Chapter 4. Electrostatic Fields in Matter
4.1. Polarization

A neutral atom, placed in an external electric field, will experience no net force. However, even
though the atom as a whole is neutral, the positive charge is concentrated in the nucleus (radius =
101 m) while the negative charge forms an electron cloud (radius = 102° m) surrounding the
nucleus.

The nucleus of the atom will experience a force pointing in the same direction as the external
electric field of magnitude gEext. The negatively charged electron cloud will experience a force
of the same magnitude, but pointed in a direction opposite to the direction of the electric field.
As a result of the external force, the nucleus will move in the direction of the electric field until
the external force on it is canceled by the force exerted on the nucleus by the electron cloud.
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This leaves the atom polarized with plus charge shifted slightly one way and the negative
electron cloud in the other direction. A dipole moment is created in the atom in the direction of
the applied electric field:

p = aF
The constant of proportionality a is called the atomic polarizability. Its value depends
on the detailed structure of the atom.

H He Li Be C Ne Na Ar K Cs
0667 0205 243 560 1.76 0396 24.1 1.64 434 596

Table 4.1 Atomic Polarizabilities (a/47 €p, in units of 1073 m?3),

Consider an electron cloud with a constant volume charge density p and a radius a. If the total
charge of the electron cloud is -q then the corresponding charge density p is:
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The electric field inside the uniformly charged cloud is:
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p = qd = (4me,a®)E = aE , where a = 4ne,a® = 3¢,V
where V is the volume of the atom, and « is called the atomic polarizability.

The magnitude of the induced dipole moment is proportional to the magnitude of the external
electric field, and its direction is equal to the direction of the external electric field.

Although this model of the atom is extremely crude, it produces results that are in reasonable
agreement with direct measurements of the atomic polarizability.

Example 1:
According to quantum mechanics, the electron cloud for a hydrogen atom in its ground state has
a charge density equal to

q —
p(r) =—e 2r/a

Where q is the charge of the electron and a is the Bohr radius. Find the atomic polarizability of
such an atom.

Solution:
As a result of an external electric field the nucleus of the atom will be displaced by a
distance d with respect to the center of the electron cloud.

The electric field generated by the electron cloud can be calculated using Gauss's law:
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Using integration by parts, we get
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The displacement of the nucleus will be very small compared to the size of the electron cloud
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(d < a). Therefore, we can expand e« in terms of d/a:
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The nucleus will be in an equilibrium position when the electric force exerted on it by the
external field is equal to the electric force exerted on it by the electron cloud. This occurs when
the electric field at the position of the nucleus, generated by the electron cloud, is equal in
magnitude to the externally applied electric field, but pointing in the opposite direction. The
dipole moment of the dipole can therefore be expressed in terms of the external field:

E - = =
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p = 3me,a° Eoxe
The electric polarizability of the material is therefore equal to
a = 3me,ad
Which is close to the result obtained using the classical model of the atom.
Plarizability for Molecules:

For molecules the polarizability is different than in atoms because molecules polarize more
readily in one direction than the other direction. For example CO2 molecule is a linear molecule
and if electric field is applied along its axis then its polarizability if 4.5 x 107%° C2.m/N but if
electric field is applied perpendicular to its axis then its polarizability is just 2 x 107*° C2.m/N.

When electric field is at some angle to the axis, then:
ﬁ = aJ_E_L + a"E”
In this case the induced dipole moment may not be in the same direction as the applied electric
field. For completely asymmetric molecule, the dipole moment can be written as:
Px = QxxEx + axyEy + ay,E,
Py = @y Ey + ayyEy + ay,E,
Dz = AzxEx + azyEy + a,,E,

The set of nine constants constitute the polarizability tensor for the molecule. Their values
depend on the orientation of the axes and it is possible to choose principal axis such a way to
have all the off diagonal elements (a,,,, @y, @, ...) equal zero, so there are only three

polarizability elements a,,, ay,, and a_,.

Alignment of Polar Molecules

Some molecules, like water, have a permanent dipole moment. Normally, the dipole moments of
the water molecules will be directed randomly, and the average dipole moment is zero. When the
water is exposed to an external electric field, a torque is exerted on the water molecule, and it
will try to align its dipole moment with the external electric field. Figure below shows a dipole

p= qc? placed in an electric field, directed along the x-axis.




