
Chapter 4. Electrostatic Fields in Matter 

4.1. Polarization 

A neutral atom, placed in an external electric field, will experience no net force. However, even 

though the atom as a whole is neutral, the positive charge is concentrated in the nucleus (radius = 

10-14 m) while the negative charge forms an electron cloud (radius = 10-10 m) surrounding the 

nucleus.  

The nucleus of the atom will experience a force pointing in the same direction as the external 

electric field of magnitude qEext. The negatively charged electron cloud will experience a force 

of the same magnitude, but pointed in a direction opposite to the direction of the electric field. 

As a result of the external force, the nucleus will move in the direction of the electric field until 

the external force on it is canceled by the force exerted on the nucleus by the electron cloud. 

 

This leaves the atom polarized with plus charge shifted slightly one way and the negative 

electron cloud in the other direction. A dipole moment is created in the atom in the direction of 

the applied electric field: 

𝑝 = 𝛼𝐸⃗⃗ 

The constant of proportionality 𝛼 is called the atomic polarizability. Its value depends 

on the detailed structure of the atom. 

 

Consider an electron cloud with a constant volume charge density ρ and a radius a. If the total 

charge of the electron cloud is -q then the corresponding charge density ρ is: 

 

𝜌 = −
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The electric field inside the uniformly charged cloud is: 
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𝑝 = 𝑞𝑑 = (4𝜋𝜀𝑜𝑎
3)𝐸 = 𝛼𝐸 , where 𝛼 = 4𝜋𝜀𝑜𝑎

3 = 3𝜀𝑜𝑉 

where V is the volume of the atom, and 𝛼 is called the atomic polarizability. 

The magnitude of the induced dipole moment is proportional to the magnitude of the external 

electric field, and its direction is equal to the direction of the external electric field.  

Although this model of the atom is extremely crude, it produces results that are in reasonable 

agreement with direct measurements of the atomic polarizability. 

 

 

 

Example 1: 
According to quantum mechanics, the electron cloud for a hydrogen atom in its ground state has 

a charge density equal to 

 𝜌(𝑟) =
𝑞

𝜋𝑎3
𝑒−2𝑟/𝑎 

Where q is the charge of the electron and a is the Bohr radius. Find the atomic polarizability of 

such an atom. 

 

Solution: 

As a result of an external electric field the nucleus of the atom will be displaced by a 

distance d with respect to the center of the electron cloud.  

The electric field generated by the electron cloud can be calculated using Gauss's law: 
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Using integration by parts, we get 
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The displacement of the nucleus will be very small compared to the size of the electron cloud 

(𝑑 ≪ 𝑎). Therefore, we can expand 𝑒−
2𝑑

𝑎  in terms of d/a: 

𝑒−𝑥 = ∑(−1)𝑛
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The nucleus will be in an equilibrium position when the electric force exerted on it by the 

external field is equal to the electric force exerted on it by the electron cloud. This occurs when 

the electric field at the position of the nucleus, generated by the electron cloud, is equal in 

magnitude to the externally applied electric field, but pointing in the opposite direction. The 

dipole moment of the dipole can therefore be expressed in terms of the external field: 

𝑝 = 3𝜋𝜀𝑜𝑎
3 𝐸𝑒𝑥𝑡 

The electric polarizability of the material is therefore equal to 

𝛼 = 3𝜋𝜀𝑜𝑎
3 

Which is close to the result obtained using the classical model of the atom. 

Plarizability for Molecules: 

For molecules the polarizability is different than in atoms because molecules polarize more 

readily in one direction than the other direction. For example CO2 molecule is a linear molecule 

and if electric field is applied along its axis then its polarizability if 4.5 × 10−40 𝐶2. 𝑚/𝑁 but if 

electric field is applied perpendicular to its axis then its polarizability is just 2 × 10−40 𝐶2. 𝑚/𝑁. 

When electric field is at some angle to the axis, then: 

𝑝⃗ = 𝛼⊥𝐸⃗⃗⊥ + 𝛼∥𝐸⃗⃗∥ 

In this case the induced dipole moment may not be in the same direction as the applied electric 

field. For completely asymmetric molecule, the dipole moment can be written as: 

𝑝𝑥 = 𝛼𝑥𝑥𝐸𝑥 + 𝛼𝑥𝑦𝐸𝑦 + 𝛼𝑥𝑧𝐸𝑧 

𝑝𝑦 = 𝛼𝑦𝑥𝐸𝑥 + 𝛼𝑦𝑦𝐸𝑦 + 𝛼𝑦𝑧𝐸𝑧 

𝑝𝑧 = 𝛼𝑧𝑥𝐸𝑥 + 𝛼𝑧𝑦𝐸𝑦 + 𝛼𝑧𝑧𝐸𝑧 

The set of nine constants constitute the polarizability tensor for the molecule. Their values 

depend on the orientation of the axes and it is possible to choose principal axis such a way to 

have all the off diagonal elements (𝛼𝑥𝑦, 𝛼𝑥𝑧 , 𝛼𝑦𝑧 , …) equal zero, so there are only three 

polarizability elements 𝛼𝑥𝑥 , 𝛼𝑦𝑦, and 𝛼𝑧𝑧. 

Alignment of Polar Molecules 

Some molecules, like water, have a permanent dipole moment. Normally, the dipole moments of 

the water molecules will be directed randomly, and the average dipole moment is zero. When the 

water is exposed to an external electric field, a torque is exerted on the water molecule, and it 

will try to align its dipole moment with the external electric field. Figure below shows a dipole 

𝑝⃗ = 𝑞𝑑 placed in an electric field, directed along the x-axis.  



The net force on the dipole is zero since 

the net charge is equal to zero. The 

torque on the dipole with respect to its 

center is equal to 

𝜏 = (𝑟+ × 𝐹⃗+) + (𝑟− × 𝐹⃗−)

= (
1

2
𝑑 × 𝑞𝐸⃗⃗)

+ (−
1

2
𝑑 × (−𝑞)𝐸⃗⃗)

= 𝑞𝑑 × 𝐸⃗⃗ = 𝑝⃗ × 𝐸⃗⃗ 
 

As a result of this torque, the dipole will try to align itself with the electric field. When the dipole 

moment is pointing in the same direction as the electric field the 

torque on the dipole will be equal to zero. 

 

Example 2: 
Show that the energy of a dipole in an electric field is given by 

𝑈 = 𝑝⃗. 𝐸⃗⃗ 
Consider the dipole located at the origin and making an angle θ 

with the z-axis of the coordinate system. The electric field is 

directed along z-axis. 

The energy of the system can be determined by calculating the work to be done to move the 

dipole from infinity to its present location.  

Assume the dipole is initially oriented parallel to the x axis and is first moved from infinity along 

the x axis to r = 0. The force exerted on the dipole by the electric field is directed perpendicular 

to the displacement and therefore the work done by this force is equal to zero.  

