Chapter 6. Magnetostatic Fields in Matter

6.1.1 Magnetization

Any macroscopic object consists of many atoms or molecules, each having electric
charges in motion. With each electron in an atom or molecule we can associate a tiny
magnetic dipole moment (due to its spin). Ordinarily, the individual dipoles cancel
each other because of the random orientation of their direction. However, when a
magnetic field is applied, a net alignment of these magnetic dipoles occurs, and the
material becomes magnetized. The state of magnetic polarization of a material is
described by the parameter A which is called the magnetization of the material and is
defined as

M=magnetic dipole moment per unit volume

In some material the magnetization is parallel to B. These materials are called
paramagnetic.

In other materials the magnetization is opposite to B. These materials are called
diamagnetic,

A third group of materials, also called ferromagnetic materials, retain a substantial
magnetization indefinitely after the external field has been removed.

6.1.2. Torque and Forces on Magnetic Dipole

A rnagnetlc dipole expenence a torque in a magnetic field as electric dipole
experiences a torque in an electric field.

Lets consider a current loop tilted at an angle 6 from the z-axis as shown in the figure
below and B pointing in the z-direction.

The force on the right sloping side is equal and

opposite to the force on the left sloping side and z
they cancel each other and just stretch the loop in

that direction. Whereas force on the horizontal BT
portions of the loop (top and bottom potions) also

cancel each other but do create a torque.

N =aFsing i ,( N
The magnitude of the force on each segment is:
= ibB
N = iabBsin 61
Where ab is the area of the loop:
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N=iAxB=mxE
Where m is the magnetic dipole moment m = iab

The torque is in such a direction that it will align the magnetic dipole in the direction
of the applied magnetic field. This torque is responsible for paramagnetism in the
materials.

We can consider each spinning electron to be a magnetic dipole but due to Pauli’s
exclusion principle the electrons of opposite spin are paired up so the net torque is
zero. That’s why paragmanetism is observed in materials with unpaired electrons.

In a uniform magnetic field the net force on the magnetic dipole is zero:
F=igdixF=i(§al)xB=0

In a non-uniform field the net force on the magnetic dipole is not zero. Suppose a
circular wire of radius R, carrying current I, is placed near the end of a short solenoid
in the fringing region.

Here B has a radial component, so the magnitude of the force is:
F =2nRIBcos@

{Q.\\(]?:{_-’/J/) I

\I7/

For an infinitesimal loop with dipole moment m, the force on the loop in a non-
uniform magnetic field is therefore,

F =V(.B)



Example 1:

A uniform current density f = ],k fills a slab straddling the yz-plane from x = —a to
x = +a. A magnetic dipole /i = m,{ is situated at the origin.
a) Find the force on the dipole.
b) Do the same for dipole pointing in the y-directions i1t = m,j
c) In the electrostatic case the expressions F = V(ﬁ E ) and F = (ﬁ V)E are
equivalent but this is not the case in magnetostatic, calculate (rTi. V)ﬁ for the
configuration in (a) and (b).
Solution: o f=k
a) [ ]
ﬁ = V(T?L §) n
Lets first find the magnetic field due to the slab along x
direction, using Ampere’s law: :

For the negative x values, B is pointed along —y-axis z
direction and for positive x values it is pointed along +y- r 1 J=1k

axis direction. B will be zero at x=0

%g-dZ’:ﬂoienc:ﬂojo*xl /
i I

BL = 1o, * 1 P m

B= HoloX] i 1
So 7. B = 0 and hence F = 0
b) Form =m,J
ii.B = MolofoXx
F=V(m.B) = (ii + 2 J+ iI'E) (Mottoox) = mopto),t
ox dy’ oz

—_

¢} F=V(§.E) in electrostatics, let’s start with the product rule in chapter 1.
VA-B)=Ax (VxB)+Bx (VxA)+(A-V)B+ (B V)A.
V(B.E)=px (VxE)+E x (Vx3) + (5.9)E + (E.V)p = (5.V)E

Because VX E =0 and g = qd so derivative of p is zero that makes the second and
fourth term equal to zero.



