
Chapter 7. Electrodynamics 

 

7.1. Electromotive Force 

An electric current is flowing when the electric charges are in motion. In order to sustain an 

electric current we have to apply a force on these charges. In most materials, the current 

density 𝐽 is proportional to the force per unit charge: 

 

𝐽 = 𝜎𝑓 

The constant of proportionality σ is called the conductivity of the material. Instead of specifying 

the conductivity, it is more common to specify the resistivity ρ: 

 

𝜌 =
1

𝜎
 

For conductors the resistivity is typically 10-8 Ω-m; for semiconductor it varies between 0.01 Ω-

m and 1 Ω-m, and for insulators it varies between 105 Ω-m and 106 Ω-m. In most cases, the force 

on the charges is the electromagnetic force. In that case, the current density is equal to: 

 

𝐽 = 𝜎(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) 

If the velocity of the charges is small the second term can be ignored, and the equation for 

𝐽 reduces to Ohm's Law: 

𝐽 = 𝜎𝐸⃗⃗ 
Consider a wire of cross-sectional area A and length L. If a potential difference V is applied 

between the ends of the wire, it will produce an electric field inside the wire of magnitude: 

𝐸 =
𝑉

𝐿
 

The current density in the wire is therefore equal to 

𝐽 = 𝜎
𝑉

𝐿
 

The total current flowing through the wire is therefore equal to 

𝐼 = 𝐽𝐴 = 𝜎𝐴
𝑉

𝐿
 

This equation shows that the current flowing from one electrode to the other electrode is 

proportional to the potential difference between them.  

This is a rather surprising result since the charge carriers are constantly accelerating. However, 

the proportionality between the current and the potential difference has been found to be correct 

for most materials.  



This relation can be written as: 

𝑉 = 𝐼𝑅 
The constant of proportionality R is called the resistance of the material. It is in general a 

function of the geometry of the system and the conductivity of the materials between the 

electrodes. The unit of resistance is the ohm (Ω). The resistance of the wire is equal to 

𝑅 =
𝑉

𝐼
=

𝑉

𝜎𝐴
𝑉
𝐿

=
1

𝜎

𝐿

𝐴
= 𝜌

𝐿

𝐴
  

 

To create a current we have to perform work. The work required to move a unit charge across a 

potential difference V is equal to V. To establish a current I, we need to deliver a power P: 

𝑃 = 𝑉𝐼 = 𝐼2𝑅 
The unit of power is Watt (1 W = 1 J/s). The work done by the electric force on the charge 

carriers is converted into heat (Joule heating). 

 

Example 1: 
Two concentric metal spherical shells, of radius a and b, respectively, are separated by weakly 

conducting material of conductivity σ. 

a) If they are maintained at a potential difference V, what current flows from one to the other? 

b) What is the resistance between the shells? 

 

a) Suppose a charge Q is placed on the inner shell. The electric field in the region between the 

shells will be: 

𝐸⃗⃗ =
1

4𝜋𝜖𝑜

𝑄

𝑟2
𝑟̂ 

The corresponding potential difference between the spheres is equal to 

𝑉𝑎 − 𝑉𝑏 = − ∫ 𝐸⃗⃗. 𝑑𝑟
𝑏

𝑎

=
𝑄

4𝜋𝜖𝑜
(

1

𝑎
−

1

𝑏
) 

 

Therefore, in order to maintain a potential difference V between the spheres, we must place a 

charge Q equal to 

𝑄 =
4𝜋𝜖𝑜𝑉

(
1
𝑎 −

1
𝑏

)
 

on the center shell. The total current flowing between the two shells is equal to 

𝐼 = ∮ 𝐽. 𝑑𝑎⃗ = 𝜎 ∮ 𝐸⃗⃗. 𝑑𝑎⃗ = 𝜎
1

4𝜋𝜖𝑜

𝑄

𝑟2
 4𝜋𝑟2 = 𝜎

𝑄

𝜖𝑜
= 4𝜋𝜎

𝑉

(
1
𝑎 −

1
𝑏

)
 

b) The resistance between the shells can be obtained from Ohm's law: 



𝑅 =
𝑉

𝐼
=

𝑉

4𝜋𝜎
𝑉

(
1
𝑎 −

1
𝑏

)