The net force on the dipole is zero since ¥
the net charge is equal to zero. The
torque on the dipole with respect to its

+q

center is equal to 0./
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As a result of this torque, the dipole will try to align itself with the electric field. When the dipole
moment is pointing in the same direction as the electric field the

torque on the dipole will be equal to zero. 4 zaxs
P P
Example 2:
Show that the energy of a dipole in an electric field is given by »
X axis
U=p.E
Consider the dipole located at the origin and making an angle ¢
with the z-axis of the coordinate system. The electric field is

directed along z-axis.

The energy of the system can be determined by calculating the work to be done to move the
dipole from infinity to its present location.

Assume the dipole is initially oriented parallel to the x axis and is first moved from infinity along
the x axis to r = 0. The force exerted on the dipole by the electric field is directed perpendicular
to the displacement and therefore the work done by this force is equal to zero.

The dipole is then rotated to its final position (from z/2 to ). The torque exerted by the electric
field on the dipole:

?T=pxE=pEsinf k
In order to rotate the dipole by an external agent, we must supply a torque opposite to 7:

Tappliea = —PE sin6 k
Therefore, the work done by an external agent is:

6 6 /s -

W = _jz Tdf = JE pE sinf d6 = —pE (cosH —cos(E)) =—p.E
2 2

The potential energy of the dipole is therefore equal to: U = —p. E

Potential energy reaches a minimum when 3 is parallel to E (the dipole is aligned with the

electric field).



4.1.4 Polarization

What happens to a piece of dielectric material when placed inside an external
electric field?

Well, if the material is made of neutral atoms then field will induce tiny dipole moments in the
atoms of the material, pointing in the same direction as the electric field. If the material is made
up of polar molecules, each permanent dipole will experience a torque, tending to line it up along
the field direction.

So in both cases material will be polarized, and the polarization of the material is:

P= dipole moment per unit volume

Now this polarized material will produce its own electric field.

4.2. The Field of a Polarized Object

Consider a piece of polarized material with a dipole moment per unit volume equal to P. Since
dipole material is made of several tiny dipoles and the potential due to a single dipole is:
1 p.AP
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The electrostatic potential generated by the whole material will be integral of the above relation:
V(r) = L[PG dt’ = ! fﬁﬁ’ (L) dr’
4me, (Ar)? 4me, Ar

where A7 = # — #' and V' (i) = (AA:)Z

V() =

Using the following relation (one of the product rules of the vector operator)
¥.(5-F) = 1 (F.F) + PF(5)
_ _ \Ar ) Ary T \Ar
We can rewrite the expression for the electric potential as:
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The first term looks like the potential of a surface charge distribution with:

op = P.7 (bound surface charge) where 7 is the normal unit vector
and the second term looks like the potential of a volume charge with:

p» = —(V.P) (bound volume charge)

V() = 1 fl dd + 1 fl p
/ " 4me, Arab . 4re, Arpb b




The equation for the electrostatic potential shows that the potential (and therefore also the
electric field) generated by a polarized object is equal to the potential generated by an object with
surface charge density g, and volume charge density p,,.

So instead of integrating the contributions of all infinitesimal dipoles, we can just find those
bound charges and calculate the potential or field they produce.

Example 3:
Find the electric field produced by a uniformly polarized sphere of radius R.
Solution:

We can choose to have the direction of polarization along z-axis. The
volume bound charge density p,, is zero since the polarization is
uniform:

However, the surface charge density is:

oy = PB.Ai=Pcosb

Where 6 is the usual polar coordinate.

We would like to find the electric field produced by this surface charge
density “pasted” on the sphere.

We already have calculated electric potential due to a sphere on which charge density g, =
k cos 6 was pasted and we found that:

The potential inside the sphere is therefore
k
V(r,8) = —vrcosf (r < R),
360
whereas outside the sphere
3

kR’ 1
Vr,0) = — — cos0 (r = R).
3eg 1?2

So the electric potential due to o;, = P cos @ is given as:

—1rcosf forr <R

60

V(r,0) = p R3
kgr—zcose fOT'T'ZR

Sincercosf =z

So the electric field inside the sphere (r < R) is:
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Outside the sphere, the potential is identical to that of a perfect dipole at the origin.
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Whose dipole moment is equal to the dipole moment of a uniformly polarized sphere.
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The electric field outside the sphere is:
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Electric field inside and outside the uniformly polarized sphere is shown in the figure.