(.V)B = V(. B) - i x (Vx B) - B x (V x ) — (B.V)m
SinceVx B = p,J # 0

So
(r'n"'ﬁ)ﬁ s V(r’ﬁ' §) —m X (V X §) for a constant 1 = m,{

For part (a):

i g k
. = = N 6 a A 1. a
(m. V)B =0-m,ix FP 5 3 = =Myl X [Ilojok] = UMy o]
0 poox O

For part (b):
o d
(M.V)B = (mo )(pojoxj‘) =0

ax



Example 2:;

a) Calculate the torque exerted on the square loop shown in the figure below due to
the circular loop (assume r is much larger than a or b).

b) If the square loop is free to rotate, what will its equilibrium orientation be?

a) The dipole moment of the current loop is equal to

m = na®lk
where we have defined the z axis to be the direction of the dipole. The magnetic field
at the position of the square loop, at r > a, will be a dipole field with 8 = 9¢°:

pHomsing »
Aqip(T) = — ,
dlp( ) 47 rz ¢
Baip(r) =V x A = 227 (20050 # +5in0 ).
4mrr3
— #O m ~ “ e
B =Er—3(2c056r+sm99)
For 8 = 90°
B=——0
43
I = sinfcos¢pX+sinfsing§+cosdz, F0r6=920
8 = cosOcos¢pX+cosfsing§ —sindz, _’=_&a_ i
u B 31k
¢ = —singX+cosed, 4r

The dipole moment of the square loop is equal to
ﬁsquare =b le
el — = a ,‘lO az ~ MO a2b2 Py
N = Msqyare X B = b21f X (—Zr—slk) B 1%

b) In the equilibrium position, the torque on the current loop must be equal to zero.
This therefore requires that dipole moment of the square loop should be in the same
direction as the magnetic field that is along z-axis.




6.1.3. Effect of Magnetic Field on Atomic Orbitals

Electrons not only spin but also revolve around the nucleus at a very high frequency
forming almost steady current. Consider a very classical picture of a Hydrogen atom
consisting of an electron revolving in a circular orbit of radius R around a nucleus.
Suppose that the velocity of the electron is equal to v. The current formed by the

revoliving electron is: i
[ B
" T 2nR

The dipole moment thus created is: ’%

7l = 1d = — o x TR?R = ~ = evRk )

p—vi _ E 3 o —

m=la i ki
If the atom is placed in a magnetic field, it will be subject
to a torque. It is very difficult to tilt the entire orbit, tm

however there is a very significant effect on the orbital
speed of the electron.

In the orbital motion, the centripetal force is provided by the electrical force alone:
1 e? v

2
Ame, RZ MeR
But in the presence of a magnetic field, the centripetal force will be sustained by both
the electric and the magnetic field:
1 e? v'?

— 'B =m. —
4me, R? tev Me R

Here we have assumed that the magnetic field is pointing along the positive z axis (in
a direction opposite to the direction of the magnetic dipole moment). We have also
assumed that the size of the orbit () does not change when the magnetic field is
applied. Combining the last two equations we obtain
v? , v'?

meﬁ—+;v B =me? ~

ev'B = _RE (v?-v?) = ?e(v’ — )V’ + v)
Assuming that the change in the velocity is small we can use the following
approximations:

v =y and vV —v=Av



B__me3 "
evB = R vAv

Av=o-

e
When the magnetic field is turned ON, the electron speeds up. A change in the orbital
speed means a change in the dipole moment.

. 1 (A)RE = 1 (eRB)R.\ ezRZE.
e AR —aelam, am,

Notice that the change in 77 is in the opposite direction of the applied magnetic field

B. An electron circling the other way would have a dipole moment pointing upward,
but such an orbit would be slowed down by the field, so the change is still opposite to

B.
Ordinarily, the electron orbits are randomly oriented and the orbital dipole moments
cancel out. But in the presence of a magnetic field, each atom picks up a little extra

dipole moment, and these increments are all antiparallel to the applied field. This is
the mechanism responsible for diamagnetism.

Itis a universal phenomenon affecting all atoms. However, it is typically much
weaker than paramagnetism, and is therefore observed mainly in atoms with even
numbers of electrons, where paramagnetism is usually absent.