The dipole is then rotated to its final position (from π/2 to θ). The torque exerted by the electric 

field on the dipole: 

𝜏 = 𝑝⃗ × 𝐸⃗⃗ = 𝑝𝐸 sin 𝜃 𝑘̂ 

In order to rotate the dipole by an external agent, we must supply a torque opposite to 𝜏: 

𝜏𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = −𝑝𝐸 sin 𝜃  𝑘̂ 

Therefore, the work done by an external agent is:  

𝑊 = −∫ 𝜏 𝑑𝜃
𝜃

𝜋
2

= ∫ 𝑝𝐸 sin 𝜃  𝑑𝜃
𝜃

𝜋
2

= −𝑝𝐸 (cos 𝜃 − cos (
𝜋

2
)) = −𝑝. 𝐸⃗⃗ 

The potential energy of the dipole is therefore equal to: 𝑈 = −𝑝⃗. 𝐸⃗⃗ 

Potential energy  reaches a minimum when 𝑝⃗ is parallel to 𝐸⃗⃗ (the dipole is aligned with the 

electric field). 

 



4.1.4 Polarization 

What happens to a piece of dielectric material when placed inside an external 

electric field? 

Well, if the material is made of neutral atoms then field will induce tiny dipole moments in the 

atoms of the material, pointing in the same direction as the electric field. If the material is made 

up of polar molecules, each permanent dipole will experience a torque, tending to line it up along 

the field direction. 

So in both cases material will be polarized, and the polarization of the material is: 

𝑃⃗⃗ = 𝑑𝑖𝑝𝑜𝑙𝑒 𝑚𝑜𝑚𝑒𝑛𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 

Now this polarized material will produce its own electric field. 

 

4.2. The Field of a Polarized Object 

Consider a piece of polarized material with a dipole moment per unit volume equal to 𝑃⃗⃗. Since 

dipole material is made of several tiny dipoles and the potential due to a single dipole is: 

𝑉(𝑟) =
1

4𝜋𝜀𝑜
 
𝑝⃗. ∆𝑟̂

(∆𝑟)2
 

The electrostatic potential generated by the whole material will be integral of the above relation: 

𝑉(𝑟) =
1

4𝜋𝜀𝑜
∫
∆𝑟̂. 𝑃⃗⃗(𝑟′)
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1
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1
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1

∆𝑟
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∆𝑟̂
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Using the following relation (one of the product rules of the vector operator) 

∇⃗⃗⃗′. (
1

∆𝑟
𝑃⃗⃗) =

1

∆𝑟
(∇⃗⃗⃗′. 𝑃⃗⃗) + 𝑃⃗⃗. ∇⃗⃗⃗ (

1

∆𝑟
) 

We can rewrite the expression for the electric potential as: 

𝑉(𝑟) =
1

4𝜋𝜀𝑜
∫ 𝑃⃗⃗. ∇⃗⃗⃗′(1/∆𝑟)𝑑𝜏′ =

1
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[∫ ∇⃗⃗⃗′. (

1

∆𝑟
𝑃⃗⃗) 𝑑𝜏′ −∫

1

∆𝑟
(∇⃗⃗⃗′. 𝑃⃗⃗)𝑑𝜏′] 

𝑉(𝑟) =
1
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1

∆𝑟
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The first term looks like the potential of a surface charge distribution with:  

𝜎𝑏 = 𝑃⃗⃗. 𝑛̂ (bound surface charge) where 𝑛̂ is the normal unit vector  

and the second term looks like the potential of a volume charge with:  

𝜌𝑏 = −(∇⃗⃗⃗. 𝑃⃗⃗) (bound volume charge) 

𝑉(𝑟) =
1

4𝜋𝜀𝑜
∫
1

∆𝑟
𝜎𝑏𝑑𝑎⃗ +

1

4𝜋𝜀𝑜
∫
1

∆𝑟
𝜌𝑏𝑑𝜏 



 

The equation for the electrostatic potential shows that the potential (and therefore also the 

electric field) generated by a polarized object is equal to the potential generated by an object with 

surface charge density 𝜎𝑏 and volume charge density 𝜌𝑏. 

So instead of integrating the contributions of all infinitesimal dipoles, we can just find those 

bound charges and calculate the potential or field they produce. 

 

 

Example 3:  

Find the electric field produced by a uniformly polarized sphere of radius R. 

Solution: 

We can choose to have the direction of polarization along z-axis. The 

volume bound charge density 𝜌𝑏 is zero since the polarization is 

uniform: 

𝜌𝑏 = −(∇⃗⃗⃗. 𝑃⃗⃗) = 0 

However, the surface charge density is: 

𝜎𝑏 = 𝑃⃗⃗. 𝑛̂ = 𝑃 cos 𝜃 

Where 𝜃 is the usual polar coordinate. 

We would like to find the electric field produced by this surface charge 

density “pasted” on the sphere. 

We already have calculated electric potential due to a sphere on which charge density 𝜎𝑏 =
𝑘 cos 𝜃 was pasted and we found that: 

 

 So the electric potential due to 𝜎𝑏 = 𝑃 cos 𝜃 is given as: 

𝑉(𝑟, 𝜃) =

{
 
 

 
 𝑃

3𝜖𝑜
 𝑟 cos 𝜃       𝑓𝑜𝑟 𝑟 ≤ 𝑅

𝑃

3𝜖𝑜

𝑅3

𝑟2
cos 𝜃      𝑓𝑜𝑟 𝑟 ≥ 𝑅

 

Since 𝑟 cos 𝜃 = 𝑧 

So the electric field inside the sphere (𝑟 ≤ 𝑅) is: 



𝐸⃗⃗𝑖𝑛 = −∇⃗⃗⃗𝑉 = −(
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑥
𝑗̂ +

𝜕

𝜕𝑥
𝑘̂)

𝑃

3𝜖𝑜
 𝑧 = −

𝑃

3𝜖𝑜
𝑘̂ 

Outside the sphere, the potential is identical to that of a perfect dipole at the origin.   

𝑉 =
1

4𝜋𝜖𝑜
 
𝑝⃗. 𝑟̂

𝑟2
          𝑓𝑜𝑟 𝑟 ≥ 𝑅 

Whose dipole moment is equal to the dipole moment of a uniformly polarized sphere. 

𝑝⃗ =
4

3
𝜋𝑅3𝑃⃗⃗ 

𝑉 =
1

4𝜋𝜖𝑜
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3 𝜋𝑅
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𝑟2
𝑃 cos 𝜃 =

𝑃

3𝜖𝑜

𝑅3

𝑟2
cos 𝜃            𝑓𝑜𝑟 𝑟 ≥ 𝑅 

 

The electric field outside the sphere is: 

𝐸⃗⃗𝑜𝑢𝑡 = −∇⃗⃗⃗𝑉 = −(
𝜕

𝜕𝑟
𝑟̂ +

1

𝑟

𝜕

𝜕𝜃
𝜃 +

1

𝑟 sin 𝜃

𝜕

𝜕𝜙
𝜙̂)

𝑃

3𝜖𝑜

𝑅3
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𝐸⃗⃗𝑜𝑢𝑡 = −(−2
𝑃

3𝜖𝑜

𝑅3

𝑟3
cos𝜃 𝑟̂ −

𝑃

3𝜖𝑜

𝑅3

𝑟3
sin 𝜃 𝜃 + 0) 

 

𝐸⃗⃗𝑜𝑢𝑡 =
𝑃

3𝜖𝑜

𝑅3

𝑟3
(2 cos 𝜃 𝑟̂ + sin 𝜃 𝜃) 

 

 

Electric field inside and outside the uniformly polarized sphere is shown in the figure. 