Example 4:

A sphere of radius R carries a polarization P = k7, where k is a constant and # is the vector from
the center.

a) Calculate the bound charges g;, and p,,.

b) Find the electric field inside and outside the sphere.

a) The unit vector 7 on the surface of the sphere is equal to the radial unit vector. The bound
surface charge is:

op = P.fA| _ = kP#l,_p = kR
The bound volume charge density is:
pp = —(V.P) = —r—za(rzkr) = -3k

b) First consider the region outside the sphere. The electric field in this region due to the surface
charge and due to the volume charge.

Electric field outside the sphere due to surface charge is:
- 1 1 1 kR kR3

E - =——— | gpda 7 = — *x 4mR* = 7
out=surface = gpe y2 ) P 4me, 12 g,T2

The electric field in this region due to the volume charge is:

, 1 1 1 (=30 4 .. kR3

Eout—votume(r) = 47T€0T_2 ppdt? = Ame, 12 * §T[R r= _Sorzr
Eoue(r) = Esurface () + Evorume (1) = 0

Now consider the region inside the sphere. The electric field in this region due to the surface

charge is equal to zero.

The electric field due to the volume charge is equal to

L N
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Physical Interpretation of Bound Charges:

The bound charges introduced in this Section are not just mathematical artifacts, but are real
charges, bound to the individual dipoles of the material. Consider for example the three dipoles
shown in the figure below. When they are aligned (lengthwise) the center charges cancel, and the
system looks like a single dipole with dipole moment 3dq.

a) b)
-q q9 4 [ . | q -q q
44884 4 e
| d | | d | | d | | 3d |
| [N [ | :: .1

To calculate the actual amount of bound charge resulting from a given polarization, lets consider

a tube of dielectric parallel to polarization P. The dipole moment of the tiny chunk shown in the
figure below is P(Ad), where A is the cross-sectional area and d is the thickness of the tube.

In terms of charge q at the ends, the same dipole moment can be written as qd.

qd = P(Ad)
q = PA
If the ends are sliced off perpendicularly then
_q_
g, = 2 =P

But if it is sliced at an oblique angle as shown then
0p, = Pcosf = P.7

The effect of polarization is to paint a bound charge o}, = P.# over the surface of the material.

Since these charges reside on the surface and are bound to the dipoles they are called the bound
surface charge (g3,).



Example 5:

A dielectric cube of side s, centered at the origin, carries a "frozen-in" polarization P = k7 ,
where k is a constant. Find all the bound charges, and check that they add up to zero.

The bound volume charge density p,, is equal to:

N 10
= — = ——— 2 = —
| pp = [V. P] = c')r_(r kr) 3k
Since the bound volume charge density is constant, the total bound

volume charge in the cube is equal to product of the charge density and
the volume:

Quolume = —3ka®
The surface charge density g, is equal to:

o, = P.Al = ki*. A

The scalar product between 7 and 7 can be evaluate as:
.. a
r.Mi=rcosf = 5

Therefore the surface charge density is equal to

ka

" 2

a
Qsurface = 7(6a2) = 3ka?

o, = k?ﬁ =

The total bound charge on the cube is equal to

Qtotal = Quotume T Qsurface = 0

4.3. The Electric Displacement

The electric field generated by a polarized material is equal to the electric field produced by its
bound charges. If free charges are also present then the total electric field produced by this
system is equal to the vector sum of the electric fields produced by the bound charges and by the
free charges.

Gauss's law can also be used for this type of systems to calculate the electric field as long as we
include both free and bound charges:

r=g=1 p _ Pbound + pfree

1 - o
V.E =— =—(-V.P
& &, & ( + pfree)

where P is the polarization of the material. This expression can be rewritten as:

V.(e0E+P) =V.D = prree
Where D(= ¢,E + P) is called the electric displacement.



Gauss's law can also be rewritten as:

V.D = prree (Gauss’s law in differential form)

and

gﬁﬁ dd = Qfree (Gauss’s law in integral form)

These two versions of Gauss's law are particularly useful since they make reference only to free

charges, which are the charges we can control.