=
1

4𝜋𝜎
(

1

𝑎
−

1

𝑏
) 

 

Example 2:  
a) Two metal objects are embedded in weakly conducting material of conductivity σ (see Figure 

below). Show that the resistance between them is related to the capacitance of the arrangement 

by 𝑅 =
𝜀𝑜

𝜎𝐶
 

 
 

b) Suppose you connected a battery between 1 and 2 and charged them up to a potential 

difference V0. If you then disconnect the battery, the charge will gradually leak off. Show 

that V(t) = V0 exp(- t/τ), and find the time constant τ in terms of ε0 and σ. 

 

a) Suppose a charge Q is placed on the positively charged conductor. The current flowing from 

the positively charged conductor is equal to 

𝐼 = ∮ 𝐽. 𝑑𝑎⃗ 

where the surface integral is taken over a surface that encloses the positively charged conductor 

(for example, the dashed surface around conductor 1). The expression for I can be rewritten in 

terms of the electric field as 

𝐼 = 𝜎 ∮ 𝐸⃗⃗. 𝑑𝑎⃗ 

Using Gauss's law to express the surface integral of 𝐸⃗⃗ in terms of the total enclosed charge we 

obtain: 

𝐼 = 𝜎
𝑄

𝜀𝑜
 

The charge on the conductor is related to the capacitance of the arrangement and the potential 

difference between the conductors: 

𝑄 = 𝐶𝑉 
The current I is therefore equal to: 

𝐼 =
𝜎

𝜀𝑜
𝐶𝑉 



 

The resistance of the system can be calculated using Ohm's law: 

𝑅 =
𝑉

𝐼
=

𝑉
𝜎
𝜀𝑜

𝐶𝑉
=

𝜀𝑜

𝜎𝐶
 

 

b) The charge Q residing on the positively charged conductor is equal to 

 

𝑄 = 𝐶𝑉 = 𝐶𝑅𝐼 = −𝐶𝑅
𝑑𝑄

𝑑𝑡
 

This equation can be rewritten as 
𝑑𝑄

𝑑𝑡
+

1

𝐶𝑅
𝑄 = 0 

 

and has the following solution: 

𝑄(𝑡) = 𝑄𝑜𝑒−𝑡/𝑅𝐶 
The potential difference V is equal to 

𝑉(𝑡) =
𝑄(𝑡)

𝐶
=

𝑄𝑜

𝐶
𝑒−𝑡/𝑅𝐶 = 𝑉𝑜𝑒−

𝑡
𝑅𝐶 = 𝑉𝑜𝑒−

𝑡
𝜏 

The decay constant τ is equal to 

𝜏 = 𝑅𝐶 =
𝜀𝑜

𝜎
 

-----------------------------------------------------------------------------------------         

In any electric circuit a current will only exist if a driving force is available. The most common 

sources of the driving force are batteries and generators. When a circuit is hooked up to a power 

source a current will start to flow. In a single-loop circuit the current will be the same 

everywhere.  

Consider the situation in which the currents are not the same (see 

Figure below). If Iin > Iout then positive charge will accumulate in 

the middle. This accumulation of positive charge will generate an 

electric field (see Figure below) that slows down the incoming 

charges and speeds up the outgoing charges.  

A reduction in the velocity of the incoming charges will reduce the 

incoming current. An increase in the velocity of the outgoing 

charges will increase the outgoing current. The current will change 

until Iin = Iout. 

The total force f on the charge carriers (per unit charge) is equal to 

the sum of the source force, fs, and the electric force: 

𝑓 = 𝑓𝑠 + 𝐸⃗⃗ 
The work required to move one unit of charge once around the 

circuit is equal to 



 

∮ 𝑓. 𝑑𝑙 = ∮ 𝑓𝑠 . 𝑑𝑙 + ∮ 𝐸⃗⃗. 𝑑𝑙 = ∮ 𝑓𝑠 . 𝑑𝑙 = 𝜀 

where ε is called the electromotive force or emf. The emf determines the current flowing 

through the circuit. This can be most easily seen by rewriting the force 𝑓 on the charge carriers in 

terms of the current density 𝐽. 