 

 

 

 

 

 

 

 

 



Example 4:  

A sphere of radius R carries a polarization 𝑃⃗⃗ = 𝑘𝑟, where k is a constant and 𝑟 is the vector from 

the center. 

a) Calculate the bound charges 𝜎𝑏 and 𝜌𝑏. 

b) Find the electric field inside and outside the sphere. 

 

a) The unit vector 𝑛̂ on the surface of the sphere is equal to the radial unit vector. The bound 

surface charge is: 

𝜎𝑏 = 𝑃⃗⃗. 𝑛̂|𝑟=𝑅 = 𝑘𝑟. 𝑟̂
|𝑟=𝑅 = 𝑘𝑅 

The bound volume charge density is: 

𝜌𝑏 = −(∇⃗⃗⃗. 𝑃⃗⃗) = −
1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝑘𝑟) = −3𝑘 

b) First consider the region outside the sphere. The electric field in this region due to the surface 

charge and due to the volume charge. 

Electric field outside the sphere due to surface charge is: 

𝐸⃗⃗𝑜𝑢𝑡−𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
1

4𝜋𝜀𝑜

1

𝑟2
∫𝜎𝑏𝑑𝑎

′ 𝑟̂ =
1

4𝜋𝜀𝑜

𝑘𝑅

𝑟2
∗ 4𝜋𝑅2 =

𝑘𝑅3

𝜀𝑜𝑟2
𝑟̂ 

 

The electric field in this region due to the volume charge is: 

𝐸⃗⃗𝑜𝑢𝑡−𝑣𝑜𝑙𝑢𝑚𝑒(𝑟) =
1

4𝜋𝜀𝑜

1

𝑟2
∫𝜌𝑏𝑑𝜏 𝑟̂ =

1

4𝜋𝜀𝑜

(−3𝑘)

𝑟2
∗
4

3
𝜋𝑅3𝑟̂ = −

𝑘𝑅3

𝜀𝑜𝑟
2
𝑟̂ 

𝐸⃗⃗𝑜𝑢𝑡(𝑟) = 𝐸⃗⃗𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑟) + 𝐸⃗⃗𝑣𝑜𝑙𝑢𝑚𝑒(𝑟) = 0 

Now consider the region inside the sphere. The electric field in this region due to the surface 

charge is equal to zero.  

The electric field due to the volume charge is equal to 

𝐸⃗⃗𝑖𝑛−𝑣𝑜𝑙𝑢𝑚𝑒(𝑟) =
1

4𝜋𝜀𝑜

1

𝑟2
∫𝜌𝑏𝑑𝜏 𝑟̂ =

1

4𝜋𝜀𝑜

1

𝑟2
 (−3𝑘)

4

3
𝜋𝑟3 = −

𝑘𝑟

𝜀𝑜
𝑟̂  

 

 

 

 

 

 

 

 



Physical Interpretation of Bound Charges: 

The bound charges introduced in this Section are not just mathematical artifacts, but are real 

charges, bound to the individual dipoles of the material. Consider for example the three dipoles 

shown in the figure below. When they are aligned (lengthwise) the center charges cancel, and the 

system looks like a single dipole with dipole moment 3dq. 

 
 

To calculate the actual amount of bound charge resulting from a given polarization, lets consider 

a tube of dielectric parallel to polarization 𝑃⃗⃗. The dipole moment of the tiny chunk shown in the 

figure below is P(Ad), where A is the cross-sectional area and d is the thickness of the tube. 

 

In terms of charge q at the ends, the same dipole moment can be written as qd. 

𝑞𝑑 = 𝑃(𝐴𝑑) 

𝑞 = 𝑃𝐴 

If the ends are sliced off perpendicularly then 

𝜎𝑏 =
𝑞

𝐴
= 𝑃 

But if it is sliced at an oblique angle as shown then 

𝜎𝑏 = 𝑃 cos 𝜃 = 𝑃⃗⃗. 𝑛̂ 

The effect of polarization is to paint a bound charge 𝜎𝑏 = 𝑃⃗⃗. 𝑛̂ over the surface of the material. 

 

Since these charges reside on the surface and are bound to the dipoles they are called the bound 

surface charge (𝜎𝑏). 

 

 

 



Example 5: 

A dielectric cube of side s, centered at the origin, carries a "frozen-in" polarization 𝑃⃗⃗ = 𝑘𝑟 , 

where k is a constant. Find all the bound charges, and check that they add up to zero. 

 

The bound volume charge density 𝜌𝑏 is equal to: 

𝜌𝑏 = −[∇⃗⃗⃗. 𝑃⃗⃗] = −
1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝑘𝑟) = −3𝑘 

Since the bound volume charge density is constant, the total bound 

volume charge in the cube is equal to product of the charge density and 

the volume: 

𝑞𝑣𝑜𝑙𝑢𝑚𝑒 = −3𝑘𝑎
3 

The surface charge density 𝜎𝑏 is equal to: 

𝜎𝑏 = 𝑃⃗⃗. 𝑛̂ = 𝑘𝑟. 𝑛̂ 

The scalar product between 𝑟 and 𝑛̂ can be evaluate as: 

𝑟. 𝑛̂ = 𝑟 cos 𝜃 =
𝑎

2
 

Therefore the surface charge density is equal to 

𝜎𝑏 = 𝑘𝑟. 𝑛̂ =
𝑘𝑎

2
 

𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝑘𝑎

2
(6𝑎2) = 3𝑘𝑎3 

The total bound charge on the cube is equal to 

𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝑣𝑜𝑙𝑢𝑚𝑒 + 𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 0 

 

 

4.3. The Electric Displacement 

The electric field generated by a polarized material is equal to the electric field produced by its 

bound charges. If free charges are also present then the total electric field produced by this 

system is equal to the vector sum of the electric fields produced by the bound charges and by the 

free charges.  

Gauss's law can also be used for this type of systems to calculate the electric field as long as we 

include both free and bound charges: 

∇⃗⃗⃗. 𝐸⃗⃗ =
𝜌

𝜀𝑜
=
𝜌𝑏𝑜𝑢𝑛𝑑 + 𝜌𝑓𝑟𝑒𝑒

𝜀𝑜
=
1

𝜀𝑜
(−∇⃗⃗⃗. 𝑃⃗⃗ + 𝜌𝑓𝑟𝑒𝑒) 

where 𝑃⃗⃗ is the polarization of the material. This expression can be rewritten as: 

∇⃗⃗⃗. (𝜀𝑜𝐸⃗⃗ + 𝑃⃗⃗) = ∇⃗⃗⃗. 𝐷⃗⃗⃗ = 𝜌𝑓𝑟𝑒𝑒 

Where 𝐷⃗⃗⃗(= 𝜀𝑜𝐸⃗⃗ + 𝑃⃗⃗) is called the electric displacement. 