Although it seems that the displacement D has properties similar to the electric field E there are

some very significant differences. For example, the curl of Dis equal to:
VxD=¢g,VXE+VxP=VxP

and is in general not equal to zero.

Since curl of D is not necessarily equal to zero, there is in general no potential that generates D.

The Helmholtz theorem tell us that if we know the curl and the divergence of a vector function
v then this is sufficient information to uniquely define the vector function v.

Therefore, the electric field E is uniquely defined by Gauss's law since we know that he curl
of E is zero, everywhere. The displacement vector D on the other hand is not uniquely
determined by the free charge distribution, but requires additional information (such as 13).

Boundary Conditions:
The electrostatic boundary conditions can be recast interms of D, such that:

1L 1 —
Dabove - Dbelow = Oy

Since Vx D = V x P, s0 we can write the other boundary condition as:
D|| _ D||

above below

_ P||

below

— P"

above

In the presence of a dielectric these boundary conditions are more useful than electric field
boundary conditions:

1L 1 —
Eabove - Ebelow -
o)
— Edotow =0

below

E||

above



Example 6:

Suppose the field inside a large piece of dielectric is EO , S0 that the electric displacement is
equal to 50 = soﬁo +P.

a) Now, a small spherical cavity is hollowed out of the material. Find the field at the center of the
cavity in terms of EO and P. Also find the displacement at the center of the cavity in terms

of 50 and P.

b) Do the same for a long needle-shaped cavity running parallel to P.

c) Do the same for a thin wafer-shaped cavity perpendicular to P.

a) Consider a large piece of dielectric material with polarization P and a small sphere with

polarization -P superimposed on it. The field generated by this system is equal to the field
generated by the dielectric material with a small spherical cavity hollowed out (principle of
superposition).

The electric field inside a sphere with polarization —P is uniform and equal to [as calculated in
example 3]

P L (py=
sphere — 3{;‘0 - 380

The field at the center of the cavity is therefore equal to

—

- - - - P
Ecenter = Eo + Esphere =E, + 3_
€o

The corresponding electric displacement at the center of the cavity is equal to

Deenter = €oEcenter = €0Eo + §P =D, — §P

b) Consider a large piece of dielectric material with polarization P and a small long needle-

shaped piece with polarization -P superimposed on it. The field generated by this system is
equal to the field generated by the dielectric material with a small long needle-shaped cavity
hollowed out (principle of superposition). The electric field of a polarized needle of length s is
equal to that of two point charges (+g and -q) located a distance s apart. The charge on top of the
needle will be negative, while the charge on the bottom of the needle will be positive. The charge
density on the end caps of the needle is equal to P. Therefore,

q= O'bA = PA
where A is the surface area of the end caps of the needle. If s is the total length of the needle then
the electric field generated by the needle at its center is:

. 1 4PA & 1 (=PA) ~ 2 PA ¢
Eneedie = - 2 k = Y
4
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In the needle limit A — 0 and therefore Eneedle — 0. Thus at the center of the needle cavity



- -
Ecenter = Eo

The electric displacement at this point is equal to:

—

— — -
Dcenter = €0Eo = Dy — P

c) Consider a large piece of dielectric material with polarization P and a thin wafer-shaped piece

of dielectric material with polarization -P superimposed on it. The field generated by this
system is equal to the field generated by the dielectric material with a thin wafer-shaped cavity
hollowed out (principle of superposition).

The electric field inside the wafer will be that of two parallel plates with charge densities equal
to -0 on the top and +o on the bottom. For a thin wafer-shaped cavity the electric field between
the plates will be equal to the field of a parallel-plate capacitor with infinitely large plates. Thus
S oc. 1,
Ewafer =—k=—P
80 80
The net electric field in the center of the cavity is therefore equal to

- - = - 1 -
Ecenter = Eo + Ewafer =E, + E_P
o
The electric displacement at the center of the cavity is equal to

— = -

- —
Dcenter = €oEcenter = €0Eo + P =D

4.4. Linear Dielectrics

Most dielectric materials become polarized when they are placed in an external electric field. In
many materials the polarization is proportional to the electric field:

— —

P =¢,x.E
where E is the total electric field (external + internal). The constant of proportionality y, is
called the electric susceptibility.