𝜀 = ∮ 𝑓. 𝑑𝑙 = ∮
𝐽

𝜎
. 𝑑𝑙 = ∮

𝐼

𝐴𝜎
𝑑𝑙 = 𝐼 ∮

𝑑𝑙

𝐴𝜎
= 𝐼𝑅 

 

Here, A is the cross-sectional area of the wire (perpendicular to the direction of the current). 

 

Example 3: 
a) Show that electrostatic force alone cannot be used to drive current around a circuit. 

b) A rectangular loop of wire is situate so that one end is between the plates of a parallel-plate 

capacitor (see Figure below), oriented parallel to the field E = σ/ε0. The other end is way outside, 

where the field is essentially zero. If the width of the loop is h and its total resistance is R, what 

current flows? Explain. 

 
 

a) If only electrostatic forces are present then the force per unit charge is equal to the 

electrostatic force: 

 

𝑓 = 𝐸⃗⃗ 

The associated emf is therefore equal to 

 

𝜀 = ∮ 𝑓. 𝑑𝑙 = ∮ 𝐸⃗⃗. 𝑑𝑙 = 0 

for any electrostatic field. 

b) The only force on the charge carriers in the wire loop is the electric force. However, in part a) 

we concluded that the emf associate with an electric force, generated by an electrostatic field, is 

equal to zero. Therefore, the emf in the wire loop is equal to zero, and consequently the current 

in the loop is also equal to zero. Note: at first sight it might appear that there is a net emf, if we 

assume that the electric field generated by the capacitor is that of an ideal capacitor (that is a 

homogeneous field inside and no field outside). Under that assumption, the emf is equal to 



𝜀 = ∫ 𝐸⃗⃗. 𝑑𝑙
𝑏

𝑎

=
𝜎

𝜖𝑜
ℎ 

 

The contribution of the path integral from c to d is equal to zero since the electric field is zero 

there, and the contribution of the path integrals between b and c and between a and d is equal to 

zero since the electric field and the displacement are perpendicular there.  

Clearly the calculated emf is non-zero, and disagrees with the result of part a). The disagreement 

is a result of our incorrect assumption that the electric field outside the capacitor is equal to zero 

(there are fringing fields). 

 

EMF Generated by Magnetic Field: 

An important source of emf is the generator. In these devices, the EMF arises from the motion of 

a conducting wire through a magnetic field. Consider the system shown in the figure below 

where the magnetic field is only present in the region left of the dashed line. Consider the free 

charges on the conductor. Since it is moving with a velocity v in a magnetic field it will 

experience a magnetic force. The force on a positive charge q located in segment ab of the wire 

loop is equal to 

𝐹𝑜 = 𝑞𝑣𝐵 
 

The magnetic force per unit charge is therefore equal to 

𝑓𝑚𝑎𝑔 =
𝐹𝑜

𝑞
= 𝑣𝐵 

Since there are no other forces acting on the charges, the 

EMF generated will be entirely due to this magnetic force. 

The EMF will be equal to 

𝜀 = ∮ 𝑓𝑚𝑎𝑔. 𝑑𝑙 = ∫ 𝑓𝑚𝑎𝑔 . 𝑑𝑙
𝑏

𝑎

= 𝑣𝐵ℎ 

The magnetic flux intercepted by the wire loop is equal to 

Φ = 𝐵ℎ𝑠 

The rate of change of the magnetic flux is equal to 

𝑑Φ

dt
= 𝐵ℎ

𝑑𝑠

𝑑𝑡
= −𝐵ℎ𝑣 

Comparing the rate of change of enclosed magnetic flux and the induced EMF we can conclude: 

𝜀 = −
𝑑Φ

dt
= 𝐵ℎ𝑣 

This relation is called the flux rule for motional emf. 

 

 

 



7.2. Faraday's Law 

Faraday conducted three experiments as below: 

1. He pulled a loop of wire to the right through a magnetic field and observed current 

flowed in the loop. 

2. He pulled the magnet to the left and observed the current flowed in the loop of wire. 

3. With both the loop and the magnet at rest, he changed the magnetic field and observed 

current flowed in the loop of wire. 

 
 

In experiment 1 when the loop moves, it is the magnetic force that produces the EMF and it is 

called motional EMF.  