 Gauss's law can also be rewritten as: 

∇⃗⃗⃗. 𝐷⃗⃗⃗ = 𝜌𝑓𝑟𝑒𝑒                 (Gauss’s law in differential form) 

and 

∮ 𝐷⃗⃗⃗. 𝑑𝑎⃗ = 𝑄𝑓𝑟𝑒𝑒     (Gauss’s law in integral form) 

 

These two versions of Gauss's law are particularly useful since they make reference only to free 

charges, which are the charges we can control. 

Although it seems that the displacement 𝐷⃗⃗⃗ has properties similar to the electric field 𝐸⃗⃗ there are 

some very significant differences. For example, the curl of 𝐷⃗⃗⃗ is equal to: 

∇⃗⃗⃗ × 𝐷⃗⃗⃗ = 𝜀𝑜 ∇⃗⃗⃗ × 𝐸⃗⃗ + ∇⃗⃗⃗ × 𝑃⃗⃗ = ∇⃗⃗⃗ × 𝑃⃗⃗ 
and is in general not equal to zero.  

Since curl of 𝐷⃗⃗⃗ is not necessarily equal to zero, there is in general no potential that generates 𝐷⃗⃗⃗. 

 

The Helmholtz theorem tell us that if we know the curl and the divergence of a vector function 

𝑣⃗ then this is sufficient information to uniquely define the vector function 𝑣⃗.  

Therefore, the electric field 𝐸⃗⃗ is uniquely defined by Gauss's law since we know that he curl 

of 𝐸⃗⃗ is zero, everywhere. The displacement vector 𝐷⃗⃗⃗ on the other hand is not uniquely 

determined by the free charge distribution, but requires additional information (such as 𝑃⃗⃗). 

 

Boundary Conditions: 

The electrostatic boundary conditions can be recast interms of 𝐷⃗⃗⃗, such that: 

𝐷𝑎𝑏𝑜𝑣𝑒
⊥ − 𝐷𝑏𝑒𝑙𝑜𝑤

⊥ = 𝜎𝑓 

Since ∇⃗⃗⃗ × 𝐷⃗⃗⃗ = ∇⃗⃗⃗ × 𝑃⃗⃗, so we can write the other boundary condition as: 

𝐷𝑎𝑏𝑜𝑣𝑒
∥ − 𝐷𝑏𝑒𝑙𝑜𝑤

∥ = 𝑃𝑎𝑏𝑜𝑣𝑒
∥ − 𝑃𝑏𝑒𝑙𝑜𝑤

∥  

In the presence of a dielectric these boundary conditions are more useful than electric field 

boundary conditions: 

𝐸𝑎𝑏𝑜𝑣𝑒
⊥ − 𝐸𝑏𝑒𝑙𝑜𝑤

⊥ =
𝜎

𝜀𝑜
 

𝐸𝑎𝑏𝑜𝑣𝑒
∥ − 𝐸𝑏𝑒𝑙𝑜𝑤

∥ = 0 

 

 

 

 

 



 

Example 6: 

Suppose the field inside a large piece of dielectric is  𝐸⃗⃗𝑜 , so that the electric displacement is 

equal to 𝐷⃗⃗⃗𝑜 = 𝜀𝑜𝐸⃗⃗𝑜 + 𝑃⃗⃗. 

a) Now, a small spherical cavity is hollowed out of the material. Find the field at the center of the 

cavity in terms of 𝐸⃗⃗𝑜 and 𝑃⃗⃗. Also find the displacement at the center of the cavity in terms 

of 𝐷⃗⃗⃗𝑜 and 𝑃⃗⃗. 

b) Do the same for a long needle-shaped cavity running parallel to 𝑃⃗⃗. 

c) Do the same for a thin wafer-shaped cavity perpendicular to 𝑃⃗⃗. 

 

a) Consider a large piece of dielectric material with polarization 𝑃⃗⃗ and a small sphere with 

polarization −𝑃⃗⃗ superimposed on it. The field generated by this system is equal to the field 

generated by the dielectric material with a small spherical cavity hollowed out (principle of 

superposition).  

The electric field inside a sphere with polarization −𝑃⃗⃗ is uniform and equal to [as calculated in 

example 3] 

𝐸⃗⃗𝑠𝑝ℎ𝑒𝑟𝑒 = −
1

3𝜀𝑜
 (−𝑃⃗⃗) =

𝑃⃗⃗

3𝜀𝑜
  

The field at the center of the cavity is therefore equal to 

𝐸⃗⃗𝑐𝑒𝑛𝑡𝑒𝑟 = 𝐸⃗⃗𝑜 + 𝐸⃗⃗𝑠𝑝ℎ𝑒𝑟𝑒 = 𝐸⃗⃗𝑜 +
𝑃⃗⃗

3𝜀𝑜
  

The corresponding electric displacement at the center of the cavity is equal to 

𝐷⃗⃗⃗𝑐𝑒𝑛𝑡𝑒𝑟 = 𝜀𝑜𝐸⃗⃗𝑐𝑒𝑛𝑡𝑒𝑟 = 𝜀𝑜𝐸⃗⃗𝑜 +
1

3
𝑃⃗⃗ = 𝐷⃗⃗⃗𝑜 −

2

3
𝑃⃗⃗ 

b) Consider a large piece of dielectric material with polarization 𝑃⃗⃗ and a small long needle-

shaped piece with polarization −𝑃⃗⃗ superimposed on it. The field generated by this system is 

equal to the field generated by the dielectric material with a small long needle-shaped cavity 

hollowed out (principle of superposition). The electric field of a polarized needle of length s is 

equal to that of two point charges (+q and -q) located a distance s apart. The charge on top of the 

needle will be negative, while the charge on the bottom of the needle will be positive. The charge 

density on the end caps of the needle is equal to P. Therefore, 

𝑞 = 𝜎𝑏𝐴 = 𝑃𝐴 
where A is the surface area of the end caps of the needle. If s is the total length of the needle then 

the electric field generated by the needle at its center is: 

𝐸⃗⃗𝑛𝑒𝑒𝑑𝑙𝑒 =
1

4𝜋𝜀𝑜

+𝑃𝐴

𝑠2/4
 𝑘̂ −

1

4𝜋𝜀𝑜

(−𝑃𝐴)

𝑠2

4

 𝑘̂ =
2

𝜋𝜀𝑜

𝑃𝐴

𝑠2
 𝑘̂  

 

In the needle limit 𝐴 → 0 and therefore 𝐸⃗⃗𝑛𝑒𝑒𝑑𝑙𝑒 → 0 . Thus at the center of the needle cavity 



𝐸⃗⃗𝑐𝑒𝑛𝑡𝑒𝑟 = 𝐸⃗⃗𝑜 
The electric displacement at this point is equal to: 

𝐷⃗⃗⃗𝑐𝑒𝑛𝑡𝑒𝑟 = 𝜀𝑜𝐸⃗⃗𝑜 = 𝐷⃗⃗⃗𝑜 − 𝑃⃗⃗ 
 

c) Consider a large piece of dielectric material with polarization 𝑃⃗⃗ and a thin wafer-shaped piece 

of dielectric material with polarization −𝑃⃗⃗ superimposed on it. The field generated by this 

system is equal to the field generated by the dielectric material with a thin wafer-shaped cavity 

hollowed out (principle of superposition).  

