PHYS306 Homework#3 (Due on 06Mar2022)

Q#1:

Show that the standing wave $f(z,t) = A \sin(kz) \cos(kvt)$ satisfies the wave equation and express it as the sum of a wave travelling to the left and a wave travelling to the right.

Q#2:

- (a) Formulate an appropriate boundary condition to replace $\frac{\partial f}{\partial z}\Big|_{0^{-}} = \frac{\partial f}{\partial z}\Big|_{0^{+}}$ (equations 9.27 in the book) for the case of two strings under tension T joined by a knot of mass m.
- (b) Find the amplitude and phase fo the reflected and transmitted waves for the case where the knot has a mass m and the second string is massless.

Q#3:

Write down the real electric and magnetic field for a monochromatic plane wave of amplitude Eo, frequency ω , and phase angle zero that is

- (a) travelling in the negative x-direction and polarized in the z-direction.
- (b) Travelling in the direction from the origin to the point (1,1,1) with polarization parallel to the xz-plane. In each case, sketch the wave, and give the explicit Cartesian components of \mathbf{k} and $\hat{\mathbf{n}}$.

O#4:

Calculate the exact reflection and transmission coefficients, without assuming $\mu_1 = \mu_2 = \mu_o$. Confirm that R + T = 1

Q#5:

Analyze the case of polarization perpendicular to the plane of incidence (for example, electric field in the y-direction when the wave is travelling in the z-direction and boundary is along xz-plane.)

- (a) Use the boundary conditions to get the Fresnel equations for \tilde{E}_{o_R} and \tilde{E}_{o_T} .
- (b) Sketch $\left(\frac{\tilde{E}_{OR}}{\tilde{E}_{OI}}\right)$ and $\left(\frac{\tilde{E}_{OT}}{\tilde{E}_{OI}}\right)$ as a function of θ_I for the case of $\beta=\frac{n_2}{n_1}=1.5$
- (c) Show that there is no Brewster's angle for any n_1 and n_2 .
- (d) Check that Fresnel's equations reduce to the proper form at normal incidence.
- (e) Computer the reflection and transmission coefficient and they add up to 1.

O#6:

The index of refraction of diamond is 2.42.

- (a) Sketch $\left(\frac{\tilde{E}_{o_R}}{\tilde{E}_{o_I}}\right)$ and $\left(\frac{\tilde{E}_{o_T}}{\tilde{E}_{o_I}}\right)$ as a function of θ_I assuming $(\mu_1 = \mu_2 = \mu_o)$.
- (b) Calculate the amplitudes at normal incidence.
- (c) Calculate the Brewster's angle
- (d) Calculate the crossover angle at which the reflected and transmitted amplitudes are equal.