Materials in which the induced polarization is proportional to the electric field are called linear
dielectrics.
The electric displacement in a linear dielectric is also proportional to the total electric field:

D= eoﬁo +P= g,(1 +)(e)E = ¢E
where ¢ is called the permittivity of the material which is equal to

&
ST=S_=(1+Xe)

(o]

The constant e, is called relative permittivity or dielectric constant of the material.
Consider a volume V entirely filled with linear dielectric material with dielectric constant ¢,.. The

polarization P of this material is:



—

P= EoXeE
and is therefore proportional to E everywhere. Therefore:

Vxﬁzeoxe(Vxﬁ) =0
and consequently
VxD=¢g,(VXE)+VxP=0
The electric displacement D therefore satisfies the following two conditions:
VxD=0andV.D = Pfree

The electric field generated by the free charges when the dielectric is not present satisfies the
following two equations:

V X Efree =0 and V Efree = Pfree

€o

Comparing the two sets of differential equations for D and Efm we conclude that:

—

D= goEfree
The displacement D can also be expressed in terms of the total field inside the dielectric:

D= g, (1 +)(8)E =¢E
These two equations show that

5 &= 1.,

E= ?Efree = _Efree
The presence of the dielectric material therefore reduces the electric field by a factor ¢,

Example 7:

A metal sphere of radius a carries a carries a charge Q, it is
surrounded out to radius b, by a linear dielectric material of
permittivity &, Find the potential at the center (relative to infinity)

Solution:

To compute the potential we need to know the electric field
everywhere and to find the electric field let’s calculate
displacement vector D:

For a linear dielectric material:

Or using Gauss’s theorem: [V.D dt = [ D.dd = [ pfreedt = Q



D= 7
Amr?
And hence electric field will be:
1
(ﬁf—zf for b<r<a
F={1 0,

| T 72" for r>b
o

k 0 for r<a

The potential at the center will be:

0_) R b Q a Q 0
V=—fE.dl=—j Zdr—f 2dr+—f0dr
o o 4me,T p Amer a

Qr1 1 1

" 4mle,b  ea  eb
We can also find the polarization of the material surrounding the conducting sphere:

= o EoXeQ XeQ
P =¢,x.E = r= r
oXe 4mer? Ame,r?

And the bound volume charge distribution would be:

Db —v.P=———(r2 X3Q>=0

4me,r?

And bound surface charges will be:

47T€Tb2
—Xe Q
k4nsra2

The surface charge at a is negative because 7 points outwards with respect to dielectric and at a
the direction of 7 would be —7, whereas at b the direction of A would be +7 direction.

XeQ at the outer surface
Pp = ﬁ'ﬁ. =

at the inner surface

And this makes sense because the charge on the conducting sphere is positive and it will
attractive negative charge from the dielectric material



Example 7:

The space between the plates of a parallel-plate capacitor is filled with two slabs of linear
dielectric material. Each slab has thickness a, so that the total distance between the plates is 2a.
Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric constant of 1.5. The free charge
density on the top plate is o and on the bottom plate is -o.

a) Find the electric displacement D in each slab.
b) Find the electric field E in each slab.

¢) Find the polarization P in each slab.
d) Find the potential difference between the plates.
e) Find the location and amount of all bound charge. 5%

Solution:

a) The electric displacement D inslab 1 can be calculated using "Gauss's law". Consider a
cylinder with cross sectional area A and axis parallel to the z-axis, being used as a Gaussian
surface. The top of the cylinder is located inside the top metal plate (where the electric
displacement is zero) and the bottom of the cylinder is located inside the dielectric of slab 1. The
electric displacement is directed parallel to the z-axis and pointed downwards. Therefore, the
displacement flux through this surface is equal to

&, =D, A= eree,enclosed =04

Dl =0
In vector notation: D, = —ok
Similarly: D, = —ck
b) The electric field El inslab 1is:

51 == Sﬁl = €0€T1E1 = _O-ié
E _ o ]’é _ 0O A
YT e, 26,
The electric field E, in slab 2 is:
B = o - o - 20 .