𝜀 = −
𝑑Φ

dt
 

In the second experiment, the loop is stationary and stationary charges do not experience 

magnetic force. In this case, the magnetic force does not play a role (since v = 0) and an electric 

field is responsible for the EMF. This electric field is not an electrostatic field (since electrostatic 

fields can not generate an EMF) but is induced by the changing magnetic field. The line integral 

of this electric field is: 

∮ 𝐸⃗⃗. 𝑑𝑙 = 𝜀 = −
𝑑Φ

𝑑𝑡
 

This equation can be rewritten by applying Stoke's theorem: 

 

∮ 𝐸⃗⃗. 𝑑𝑙 = ∫(∇⃗⃗⃗ × 𝐸⃗⃗). 𝑑𝑎⃗ = −
𝑑

𝑑𝑡
∫ 𝐵⃗⃗. 𝑑𝑎⃗ = − ∫

𝜕𝐵⃗⃗

𝜕𝑡
. 𝑑𝑎⃗ 

Since we have not made any assumption about the surface, this equation can only be true if 

∇⃗⃗⃗ × 𝐸⃗⃗ = −
𝜕𝐵⃗⃗

𝜕𝑡
 

This relation is called Faraday's law in differential form. This is differential form of Faraday’s 

law and it reduces to ∇⃗⃗⃗ × 𝐸⃗⃗ = 0 for a constant magnetic field. 

In the third experiment, the magnetic field changes without moving the loop or the magnet, but 

according to Faraday’s law electric field will be induced giving rise to EMF. 



We can put all three cases as whenever the magnetic flux changes in a loop of wire for whatever 

reason there will be an EMF produced: 

𝜀 = −
𝑑Φ

𝑑𝑡
 

The direction of the currents generated by the changing magnetic field can be obtained most 

easily using Lenz's law which states that “If a current flows, it will be in such a direction that 

the magnetic field it produces tends to counteract the change in flux that induced the EMF.” 

 

 

 

Example 4: 
A long solenoid of radius a, carrying n turns per unit length, is looped by a wire of 

resistance R (see Figure below). 

a) If the current in the solenoid is increasing, 
𝑑𝐼

𝑑𝑡
= 𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , what current flows in the loop, 

and which way (left or right) does it pass through the resistor. 

b) If the current I in the solenoid is constant but the solenoid is pulled out of the loop and 

reinserted in the opposite direction what total charge passes through the resistor? 

 
 

a) Assume that the solenoid is an ideal solenoid; that is 

 

𝐵⃗⃗ = 𝜇𝑜𝑛𝐼𝑘̂ 

If the current in the solenoid increases, the strength of the magnetic field also increases. The rate 

of change in the strength of the magnetic field is equal to 

 

𝑑𝐵⃗⃗

𝑑𝑡
= 𝜇𝑜𝑛

𝑑𝐼

𝑑𝑡
𝑘̂ = 𝜇𝑜𝑛𝑘𝑘̂ 

The magnetic flux intercepted by the wire loop is equal to 

Φ = 𝜋𝑎2𝐵 

The corresponding rate of change of the magnetic flux is equal to 



dΦ

dt
= 𝜋𝑎2

𝑑𝐵

𝑑𝑡
= 𝜋𝑎2𝜇𝑜𝑛𝑘 

The induced EMF can be obtained from the flux law: 

𝜀 = −
dΦ

dt
= −𝜋𝑎2𝜇𝑜𝑛𝑘 

The current induced in the wire loop is equal to 

𝐼 =
𝜀

𝑅
=

𝜋𝑎2

𝑅
𝜇𝑜𝑛𝑘 

The solenoidal magnetic field points from left to right. An increase in the strength of the 

magnetic field will induce a current in the loop directed such that the magnetic field it produces 

point from right to left (Lenz's law). Therefore, the current flows from left to right through the 

resistor. 

