnc057 z=?An

The electrostatic potential at large distance from the rod will be equal to

g Ul 4a%, Y1 1530062
V_p— m(—?}.o)r—sz—(Jcos 0—1)



Example 11:

Four particles (one of charge g, one of charge 3q, and two of charge -2q) are placed as shown in

Figure 3.12, each a distance d from the origin. Find a simple
approximate formula for the electrostatic potential, valid at a
point P far from the origin.

42

¢ 3q

2

-2q

Solution:

The total charge of the system is equal to zero and therefore the monopole term in the multipole
expansion is equal to zero. The dipole moment of this charge distribution is equal to

p=2.q7=[-2q)aj+(q)(-d) k+(-2q)(-a)j +(3q)ak =2qa k
The Cartesian coordinates of P are

Xx=rsinfcosg

y=rsinésing

z=rcosd

The scalar product between P and r is therefore

per=2qdcosé

The electrostatic potential at P is therefore equal to

1 peF 1 2qdcosé
P ame, r' 4me, T




Example 12:
A charge Q is distributed uniformly along the z axis from z = -a to z =a. Show that the electric

potential at a point € is given by

Vir.g)= [l+—‘ ]P(cosé?]+—' ]P(cosa]+ l

4me, r

forr>a.

The charge density along this segment of the z axis is equal to

23

2a

p:

Therefore, the nth moment of the charge distribution is equal to

in[mgw“

2.8
3an+1n_2an+l{1 (-1) 17

P

I,,-J' zpdz-—f z'dz=
This equation immediately shows that

I =

if nis even
" n+1Q

I =0 ifnisodd
The electrostatic potential at P is therefore equal to

Z ,,1+|IP(cos0]=%—ll+ [ ]P(cos@]-r [ ]P(cosb"l-t— ]

Virg)=