The electric field inside the wafer will be that of two parallel plates with charge densities equal 

to -σ on the top and +σ on the bottom. For a thin wafer-shaped cavity the electric field between 

the plates will be equal to the field of a parallel-plate capacitor with infinitely large plates. Thus 

𝐸⃗⃗𝑤𝑎𝑓𝑒𝑟 =
𝜎

𝜀𝑜
𝑘̂ =

1

𝜀𝑜
𝑃⃗⃗ 

The net electric field in the center of the cavity is therefore equal to 

𝐸⃗⃗𝑐𝑒𝑛𝑡𝑒𝑟 = 𝐸⃗⃗𝑜 + 𝐸⃗⃗𝑤𝑎𝑓𝑒𝑟 = 𝐸⃗⃗𝑜 +
1

𝜀𝑜
𝑃⃗⃗ 

The electric displacement at the center of the cavity is equal to 

𝐷⃗⃗⃗𝑐𝑒𝑛𝑡𝑒𝑟 = 𝜀𝑜𝐸⃗⃗𝑐𝑒𝑛𝑡𝑒𝑟 = 𝜀𝑜𝐸⃗⃗𝑜 + 𝑃⃗⃗ = 𝐷⃗⃗⃗ 
 

4.4. Linear Dielectrics 

Most dielectric materials become polarized when they are placed in an external electric field. In 

many materials the polarization is proportional to the electric field: 

𝑃⃗⃗ = 𝜀𝑜𝜒𝑒 𝐸⃗⃗ 

where 𝐸⃗⃗ is the total electric field (external + internal). The constant of proportionality 𝜒𝑒 is 

called the electric susceptibility.  

Materials in which the induced polarization is proportional to the electric field are called linear 

dielectrics. 

The electric displacement in a linear dielectric is also proportional to the total electric field: 

𝐷⃗⃗⃗ = 𝜀𝑜𝐸⃗⃗𝑜 + 𝑃⃗⃗ = 𝜀𝑜(1 + 𝜒𝑒)𝐸⃗⃗ = 𝜀𝐸⃗⃗ 
where ε is called the permittivity of the material which is equal to 

𝜀𝑟 =
𝜀

𝜀𝑜
= (1 + 𝜒𝑒) 

The constant 𝜀𝑟 is called relative permittivity or  dielectric constant of the material. 

Consider a volume V entirely filled with linear dielectric material with dielectric constant 𝜀𝑟. The 

polarization 𝑃⃗⃗ of this material is: 



𝑃⃗⃗ = 𝜀𝑜𝜒𝑒 𝐸⃗⃗ 

and is therefore proportional to 𝐸⃗⃗ everywhere. Therefore: 

∇⃗⃗⃗ × 𝑃⃗⃗ = 𝜀𝑜𝜒𝑒(∇⃗⃗⃗ × 𝐸⃗⃗) = 0 

and consequently 

∇⃗⃗⃗ × 𝐷⃗⃗⃗ = 𝜀𝑜(∇⃗⃗⃗ × 𝐸⃗⃗) + ∇⃗⃗⃗ × 𝑃⃗⃗ = 0 

The electric displacement 𝐷⃗⃗⃗ therefore satisfies the following two conditions: 

∇⃗⃗⃗ × 𝐷⃗⃗⃗ = 0 and ∇⃗⃗⃗. 𝐷⃗⃗⃗ = 𝜌𝑓𝑟𝑒𝑒 

The electric field generated by the free charges when the dielectric is not present satisfies the 

following two equations: 

∇⃗⃗⃗ × 𝐸⃗⃗𝑓𝑟𝑒𝑒 = 0 and ∇⃗⃗⃗. 𝐸⃗⃗𝑓𝑟𝑒𝑒 =
𝜌𝑓𝑟𝑒𝑒

𝜀𝑜
 

Comparing the two sets of differential equations for 𝐷⃗⃗⃗ and 𝐸⃗⃗𝑓𝑟𝑒𝑒 we conclude that: 

𝐷⃗⃗⃗ = 𝜀𝑜𝐸⃗⃗𝑓𝑟𝑒𝑒 

The displacement 𝐷⃗⃗⃗ can also be expressed in terms of the total field inside the dielectric: 

𝐷⃗⃗⃗ = 𝜀𝑜(1 + 𝜒𝑒)𝐸⃗⃗ = 𝜀𝐸⃗⃗ 
These two equations show that 

𝐸⃗⃗ =
𝜀𝑜
𝜀
𝐸⃗⃗𝑓𝑟𝑒𝑒 =

1

𝜀𝑟
𝐸⃗⃗𝑓𝑟𝑒𝑒 

The presence of the dielectric material therefore reduces the electric field by a factor 𝜀𝑟. 

 

 

 

Example 7: 

A metal sphere of radius a carries a carries a charge Q, it is 

surrounded out to radius b, by a linear dielectric material of 

permittivity 𝜀, Find the potential at the center (relative to infinity)  

Solution: 

To compute the potential we need to know the electric field 

everywhere and to find the electric field let’s calculate 

displacement vector D:   

For a linear dielectric material:  

∇⃗⃗⃗. 𝐷⃗⃗⃗ = 𝜌𝑓𝑟𝑒𝑒 

Or using Gauss’s theorem: ∫ ∇⃗⃗⃗. 𝐷⃗⃗⃗ 𝑑𝜏 = ∫ 𝐷⃗⃗⃗. 𝑑𝑎⃗ = ∫𝜌𝑓𝑟𝑒𝑒𝑑𝜏 = 𝑄 



𝐷⃗⃗⃗ =
𝑄

4𝜋𝑟2
𝑟̂ 

And hence electric field will be: 

𝐸⃗⃗ =

{
 
 

 
 
1

4𝜋𝜀

𝑄

𝑟2
𝑟̂      𝑓𝑜𝑟     𝑏 < 𝑟 < 𝑎

1

4𝜋𝜀𝑜

𝑄

𝑟2
𝑟̂             𝑓𝑜𝑟     𝑟 > 𝑏

0                   𝑓𝑜𝑟       𝑟 < 𝑎

 

 

The potential at the center will be: 