6.2. The Field of a Magnetized Object

6.2.1 Bound Currents

Consider a magnetized material _\fvith magnetization M.
The associated vector potential 4 is given as:

Up M X AP

4w Ar?

A=
Where Af = # - #/

In the magnetized object, each volume element d’

carries a dipole moment Mdz’, so the total vector
potential is:

2o Ho M) x A7 ,
A(F)‘cmf_aﬁ_dr

We can use the identity:




5 (L) _ o7
(Ar) T Ar?

— - 71
e <v ) o
A =22 [ ey < ()] ar
Integrating by parts, we get
pony B (Lo o MG
A(r)—a{]y[v xM(r)]dr ]V X[Ar dr
The second integral can be converted into surface integral as it was done in chapter-1.
s _ I'IO 1 r Ao 7 uO 1 'y T -,
i) =22 [ L[ x W) dr + 22 = [H() x da]

The first term looks just like the potential of a volume current,

j b= _V-' X M
While the second term looks like the potential of a surface current:
Eb = ﬁ X ﬁ

Where i is the normal unit vector. With these definitions:

PR fb(") Kb(’”)
AR =0 f 41rf Ar e

This means that potential and also the magnetic field of a magnetlzed object is the
same as would be produced by a volume current jb =Vx M throughout the material
plus the surface current X, » = M X i on the boundary.

We first determine these bound currents and then find the field that they produce.



Example 3:

An infinitely long circular cylinder carries a uniform magnetization M parallel to its
axis. Find the magnetic field (due to M) inside and outside the cylinder,

Solution:

Consider a coordinate system S in which the z axis coincides with the axis of the
cylinder. The magnetization of the material is:

Since the material is uniformly magnet]i‘;[ed, li‘t/!skbound volume current is equal to zero.
Jo=VxM=0
The bound surface current is equal to
Ky=MxA=Mx#=Mp
This current distribution is identical to the current distribution in an infinitely long
solenoid.

The magnetic field outside an infinitely long solenoid is equal to zero, and therefore
also the field outside the magnetized cylinder will be equal to zero.

The magnetic field inside an infinitely long solenoid can be calculated easily using
Ampere's law and which is equal to:

B = pKpk = p,MEk



6.3. The Auxiliary Field H

The magnetic field in a system containing magnetized materials and free currents can
be obtained by calculating the field produced by the total current f where,

I= jfree + Joound
This approach is very similar to the approach taken in electrostatics where the total
electric field produced by a system containing dielectric materials is equal to the
electric field produced by a charge distribution & where

0 = Ofree + Opound
To caleulate the magnetic field produced by a system containing magnetized materials
we have to use the following form of Ampere's law:

VxB= l-‘of= ﬂo(jfree +fbaund) = Mo(jfree +Vx M)
= (15 N
V x (#—B - M) = Jiree
o
The quantity in parenthesis is called the H-field

— 1 -— -—
H=—B-M
—_ #O —
H plays arole in magnetostatics analogous to D in electrostatics. Ampere's law in

terms of H can be written as:
V X ﬁ = jfree
f H.dl = e,

However, a knowledge of the free current density is not sufficient to determine &. The
Helmholtz theorem shows that besides knowing the curl of a vector function, we also
need to know the divergence of that vector function before it is uniquely defined.

Although the divergence of B is zero for any magnetic field (and therefore Ampere's
law for B defines B uniquely) the divergence of H is not necessarily zero:
V.H= V.(——B —M) =—V.B-VM=-VM
[} - !_1.0
Therefore, only for those systems where V. M = 0 we can use Ampere's law

for H directly to calculate H. The divergence of H will be zero only for systems with
cylindrical, plane, solenoidal, or toroidal symmetry,
The H field is a quantity that is used in the laboratory more often that the B field. This

is a result of the dependence of H on only the free currents (which are easy to
control).



The B field depends both on the free and on the bound currents, and thus requires a
detailed knowledge of the magnetic properties of the materials used.

In electrostatics, the electric field can be obtained immediately from the potential

difference (which is easy to control). The electric displacement I however depends
only on the free charge distribution, but in most cases a direct measurement of the free
charge distribution is very difficult to carry out.