 

b) The change in the magnetic flux enclosed by the wire loop is equal to 

ΔΦ = 𝜋𝑎2Δ𝐵 = 2𝜋𝑎2𝜇𝑜𝑛𝐼 

The current flowing through the resistor is equal to 

𝐼 =
𝜀

𝑅
=

1

𝑅

𝑑Φ

𝑑𝑡
=

𝑑𝑄

𝑑𝑡
 

 

Δ𝑄 = −
1

𝑅
∫

𝑑Φ

𝑑𝑡
𝑑𝑡 = −

ΔΦ

𝑅
 

Δ𝑄 == −
ΔΦ

𝑅
= −

2𝜋𝑎2𝜇𝑜𝑛𝐼

𝑅
 

 

 

 

 

 

 

 

 

 



7.2.2 The Induced Electric Field 

Faraday’s discovery found that there are two kind of electric fields, one due to static charges and 

the other due to changing magnetic field. 

Electric field due to static charges can be calculated using Coulomb’s law but the electric field 

due to changing magnetic field can be calculated by exploiting the analogy between Faraday’s 

law and Ampere’s law: 

∇⃗⃗⃗ × 𝐸⃗⃗ = −
𝜕𝐵⃗⃗

𝜕𝑡
    and    ∇⃗⃗⃗ × 𝐵⃗⃗ = −𝜇𝑜𝐽 

Since Curl alone is not enough to determine a field so we need divergence as well. But as long as 

𝐸⃗⃗ is purely Faraday field and in the absence of any charges, Gauss’s law says:  

∇⃗⃗⃗. 𝐸⃗⃗ = 0 and for magnetic field ∇⃗⃗⃗. 𝐵⃗⃗ = 0 

Hence the parallel is complete, so we can conclude that Faraday induced electric fields can be 

determined by − (
𝜕𝐵⃗⃗

𝜕𝑡
) in exactly the same as we determine magnetostatic field by 𝜇𝑜𝐽. 

If symmetry permits we can use all the tricks of Ampere’s law to determine the electric field, like 

∮ 𝐵⃗⃗. 𝑑𝑙 = 𝜇𝑜𝐼𝑒𝑛𝑐 

∮ 𝐸⃗⃗. 𝑑𝑙 = −
𝑑Φ

𝑑𝑡
 

 

 

Example 5: 

An infinitely long straight wire carries a slowly varying current I(t). Determine the induced 

electric field as a function of distance s from the 

wire. 

Solution: 

In a quasistatic approximation, the magnetic field 

produced by the current at distance s is: 

𝐵 =
𝜇𝑜𝐼

2𝜋𝑠
 

For the rectangular Amperian loop shown in the figure: 



∮ 𝐸⃗⃗. 𝑑𝑙 = − ∫
𝜕𝐵⃗⃗

𝜕𝑡
. 𝑑𝑎⃗ = − ∫

𝜇𝑜

2𝜋𝑠

𝑑𝐼

𝑑𝑡
 𝑑𝑎 

𝐸(𝑠𝑜)𝑙 − 𝐸(𝑠)𝑙 = −
𝜇𝑜

2𝜋

𝑑𝐼

𝑑𝑡
∫

𝑙

𝑠
 𝑑𝑠

𝑠

𝑠𝑜

= −
𝜇𝑜𝑙

2𝜋

𝑑𝐼

𝑑𝑡
[ln(𝑠) − ln(𝑠𝑜)] 

𝐸(𝑠) =
𝜇𝑜

2𝜋

𝑑𝐼

𝑑𝑡
ln(𝑠) + 𝐾 

Example 6: 

A square loop, side a, resistance R, lies a distance s from an infinite straight wire that carries 

current I as shown in the figure. Now someone cuts the wire, so that I drops to zero. In what 

direction does the induced current in the square loop flow, and what total charge passes a given 

point in the loop during the time this current flows? If you don’t like the scissors model, then 

turn the current down gradually: 

𝐼(𝑡) = {
(1 − 𝛼𝑡)𝐼     𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 1/𝛼

0   𝑓𝑜𝑟 𝑡 ≥ 1/𝛼
  

Solution: 

Φ = ∫ 𝐵⃗⃗. 𝑑𝑎⃗ =
𝜇𝑜𝐼𝑎

2𝜋
∫

𝑑𝑠′

𝑠′

𝑠+𝑎

𝑠

=
𝜇𝑜𝐼𝑎

2𝜋
ln (

𝑠 + 𝑎

𝑠
) 