𝑉 = −∫ 𝐸⃗⃗. 𝑑𝑙
0

∞

= −∫
𝑄

4𝜋𝜀𝑜𝑟
2
𝑑𝑟

𝑏

∞

−∫
𝑄

4𝜋𝜀𝑟2

𝑎

𝑏

𝑑𝑟 + −∫ 0 𝑑𝑟
0

𝑎

 

𝑉 =
𝑄

4𝜋
[
1

𝜀𝑜𝑏
+
1

𝜀𝑎
−
1

𝜀𝑏
] 

We can also find the polarization of the material surrounding the conducting sphere: 

𝑃⃗⃗ = 𝜀𝑜𝜒𝑒 𝐸⃗⃗ =
𝜀𝑜𝜒𝑒𝑄

4𝜋𝜀𝑟2
𝑟̂ =

𝜒𝑒𝑄

4𝜋𝜀𝑟𝑟
2
𝑟̂   

And the bound volume charge distribution would be: 

𝜌𝑏 = −∇⃗⃗⃗. 𝑃⃗⃗ = −(
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜒𝑒𝑄

4𝜋𝜀𝑟𝑟
2
) = 0 

And bound surface charges will be: 

𝜌𝑏 = 𝑃⃗⃗. 𝑛̂ =

{
 

 
𝜒𝑒𝑄

4𝜋𝜀𝑟𝑏
2      𝑎𝑡 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

−𝜒𝑒𝑄

4𝜋𝜀𝑟𝑎
2
     𝑎𝑡 𝑡ℎ𝑒 𝑖𝑛𝑛𝑒𝑟 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 

The surface charge at a is negative because 𝑛̂ points outwards with respect to dielectric and at a 

the direction of 𝑛̂ would be −𝑟, whereas at b the direction of 𝑛̂ would be +𝑟 direction. 

And this makes sense because the charge on the conducting sphere is positive and it will 

attractive negative charge from the dielectric material   

 

 

 

 

 

 



Example 7: 
The space between the plates of a parallel-plate capacitor is filled with two slabs of linear 

dielectric material. Each slab has thickness a, so that the total distance between the plates is 2a. 

Slab 1 has a dielectric constant of 2, and slab 2 has a dielectric constant of 1.5. The free charge 

density on the top plate is σ and on the bottom plate is -σ. 

a) Find the electric displacement 𝐷⃗⃗⃗ in each slab. 

b) Find the electric field 𝐸⃗⃗ in each slab. 

c) Find the polarization 𝑃⃗⃗ in each slab. 

d) Find the potential difference between the plates. 

e) Find the location and amount of all bound charge. 

 

 

Solution: 

a) The electric displacement 𝐷⃗⃗⃗ in slab 1 can be calculated using "Gauss's law". Consider a 

cylinder with cross sectional area A and axis parallel to the z-axis, being used as a Gaussian 

surface. The top of the cylinder is located inside the top metal plate (where the electric 

displacement is zero) and the bottom of the cylinder is located inside the dielectric of slab 1. The 

electric displacement is directed parallel to the z-axis and pointed downwards. Therefore, the 

displacement flux through this surface is equal to 

Φ𝐷 = 𝐷1𝐴 = 𝑄𝑓𝑟𝑒𝑒,𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜎𝐴 

𝐷1 = 𝜎 

In vector notation:   𝐷⃗⃗⃗1 = −𝜎𝑘̂ 

Similarly:     𝐷⃗⃗⃗2 = −𝜎𝑘̂ 

b) The electric field 𝐸⃗⃗1 in slab 1 is: 

𝐷⃗⃗⃗1 = 𝜀𝐸⃗⃗1 = 𝜀𝑜𝜀𝑟1 𝐸⃗⃗1 = −𝜎𝑘̂ 

𝐸⃗⃗1 = −
𝜎

𝜀𝑜𝜀𝑟1
𝑘̂ = −

𝜎

2𝜀𝑜
𝑘̂ 

The electric field 𝐸⃗⃗2 in slab 2 is: 

𝐸⃗⃗2 = −
𝜎

𝜀𝑜𝜀𝑟2
𝑘̂ = −

𝜎

1.5𝜀𝑜
𝑘̂ = −

2𝜎

3𝜀𝑜
𝑘̂ 

c) The polarization 𝑃⃗⃗ can be calculated: 

𝑃⃗⃗ = 𝐷⃗⃗⃗ − 𝜀𝑜 𝐸⃗⃗ 
The polarization of slab 1: 

𝑃⃗⃗1 = 𝐷⃗⃗⃗1 − 𝜀𝑜𝐸⃗⃗1 = −𝜎𝑘̂ − 𝜀𝑜 (−
𝜎

2𝜀𝑜
𝑘̂) = −

𝜎

2
𝑘̂ 

The polarization of slab 2: 



𝑃⃗⃗2 = 𝐷⃗⃗⃗2 − 𝜀𝑜𝐸⃗⃗2 = −𝜎𝑘̂ − 𝜀𝑜 (−
2𝜎

3𝜀𝑜
𝑘̂) = −

𝜎

3
𝑘̂ 

d) The potential difference between the top plate and the bottom plate can be calculated from the 

electric field: 

Δ𝑉 = 𝑉𝑡𝑜𝑝 − 𝑉𝑏𝑜𝑡𝑡𝑜𝑚 = −∫ 𝐸⃗⃗. 𝑑𝑙
𝑡𝑜𝑝

𝑏𝑜𝑡𝑡𝑜𝑚

= 𝐸1𝑎 + 𝐸2𝑎 = (
𝜎

2𝜀𝑜
+
2𝜎

3𝜀𝑜
)𝑎 =

7𝜎𝑎

3𝜀𝑜
 

 

e) There are no bound volume charges (constant polarization −∇⃗⃗⃗. 𝑃⃗⃗ = 0 = 𝜌𝑓𝑟𝑒𝑒 ). The bound 

surface charge density on top of slab 1 is: 

𝜎𝑏,𝑡𝑜𝑝,1 = 𝑃⃗⃗1. 𝑛̂ = −
𝜎

2
𝑘̂. 𝑘̂ = −

𝜎

2
 

The surface charge density on the bottom of slab 1 is equal to 

𝜎𝑏,𝑏𝑜𝑡𝑡𝑜𝑚,1 = 𝑃⃗⃗1. 𝑛̂ = −
𝜎

2
𝑘̂. (−𝑘̂) =

𝜎

2
 

The surface charge density on top of slab 2 is: 

𝜎𝑏,𝑡𝑜𝑝,2 = 𝑃⃗⃗2. 𝑛̂ = −
𝜎

3
𝑘̂. 𝑘̂ = −

𝜎

3
 

The surface charge density on the bottom of slab 2: 

𝜎𝑏,𝑏𝑜𝑡𝑡𝑜𝑚,2 = 𝑃⃗⃗2. 𝑛̂ = −
𝜎

3
𝑘̂. (−𝑘̂) =

𝜎

3
 

 

f) The total charge above slab 1 is equal to σ - σ/2 = σ/2. This charge will produce an electric 

field in slab 1 equal to 

𝐸⃗⃗1,𝑎𝑏𝑜𝑣𝑒 = −
(
𝜎
2)

