PHYS306 Homework#5 (Due on 31Mar2022)

Q#1: Suppose V=0 and $A=A_o\sin(kx-\omega t)\hat{y}$, where A_o , ω , and k are constants. Find \vec{E} and \vec{B} , and check that they satisfy Maxwell's equations in vacuum. What condition must you impose on ω and k.

Q#2: A piece of wire bent into a loop, as shown in Fig.1, carries a current that increases linearly with time:

$$I(t) = kt$$

Calculate the retarded vector potential \vec{A} at the center. Find the electric field at the center. Why does this (neutral) wire produce an electric field? Why can't you determine magnetic field from this expression of \vec{A} ?

Q#3:

- (a) Find the scalar and vector potentials of a point charge moving with a constant velocity \vec{v} and check if these potentials satisfy Lorents gauge condition.
- (b) Find the electric and magnetic fields of a point charge moving with a constant velocity and sketch them.

Q#4: A particle of charge q moves in a circle of radius a at constant angular velocity ω (assume that the circle lies in the xy-plane, centered at the origin, and at time t=0 the charge is at (a,0) on the positive x-axis. Find the Liénard-Wiechert potentials for point on the z-axis.

(a) Suppose some charge is glued on a plastic ring of radius a, so that the line charge density is $\lambda_o |\sin(\theta/2)|$. Then the ring was set to spin about its axis at an angular velocity ω . Find the scalar and vector potentials at the center of the ring.

Q#5: A particle of charge q1 is held at rest at the origin and another particle of charge q2 approaches along the x-axis in hyperbolic motion:

$$x(t) = \sqrt{b^2 + (ct)^2}$$

It reaches the closest point b at time t=0, and then returns out to infinity.

- (a) What is the force F_2 on q_2 due to q_1 at time t?
- (b) What total impulse is delivered by q_2 to q_1 ?
- (c) What is the force F_1 on q_1 due to q_2 at time t?
- (d) What total impulse is delivered to q_1 by q_2 ?

Q#6: A particle of charge q is travelling at constant speed v along the x-axis. Calculate the total power passing through the plane x = a, at the moment the particle itself is at the origin.