𝜀 = 𝐼𝑙𝑜𝑜𝑝𝑅 =
𝑑𝑄

𝑑𝑡
𝑅 = −

𝑑Φ

𝑑𝑡
= −

𝜇𝑜𝑎

2𝜋
ln (

𝑠 + 𝑎

𝑠
)

𝑑𝐼

𝑑𝑡
 

𝑑𝑄 = −
𝜇𝑜𝑎

2𝜋𝑅
ln (

𝑠 + 𝑎

𝑠
) 𝑑𝐼 

𝑄 = −
𝜇𝑜𝐼𝑎

2𝜋𝑅
ln (

𝑠 + 𝑎

𝑠
) 

 

 

 

 

 

 

 



7.3. Inductance 

Consider two loops: loop 1 and loop 2 as shown in the figure below.  

A current I1 flowing through loop 1 will produce a magnetic field at the position of loop 2 equal 

to 

𝐵⃗⃗1 =
𝜇𝑜𝐼1

4𝜋
∮

𝑑𝑙1×∆𝑟̂

Δ𝑟2
 

The magnetic field generated by loop is directly 

proportional to the current in the loop I1. Hence 

The magnetic flux through loop 2 is equal to 

Φ2 = ∫ 𝐵⃗⃗1 . 𝑑𝑎⃗2 = ∫(∇⃗⃗⃗ × 𝐴1). 𝑑𝑎⃗2 = ∮ 𝐴1 . 𝑑𝑙2 

𝐴1 =
𝜇𝑜𝐼1

4𝜋
∮

𝑑𝑙1

∆𝑟
  

Φ2 =
𝜇𝑜𝐼1

4𝜋
∮ (∮

𝑑𝑙1

∆𝑟
) . 𝑑𝑙2 = 𝑀21𝐼1 

 

𝑀21 =
𝜇𝑜

4𝜋
∮ (∮

𝑑𝑙1

∆𝑟
) . 𝑑𝑙2 

 

Here, M21 is called the mutual inductance of the two loops. It is a purely geometrical quantity 

that depends on the sizes, shapes and relative positions of the two loops. It does not change if we 

switch the role of loop 1 and loop 2: the flux through loop 2 when we run a current I around loop 

1 is exactly the same as the flux through loop 1 when we send the same current I around loop 2. 

Besides inducing an EMF in a nearby loop, the changing current in loop 1 also induces an EMF 

in loop 1.  

The flux through loop 1 generated by the current in loop 1 is equal to 

Φ1 = 𝐿𝐼1 

The constant of proportionality is called the self-inductance (or just Inductance). The unit of 

inductance is the Henrie (H). Henry is volt-second/meter. 

As with M it depends on the geometry and size of the loop. If the current changes EMF induced 

in the loop is: 

𝜀 = −𝐿
𝑑𝐼

𝑑𝑡
 

Suppose a current I is flowing around a loop when suddenly wire is cut and the current drops 

instantaneously to zero. This generates a back EMF, for although I may be small but (
𝑑𝐼

𝑑𝑡
) is 

enormous. That’s why we often see a spark when we suddenly unplug the iron or a toaster-

electromagnetic induction is desperately trying to keep the current going, it can even jump the 

gap in the circuit. But nothing so dramatic happens when we plug-in the iron or the toaster 

because induction opposes the sudden increase in the current, making instead a smooth and 

continuous build-up. 



Example 7: 

A short solenoid of length l and radius a, with n1 turns per unit length lies on the axis of a very 

long solenoid of radius b with n2 turns per unit length as shown below. Current I flows in the 

short solenoid. What is the flux through the long solenoid. 

 

Solution: Since the inner solenoid is short it has very complicated field and the flux through 

each ring of the bigger solenoid will be different. Instead we will exploit the equality of the 

mutual inductances and use the magnetic field of the bigger solenoid and find the flux through 

the shorter solenoid and they both should be same. 