2𝜀𝑜
𝑘̂ = −

𝜎

4𝜀𝑜
𝑘̂ 

The total charge below slab 1 is equal to σ/2 - σ/3 + σ/3 - σ = - σ/2. This charge will produce an 

electric field in slab 1 equal to: 

𝐸⃗⃗1,𝑏𝑒𝑙𝑜𝑤 = −
𝜎

4𝜀𝑜
𝑘̂ 

The total electric field in slab 1 is the vector sum of these two fields and is equal to 

𝐸⃗⃗1 = 𝐸⃗⃗1,𝑎𝑏𝑜𝑣𝑒 + 𝐸⃗⃗1,𝑏𝑒𝑙𝑜𝑤 = −
𝜎

2𝜀𝑜
𝑘̂ 



The total charge above slab 2 is equal to σ - σ/2 + σ/2 - σ/3 = 2σ/3. This charge will produce an 

electric field in slab 2 equal to 

𝐸⃗⃗2,𝑎𝑏𝑜𝑣𝑒 = −
(
2𝜎
3 )

2𝜀𝑜
𝑘̂ = −

𝜎

3𝜀𝑜
𝑘̂ 

 

The total charge below slab 1 is equal to σ/3 - σ = - 2σ/3. This charge will produce an electric 

field in slab 1 equal to 

𝐸⃗⃗2,𝑏𝑒𝑙𝑜𝑤 = −
𝜎

3𝜀𝑜
𝑘̂ 

The total electric field in slab 1 is the vector sum of these two fields and is equal to 

𝐸⃗⃗2 = 𝐸⃗⃗2,𝑎𝑏𝑜𝑣𝑒 + 𝐸⃗⃗2,𝑏𝑒𝑙𝑜𝑤 = −
2𝜎

3𝜀𝑜
𝑘̂ 

These answers are in agreement with the results obtained in part b). 

 

 

  



4.5. Energy in dielectric systems 

Consider a capacitor with capacitance C and charged up to a potential V. The total energy stored 

in the capacitor is equal to the work done during the charging process: 

𝑊 =
1

2
𝐶𝑉2 

If the capacitor is filled with a linear dielectric (dielectric constant 𝜀𝑟) then the total capacitance 

will increase by a factor 𝜀𝑟: 

𝐶 = 𝜀𝑟𝐶𝑎𝑖𝑟 
consequently the energy stored in the capacitor (when held at a constant potential) is increased 

by a factor 𝜀𝑟.  

A general expression for the energy of a capacitor with dielectric materials present can be found 

by studying the charging process in detail. Consider a free charge 𝜌𝑓𝑟𝑒𝑒 held at a potential V. 

During the charging process the free charge is increased by ∆𝜌𝑓𝑟𝑒𝑒. The work done on the extra 

free charge is equal to: 

∆𝑊 = ∫∆𝜌𝑓𝑟𝑒𝑒 ∗ 𝑉 ∗ 𝑑𝜏 

Since the divergence of the electric displacement 𝐷⃗⃗⃗ is equal to the free charge density 𝜌𝑓𝑟𝑒𝑒 , the 

divergence of ∆𝐷⃗⃗⃗ is equal to ∆𝜌𝑓𝑟𝑒𝑒 . Therefore: 

∆𝑊 = ∫(∇⃗⃗⃗. ∆𝐷⃗⃗⃗)𝑉𝑑𝜏 

Using the following relation: 

(∇⃗⃗⃗. 𝑉∆𝐷⃗⃗⃗) = (∇⃗⃗⃗. ∆𝐷⃗⃗⃗)𝑉 + (∇⃗⃗⃗𝑉). ∆𝐷⃗⃗⃗ 

we can rewrite the expression for ∆W as 

∆𝑊 = ∫ ∇⃗⃗⃗. (𝑉∆𝐷⃗⃗⃗)𝑑𝜏 − ∫[(∇⃗⃗⃗𝑉). ∆𝐷⃗⃗⃗]𝑑𝜏 

The first term on the right-hand side of this equation can be rewritten as 

∫ ∇⃗⃗⃗. (𝑉∆𝐷⃗⃗⃗)𝑉𝑑𝜏 = ∫(𝑉∆𝐷⃗⃗⃗). 𝑑𝑎⃗ = 0 

Since the product of potential and electric displacement approach zero faster than 

1/r2 when r approached infinity. Therefore, 

∆𝑊 = −∫[(∇⃗⃗⃗𝑉). ∆𝐷⃗⃗⃗]𝑑𝜏 = ∫(𝐸⃗⃗. ∆𝐷⃗⃗⃗)𝑑𝜏 

Assuming that the materials present in the system are linear dielectrics then 

𝐷⃗⃗⃗ = 𝜀𝐸⃗⃗ 

Hence: 𝐸⃗⃗. ∆𝐷⃗⃗⃗ = 𝐸⃗⃗. 𝜀∆𝐸⃗⃗ =
1

2
∆(𝜀𝐸⃗⃗. 𝐸⃗⃗) =

1

2
∆(𝐷⃗⃗⃗. 𝐸⃗⃗) 

 



∆𝑊 = ∫(𝐸⃗⃗. ∆𝐷⃗⃗⃗)𝑑𝜏 =
1

2
∆∫(𝐷⃗⃗⃗. 𝐸⃗⃗)𝑑𝜏 

The total work done during the charging process is therefore equal to 

𝑊 =
1

2
∫(𝐷⃗⃗⃗. 𝐸⃗⃗)𝑑𝜏 

Note: this equation can be used to calculate the energy for a system that contains linear 

dielectrics. If some materials in the system are non-linear dielectrics then the derivation given 

above [𝐸⃗⃗. ∆𝐷⃗⃗⃗ ≠
1

2
∆(𝐷⃗⃗⃗. 𝐸⃗⃗)] is not correct for non-linear dielectrics). 

 

Example 8: 
A spherical conductor, of radius a, carries a charge Q. It is surrounded by linear dielectric 

material of susceptibility χe, out to a radius b. Find the energy of this configuration. 

Since the system has spherical symmetry the electric displacement 𝐷⃗⃗⃗ is completely determined 

by the free charge. 