27T &g, 15g, 0 3e,

c) The polarization P can be calculated:
P=D—¢,E

The polarization of slab 1:

- — - ~ 0O A [OPN
Pl = Dl — goEl = —ok — &o (_2_80k> = —Ek
The polarization of slab 2:



- - - ~ 20 . o .
P2=D —80E2=—0'k—80<—£k)=—§k
d) The potential difference between the top plate and the bottom plate can be calculated from the

electric field:

_ 7oa
~ 3g,

top o 20
AVZVtop_Vbottom:_f E-dl:E1a+E2a=<g+¥>a
bottom o o

e) There are no bound volume charges (constant polarization —V.P=0= Pfree )- The bound
surface charge density on top of slab 1 is:

=N O . -~ o
Gb,top,l = Pl-n = —Ekk = _E
The surface charge density on the bottom of slab 1 is equal to

= o -~ ~ [0)
Op,bottom,1 = P = —Ek. (=k) = E

The surface charge density on top of slab 2 is:

> 0 ~ o
O-b'top’z = Pz.n = _§kk = _§
The surface charge density on the bottom of slab 2:
> o~ o
Oppottom,2 = P2 = —zk. (k) =%
3 3
| ] +o
—CF;';Q
@
+CT;"2
— _CF.,F’.S
(2
+o/3

| ] —o

f) The total charge above slab 1 is equal to ¢ - /2 = ¢/2. This charge will produce an electric
field in slab 1 equal to

o

2) ~ 0O A

©. .

B 2¢, 4e,

5
El,above =

The total charge below slab 1 is equal to 6/2 - 6/3 + 6/3 - 6 = - /2. This charge will produce an
electric field in slab 1 equal to:

N g A
El,below == de
0

The total electric field in slab 1 is the vector sum of these two fields and is equal to

g .

E, = El,above + El,below = - 2e k
0



The total charge above slab 2 is equal to ¢ - 6/2 + 6/2 - 6/3 = 20/3. This charge will produce an
electric field in slab 2 equal to

By above = —
2,above 280 380

The total charge below slab 1 is equal to 6/3 - o = - 26/3. This charge will produce an electric
field in slab 1 equal to

o .

E
2,below = —
3¢,

The total electric field in slab 1 is the vector sum of these two fields and is equal to

- - — 20- ~
E, = E2,above + Ez,below = - 3¢ k
0

These answers are in agreement with the results obtained in part b).



4.5. Energy in dielectric systems

Consider a capacitor with capacitance C and charged up to a potential V. The total energy stored
in the capacitor is equal to the work done during the charging process:

W—16V2
2

If the capacitor is filled with a linear dielectric (dielectric constant &,.) then the total capacitance
will increase by a factor &,.:

C = &Cyr
consequently the energy stored in the capacitor (when held at a constant potential) is increased
by a factor &,..

A general expression for the energy of a capacitor with dielectric materials present can be found
by studying the charging process in detail. Consider a free charge py,.. held at a potential V.
During the charging process the free charge is increased by Apy,.... The work done on the extra
free charge is equal to:

AW = prfree *V xdrt

Since the divergence of the electric displacement Dis equal to the free charge density py,. , the
divergence of AD is equal to Apfye, - Therefore:

AW = f (V.AD)Vdr
Using the following relation:

(V.vAD) = (V.AD)V + (VV).AD
we can rewrite the expression for AW as

AW = f V.(VAD)dt — f [(VV).AD]dz

The first term on the right-hand side of this equation can be rewritten as

jV. (VAD)Vdr = j(VAﬁ).d& =0

Since the product of potential and electric displacement approach zero faster than
1/r> when r approached infinity. Therefore,

AW = — f (V). D] dr = f (.AD)de

Assuming that the materials present in the system are linear dielectrics then

Hence: E.AD = E.eAE = %A(eﬁ. E) = %A(ﬁ. E)



- — 1 —_ o
AW = f(E.AD)dT = EAf(D.E)azr
The total work done during the charging process is therefore equal to

1(,- >
w=s f (D.E)dr
Note: this equation can be used to calculate the energy for a system that contains linear
dielectrics. If some materials in the system are non-linear dielectrics then the derivation given
above [E AD # %A(L_)). E)] is not correct for non-linear dielectrics).

Example 8:

A spherical conductor, of radius a, carries a charge Q. It is surrounded by linear dielectric
material of susceptibility ye, out to a radius b. Find the energy of this configuration.

Since the system has spherical symmetry the electric displacement Dis completely determined
by the free charge.