Therefore, in electrostatics the electric field is in most cases a more useful parameter
then the electric displacement D.

Example 4:

An infinitely long cylinder, of radius R, carries a "frozen-in" magnetization, parallel to
the axis, M = krk , Where £ is a constant and r is the distance from the axis (there is
no free current anywhere). Find the magnetic field inside and outside the cylinder by
two different methods:

a) Locate all the bound currents, and calculate the field they produce.

b) Use Ampere's law to find H, and then get B.

Solution:

a) The bound volume current is equal to

_'—V'xll_/f—laM“ oM i
Jo = Traz P Tke
The bound surface current is equal to

lzlg£=l\_/l’xﬁ|r=R=le?xf=kR$ }

The bound currents produce a solenoidal field. The field outside C___.
the cylinder will be equal to zero and the field inside the cylinder
will be directed along the z axis. Its magnitude can be obtained L
using Ampere's law.

Consider the Amperian loop shown in the figure below. The line .
integral of B along the Amperian loop is equal to

fﬁ.di’: Holenc

§§.df= —-BL

The current intercepted by the Amperian loop is:



R R
lenc = —KpL + f Jpl dr = —=KLR +j KL dr = —KLR + KL(R —7r) = —KLr
r r
Ampere's law can now be used to calculate the magnetic field:
= “I’J ienc T
B =
b) The divergence of M is equal to zero. Therefore, Ampere's law uniquely defines
H #. The H field is pointing in the z-direction.

= u krk

Using Ampere's law, in terms of the H field, we immediately conclude that for the
Amperian loop shown in the figure above.

fﬁ.d?=HL = iree = 0

since there is no free current This can only be true if H = 0. This implies that

— 1—. —

H=—B-M=0
Ho

B=uM

In the region outside the cylinder the magnetization is equal to zero and therefore the
magnetic field

Bautside =0
In the region inside the cylinder the magnetization is equal to

M = krk
and therefore the magnetic field is equal to
B = u,M = p krk

which is identical to the result obtained in part a).



Example 5:

A long copper wire of radius R carries a uniformly distributed (free) current i. Find H
inside and outside the rod.

Solution:

Copper is weakly diamagnetic material
so the bound current will run in the
opposite direction to the free current
within the rod and along the direction of
free current on the surface.

Since all the currents are along the axis
of the rod so B, M and H are all
circumferential.

Amperia loop
Applying Ampere’s law for the
auxiliary field H, we get:

ms?

H(2ms) = [tree = IW
Is

= anqu fors<R

Within the wire and outside the wire, using Ampere’s law, we get:
- | .
H=— rszR
2zs ¢ Jo

In the outside region M= 0, hence

Hol -
ors2R

2ns ¢ f

Inside the region, we cannot determine the magnetic field because we don’t know

what is M in the wire.

B =p,H=



Example 6:

Suppose the field inside a large piece of material is §o, and the corresponding Ffo field
is equal to:

A, =—F,
o
A small spherical cavity is holiowed out of the material. Find the B field at the center

of the cavity in terms of B, and M. Also find the H field at the center of the cavity in
terms of HO and M. Assume the cavity is small enough so that M, §a, and Ffo are

essentially constant.
Solution:

The field in the spherical cavity is the superposition of the field §a and the field

produced by a sphere with magnetization —M. The bound volume current in the
sphere is equal to zero (uniform magnetization). The bound surface current is equal to

Ky=(-M)xfi=-Msin6 ¢
Here we have assumed that the magnetization of the sphere is directed along the z-
axis. Now consider a uniformly charged sphere, rotating with an angular
velocity w around the z-axis. The system carries a surface current equal to:
K = 0% = cRwsing ¢
Comparing these two equations for the surface current, we conclude that
M = —0oRw

In Chapter 5 the magnetic field produced by a uniformly charged, rotating sphere was
calculated. The magnetic field inside the sphere was found to be uniform and equal to

- 2 ~ 2 .
B = EﬂaJka = —§”°M
The magnetic field inside the spherical cavity is therefore equal to

§cavity = Eo + §sphere = §o - %uoﬁ
The corresponding H field is equal to:
ﬁcavity = _1'§cavity - Mcavity = iE"‘o - EM = ﬁo + lﬁ_’i
Ho Ho 3 3

Here we have used the fact that ﬁcavity = 0 since no materials are present there.