The magnetic field of the bigger solenoid is constant in the region of smaller solenoid: 

𝐵 = 𝜇𝑜𝑛2𝐼 

The flux through the single loop of a smaller solenoid will be: 

Φ = 𝐵𝜋𝑎2 = 𝜇𝑜𝑛2𝐼𝜋𝑎2 

Since there are n1l turns in total then the flux through the whole solenoid would be: 

Φ = 𝜇𝑜𝑛1𝑛2𝑙𝜋𝑎2𝐼 

𝑀 = 𝜇𝑜𝑛1𝑛2𝑙𝜋𝑎2 

If the current varies in loop 1, it will induce EMF in loop 2 

𝜀2 = −
𝑑Φ2

dt
= −𝑀

𝑑𝐼1

𝑑𝑡
 

And this changing current in loop 1 will not only induce EMF in loop 2 but also induce EMF in 

loop 1 itself. And the flux through loop 1 is proportional to the current in loop 1. 

Φ = LI 

Where L is the self-Inductance and the EMF induced in loop 1 due to change in current in loop 

1, will be: 

𝜀1 = −
𝑑Φ1

dt
= −𝐿

𝑑𝐼1

𝑑𝑡
 

 

 



Example 8:  
Find the self-inductance per unit length of a long solenoid, of radius R, carrying n turns per unit 

length. 

Solution:  

𝐵 = 𝜇𝑜𝑛𝐼 

Φ = 𝜇𝑜𝑛𝐼𝜋𝑅2 

In a length l there are nl turns so the flux through all these turns will be: 

𝛷 = 𝜇𝑜𝑛2𝑙𝜋𝑅2𝐼 = 𝐿𝐼 

𝐿

𝑙
= 𝜇𝑜𝑛2𝜋𝑅2 

Example 9: 

Suppose for instance, that a battery (which supplies a constant EMF 𝜀𝑜) is connected to a circuit 

of resistance R and inductance L. What current flows? 

Solution: 

The total EMF in the circuit is that provided by the battery plus 

the one resulting from the self-inductance. 

𝜀𝑜 − 𝐿
𝑑𝐼

𝑑𝑡
= 𝐼𝑅 

𝐿

𝑅

𝑑𝐼

𝑑𝑡
+ 𝐼 =

𝜀𝑜

𝑅
 

The solution to this differential equation is: 

𝐼(𝑡) =
𝜀𝑜

𝑅
+ 𝑘𝑒−(𝑅/𝐿)𝑡 

Where k is a constant to be determined by the initial conditions. If the circuit is plugged in at 

time t=0 (so 𝐼(0) = 0), then k has the value −𝜀𝑜/𝑅, and  

𝐼(𝑡) =
𝜀𝑜

𝑅
[1 − 𝑒−(

𝑅
𝐿

)𝑡] 

If there was no inductance in the circuit then current would 

immediately jump to 
𝜀𝑜

𝑅
.  

The quantity 𝜏 =
𝐿

𝑅
 is called the time constant and it is 2//3rd of 

the time it takes to reach maximum value.  



7.2.4 Energy in Magnetic Fields 

It takes a certain amount of energy to start a current flowing in a circuit. The reason energy is 

required because work needs to be done against the back EMF to get the current going. This is a 

fixed amount and it is recovered when the current is turned OFF. In the meantime, it represent 

the energy latent in the circuit or energy stored in a magnetic field. 

The work done on a unit charge, against back EMF, in one trip around the circuit is – 𝜀 (here 

minus sign indicates the work is not done by the EMF). Since the amount of charge passing 

down the wire per unit time is I, so the total work done per unit time is: 

𝑑𝑊

𝑑𝑡
= −𝜀𝐼 = 𝐿𝐼

𝑑𝐼

𝑑𝑡
 

If we start with the zero current and build it up to I, then the total work done is: 

𝑊 =
1

2
𝐿𝐼2 

It does not depend on how long does it take to reach the current I but only on the geometry of the 

loop (interms of L) and the final current I. 

Alternate way to represent W: 

Since the flux through the loop is: 

Φ = 𝐿𝐼 

Also 

 

where P is the perimeter of the loop and S is any surface bounded by P. 