𝐷⃗⃗⃗(𝑟) =
1

4𝜋𝑟2
 𝑄𝑒𝑛𝑐𝑙 = 0                      𝑟 < 𝑎 

𝐷⃗⃗⃗(𝑟) =
1

4𝜋

𝑄

𝑟2
= 0                      𝑟 > 𝑎 

Since we are dealing with linear dielectrics, the electric field 𝐸⃗⃗ is equal to 𝐷⃗⃗⃗/(𝜀𝑜(1 + 𝜒𝑒)). 
Taking into account that the susceptibility of vacuum is zero and the susceptibility of a conductor 

is infinite we get: 

𝐸⃗⃗(𝑟) = 0                      𝑟 < 𝑎 

𝐸⃗⃗(𝑟) =
𝐷⃗⃗⃗(𝑟)

𝜀𝑜(1 + 𝜒𝑒)
=

1

4𝜋𝜀𝑜(1 + 𝜒𝑒)

𝑄

𝑟2
=

1

4𝜋𝜀

𝑄

𝑟2
                     𝑎 < 𝑟 < 𝑏 

𝐸⃗⃗(𝑟) =
𝐷⃗⃗⃗(𝑟)

𝜀𝑜
=

1

4𝜋𝜀𝑜

𝑄

𝑟2
                     𝑟 > 𝑏 

The scalar product 𝐷⃗⃗⃗. 𝐸⃗⃗ is equal to |𝐷⃗⃗⃗||𝐸⃗⃗| since 𝐸⃗⃗ and 𝐷⃗⃗⃗ are parallel, everywhere. The energy of 

the system is: 

𝑊 =
1

2
∫(𝐷⃗⃗⃗. 𝐸⃗⃗)𝑑𝜏 = 2𝜋∫ |𝐷⃗⃗⃗||𝐸⃗⃗|

∞

𝑎

𝑟2𝑑𝜏 

𝑊 = 2𝜋∫
1

16𝜋2𝜀𝑜(1 + 𝜒𝑒)

𝑏

𝑎

 
𝑄2

𝑟4
 𝑟2𝑑𝑟 + 2𝜋∫

1

16𝜋2𝜀𝑜

∞

𝑏

 
𝑄2

𝑟4
 𝑟2𝑑𝑟 

𝑊 =
𝑄2

8𝜋𝜀𝑜
[

1

(1 + 𝜒𝑒)
(
1

𝑎
−
1

𝑏
) +

1

𝑏
] =

𝑄2

8𝜋𝜀𝑜(1 + 𝜒𝑒)
[
1

𝑎
+
𝜒𝑒
𝑏
] 

 

 

 



4.6. Forces on dielectrics 

A dielectric slab placed partly between the plates of a parallel-plate capacitor will be pulled 

inside the capacitor. This force is a result of the fringing fields around the edges of the parallel-

plate capacitor. Note: the field outside the capacitor can not be zero since otherwise the line 

integral of the electric field around a closed loop, partly inside the capacitor and partly outside 

the capacitor, would not be equal to zero. 

 
 

Inside the capacitor, the electric field is uniform. The electric force exerted by the field on the 

positive bound charge of the dielectric is directed upwards and is canceled by the electric force 

on the negative bound charge directed downwards.  

Outside the capacitor however, the electric field is not uniform and the electric force acting on 

the positive bound charge will not be canceled by the electric force acting on the negative bound 

charge. For the system shown in the figure the vertical components of the two forces (outside the 

capacitor) will cancel, but the horizontal components are pointing in the same direction and 

therefore do not cancel. The result is a net force acting on the slab, directed towards the center of 

the capacitor. 

 
 

A direct calculation of this force requires a knowledge of the fringing fields of the capacitor 

which are often not well known and difficult to calculate. An alternative method that can be used 

to determine this force is to calculate the change in the energy of the system when the dielectric 

is displaced by a distance ds. The work to be done to pull the dielectric out by an infinitesimal 

distance ds is equal to 

𝑑𝑊 = 𝐹𝑒𝑥𝑡𝑑𝑥 



 

where 𝐹𝑒𝑥𝑡 is the force provided by the external agent to pull the slab out of the capacitor.  

This force must be equal and opposite to the force applied by the field: 

𝐹𝑓𝑖𝑒𝑙𝑑 = −𝐹𝑒𝑥𝑡 = −
𝑑𝑊

𝑑𝑥
 

The work done by an external agent to move the slab must be equal to the change in the energy 

of the capacitor (conservation of energy). Consider the situation shown in the figure below where 

the slab of dielectric is inserted to a depth x in the capacitor.  

The capacitance of this system is: 

𝐶 = 𝐶𝑣𝑎𝑐 + 𝐶𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 =
𝜀𝑜(𝑤 − 𝑥)𝑎

𝑑
+ 𝜀𝑟

𝜀𝑜𝑥𝑎

𝑑
 

𝐶 =
𝜀𝑜𝑥𝑎

𝑑
(𝑤 + 𝜒𝑒𝑥) 

If the total charge on the top plate is Q then the energy stored in the capacitor is equal to 

𝑊 =
𝑄2

2𝐶
=
𝑄2

2

𝑑

𝜀𝑜𝑎(𝑤 + 𝜒𝑒𝑥)
 

The force on the dielectric can now be calculated and is equal to 

𝐹𝑓𝑖𝑒𝑙𝑑 = −
𝑑𝑊

𝑑𝑥
=
1

2

𝑄2

𝐶2
𝑑𝐶

𝑑𝑥
=
1

2
𝑉2
𝑑𝐶

𝑑𝑥
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 9: 
Two long coaxial cylindrical metal tubes (inner radius a, outer radius b) stand vertically in a tank 

of dielectric oil (susceptibility χe, mass density ρ). The inner one is maintained at potential V, and 

the outer one is grounded. To what height x does the oil rise in the space between the tubes? 

 

The height of the oil is such that the electric force on the oil balances the gravitational force. The 

capacitance of an empty cylindrical capacitor of height H is equal to 

𝐶 =
2𝜋𝜀𝑜𝐻

ln (
𝑏
𝑎)

 

If the oil rises to a height h then the capacitance of the capacitor is equal to 

𝐶 = 𝐶𝑣𝑎𝑐 + 𝐶𝑑𝑖𝑒𝑙𝑐𝑡𝑟𝑖𝑐 =
2𝜋𝜀𝑜(𝐻 − 𝑥)

ln (
𝑏
𝑎)

+ (1 + 𝜒𝑒)
2𝜋𝜀𝑜𝑥

ln (
𝑏
𝑎)

=
2𝜋𝜀𝑜

ln (
𝑏
𝑎)
(𝐻 + 𝑥𝜒𝑒)  

The electric force on the dielectric (the oil) is [directed upwards]: 

𝐹𝑓𝑖𝑒𝑙𝑑 =
1

2
𝑉2
𝑑𝐶

𝑑𝑥
=
1

2
𝑉2 ∗

2𝜋𝜀𝑜

ln (
𝑏
𝑎)
∗ 𝜒𝑒 = 𝜒𝑒

𝜋𝜀𝑜

ln (
𝑏
𝑎)
𝑉2 

The gravitational force acting on the oil is [directed downwards]: 

𝐹𝑔 = 𝜋(𝑏2 − 𝑎2)ℎ𝜌𝑔 

In the equilibrium position: . Thus 

𝐹𝑓𝑖𝑒𝑙𝑑 = 𝐹𝑔 

𝜒𝑒
𝜋𝜀𝑜

ln (
𝑏
𝑎)
𝑉2 = 𝜋(𝑏2 − 𝑎2)ℎ𝜌𝑔 

ℎ = 𝜒𝑒
𝜀𝑜

𝜌𝑔(𝑏2 − 𝑎2) ln (
𝑏
𝑎)
𝑉2 

 