- 1

D(r)_erncl=O r<a
= 1Q
D@)=73=0 r>a

Since we are dealing with linear dielectrics, the electric field E is equal to l_)’/(ez(J (14 xe)).
Taking into account that the susceptibility of vacuum is zero and the susceptibility of a conductor
is infinite we get:

E@ =0 r<a

. _ D@ 1 @ 14
E) = (14 x.) 4me,(1 +)(e)r_2 " 4mer?
Bp-2D_1°¢ r>b
& Amte, 12
The scalar product D. E is equal to |D||E| since E and D are parallel, everywhere. The energy of
the system is:

a<r<b

1(,- 5 RSN
W=§f(D.E)dT=2nf \B||E| r2dz

a

b 1 QZ 00 1 QZ
W=2 — r2d 2 f — r2d
ﬂ_[a 16m2e,(1 + x,) 14 rodrtan p lém?e, r* rer
Q2 [ 1 (1 1)+1]_ Q? [1+)(e
C8ne, L+ x.)\a b/ bl 8me,(1+y.)la b



4.6. Forces on dielectrics

A dielectric slab placed partly between the plates of a parallel-plate capacitor will be pulled
inside the capacitor. This force is a result of the fringing fields around the edges of the parallel-
plate capacitor. Note: the field outside the capacitor can not be zero since otherwise the line
integral of the electric field around a closed loop, partly inside the capacitor and partly outside
the capacitor, would not be equal to zero.

v)

ﬁE-dle/

Fringing region

Inside the capacitor, the electric field is uniform. The electric force exerted by the field on the
positive bound charge of the dielectric is directed upwards and is canceled by the electric force
on the negative bound charge directed downwards.

Outside the capacitor however, the electric field is not uniform and the electric force acting on
the positive bound charge will not be canceled by the electric force acting on the negative bound
charge. For the system shown in the figure the vertical components of the two forces (outside the
capacitor) will cancel, but the horizontal components are pointing in the same direction and
therefore do not cancel. The result is a net force acting on the slab, directed towards the center of
the capacitor.

A direct calculation of this force requires a knowledge of the fringing fields of the capacitor
which are often not well known and difficult to calculate. An alternative method that can be used
to determine this force is to calculate the change in the energy of the system when the dielectric
is displaced by a distance ds. The work to be done to pull the dielectric out by an infinitesimal
distance ds is equal to

dW = F,,;dx



where F,,; is the force provided by the external agent to pull the slab out of the capacitor.
This force must be equal and opposite to the force applied by the field:
daw
Ffield = —Fext = _E

The work done by an external agent to move the slab must be equal to the change in the energy
of the capacitor (conservation of energy). Consider the situation shown in the figure below where
the slab of dielectric is inserted to a depth x in the capacitor. , ,

The capacitance of this system is: d
g, (Ww—x)a g,xa
C = Cyac + Cajetectric = K r : X
d d >
E,Xa w
=== W+ Xe)
If the total charge on the top plate is Q then the energy stored in the capacitor is equal to
Q* @Q? d

w=——m—
2C 2 goa(w + xex)

The force on the dielectric can now be calculated and is equal to

dw 1Q?dC _1_,dC

Foo = —_% T —y2__
field dx 2C?dx 2 dx



Example 9:

Two long coaxial cylindrical metal tubes (inner radius a, outer radius b) stand vertically in a tank
of dielectric oil (susceptibility ye, mass density p). The inner one is maintained at potential V, and
the outer one is grounded. To what height x does the oil rise in the space between the tubes?

The height of the oil is such that the electric force on the oil balances the gravitational force. The
capacitance of an empty cylindrical capacitor of height H is equal to

_ 2me,H

i (3)

If the oil rises to a height h then the capacitance of the capacitor is equal to

2ne, (H — x) 2meox  2me,

C = Cyac *+ Caieictric = N + (1 + xe) by b
In3) n(g) In(g)
The electric force on the dielectric (the oil) is [directed upwards]:

(H+ xx.)

F 1 V2 dc 1 V2 2me, ey
. = — _— = * * =
field 2 dx 2 In (é) Xe Xe In (2)

a a

The gravitational force acting on the oil is [directed downwards]:

F, = n(b* — a®*)hpg

In the equilibrium position: | = IF.l. Thus
Ffield = Eg
Xe nez V2 =n(b* - a*)hpg
In(3)
h =y, %o v?