6.4. Linear Media

In paramagnetic and diamagnetic materials, the magnetization is maintained by the
external magnetic field. The magnetization disappears when the field is removed.
Most paramagnetic and diamagnetic materials are linear; that is their magnetization is

proportional to the H field:

M = xmH
The constant of proportionality ¥,, is called the magnetic susceptibility of the
material. In vacuum, the magnetic susceptibility is zero.

In a linear medium, there is linear relation between the magnetic field and the H field:
B= “o(ﬁ + M,) = u,(1 +Xm)ﬁ = Hﬁ

Where pt = p,(1 + y,) is called the permeability of the material. The permeability of

free space is equal to y,.

The linear relation between H and B does not automatically imply that the divergence

of H is zero. The divergence of H will only be equal to zero inside a linear material,
but will be non-zero at the interface between two materials of different permeability.
Consider for example the interface between a linear material and vacuum (see Figure
below). The surface integral of M across the surface of the Gaussian pillbox shown in
the figure is definitely not equal to zero. According to the divergence theorem the

surface integral of M is equal to the volume integral of V.M:

fﬁ.d&: f(ﬁ.ﬁ)dr

Gaussian pilibox

Therefore, if the surface integral of M is not equal to zero, the divergence of M can
not be zero everywhere.



Example 7:

An infinite solenoid (V turns per unit length, current /) is filled with linear material of
susceptibility x,,. Find the magnetic field inside the solenoid.

Solution:
Because of the symmetry of the problem, the divergence of

H will be equal to zero, everywhere. Therefore, the H field
can be obtained directly from Ampere's law. Consider the
Amperian loop shown in the figure above. The line integral

of H around the loop is:
§ H.dl = HL

Where the line integral is evaluated in the direction shown

in the figure, and it is assumed that the H field is directed along the z-axis. The free

current intercepted by the Amperian loop is equal to
Itree = NIL
Ampere's law for the H field immediately shows that

H = NIk
The magnetic field inside the solenoid is equal to

§ = I—lo(l +Xm)ﬁ = (1 'I'J(m)N”“E

The magnetization of the material is equal to

M = ymH = ynNIk

and is uniform. Therefore, there will be no bound volume currents in the material. The

bound surface current is equal to

K, =M xfi=y,Nlkxa=y,NIp

This last equation shows that the bound surface current flows in the same direction
(paramagnetic materials) or in an opposite direction (diamagnetic materials) as the

free current.
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6.5. Nonlinear Media

The best known nonlinear media are the ferromagnetic materials. Ferromagnetic
materials do not require external fields to sustain their magnetization (therefore, the
magnetization definitely depends in a nonlinear way on the field). The magnetization
in ferromagnetic materials involves the alignment of the dipole moments associated
with the spin of unpaired electrons.

The difference between ferromagnetic materials and paramagnetic materials is that in
ferromagnetic materials the interaction between nearby dipoles makes them want to
point in the same direction, even when the magnetic field is removed. However, the
alignment occurs in relative small patches, called domains. When a ferromagnetic
material is not located in a magnetic field, the dipole moments of the various domains
are not aligned, and the material as a whole is not magnetized. When the
ferromagnetic material is put into a magnetic field, the boundaries of the domain
parallel to the field will increase at the expense of neighboring boundaries. If the field
is strong enough, one domain takes over entirely, and the ferromagnetic material is
said to be saturated (all unpaired electrons are aligned and therefore the magnetization
reaches a maximum value).

The magnetic susceptibility of ferromagnetic materials is around 10° (roughly eighth
orders of magnitude larger than the susceptibility of paramagnetic materials).

When the magnetic field is removed some magnetization remains (and we have
created a permanent magnet). For any ferromagnetic material, the magnetization
depends not only on the applied magnetic field but also on the magnetization history.

The alignment of dipoles in a ferromagnet can be destroyed by random thermal
motion. The destruction of the alignment occurs at a precise temperature (called the
Curie point). When a ferromagnetic material is heated above its Curie temperature it
becomes paramagnetic.
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