𝐿𝐼 = ∮ 𝐴. 𝑑𝑙 

Therefore  

𝑊 =
1

2
𝐿𝐼2 =

1

2
𝐼 ∮ 𝐴. 𝑑𝑙 =

1

2
∮(𝐴. 𝐼)𝑑𝑙  

If there is a volume current, the above equation can be generalized as: 

𝑊 =
1

2
∫ (𝐴. 𝐽)𝑑𝜏

𝑉

  



Using Ampere’s law ∇⃗⃗⃗ × 𝐵⃗⃗ = 𝜇𝑜𝐽: 

𝑊 =
1

2𝜇𝑜
∫ 𝐴. (∇⃗⃗⃗ × 𝐵⃗⃗)𝑑𝜏

𝑉

 

∇⃗⃗⃗. (A⃗⃗⃗ × 𝐵⃗⃗) = 𝐵⃗⃗. (∇⃗⃗⃗ × 𝐴) − 𝐴. (∇⃗⃗⃗ × 𝐵⃗⃗) 

𝐴. (∇⃗⃗⃗ × 𝐵⃗⃗) = 𝐵⃗⃗. (∇⃗⃗⃗ × 𝐴) − ∇⃗⃗⃗. (A⃗⃗⃗ × 𝐵⃗⃗) = 𝐵2 − ∇⃗⃗⃗. (A⃗⃗⃗ × 𝐵⃗⃗) 

𝑊 =
1

2𝜇𝑜
[∫ 𝐵2𝑑𝜏

𝑉

− ∫ ∇⃗⃗⃗. (A⃗⃗⃗ × 𝐵⃗⃗)𝑑𝜏
𝑉

] 

𝑊 =
1

2𝜇𝑜
[∫ 𝐵2𝑑𝜏

𝑉

− ∫ (A⃗⃗⃗ × 𝐵⃗⃗). 𝑑𝑎⃗
𝑆

] 

Where S is the surface bounding the volume V. And Integration is over the entire volume 

occupied by the current. But any region larger than this will also be OK because J would be zero 

everywhere except at the source. For larger region we pick greater contribution from the volume 

integral and negligible from the surface integral, so we can ignore the surface integral part: 

Hence  

𝑊 =
1

2𝜇𝑜
∫ 𝐵2𝑑𝜏

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 

From this result we can say that energy is stored in the magnetic field in the amount (
𝐵2

2𝜇𝑜
) per 

unit volume.  

The main point is that producing a magnetic field, where previously there was none, requires 

changing the field, and a changing magnetic field according to Faraday, induces an electric field. 

The latter can do the work.  

In the beginning there is no E and at the end there is no E, but in between when B is building up, 

there is an induced E, and it is against this that the work is done. 

Remember energy stored in electrostatic field was:  

𝑊𝑒𝑙𝑒𝑐 =
1

2
∫(𝑉𝜌)𝑑𝜏 =

𝜖𝑜

2
∫ 𝐸2𝑑𝜏

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 

𝑊𝑚𝑎𝑔 = 𝑊 =
1

2
∫ (𝐴. 𝐽)𝑑𝜏

𝑉

=
1

2𝜇𝑜
∫ 𝐵2𝑑𝜏

𝑎𝑙𝑙 𝑠𝑝𝑎𝑐𝑒

 

 



Example 10: 

A long coaxial cable carries current I (the current flows down the surface of the inner cylinder of 

radius a, and back along the outer cylinder of radius b) as shown in the figure below. Find the 

magnetic energy stored in a section of length l. 

 

Solution: 

Since the current in the inner cylinder is I, so using Ampere’s law we can find the magnetic field 

in the region between the inner cylinder and the outer cylinder, as: 

∮ 𝐵⃗⃗ . 𝑑𝑙 = 𝜇𝑜𝐼 

𝐵 ∗ 2𝜋𝑠 = 𝜇𝑜𝐼   𝐵 =
𝜇𝑜𝐼

2𝜋𝑠
   

[magnetic field will be zero outside the bigger cylinder because net current enclosed will be zero. 

B inside the inner cylinder is also zero because inner cylinder has only surface current.]  

The energy per unit volume is: 

𝑊

𝑉𝑜𝑙𝑢𝑚𝑒
=

𝐵2

2𝜇𝑜
=

(
𝜇𝑜𝐼
2𝜋𝑠)

2

2𝜇𝑜
=

𝜇𝑜𝐼2

8𝜋2𝑠2
 

Energy stored in the cylindrical shell of radius 𝑠 > 𝑎 and length l and thickness ds is given by: 

𝑊 =
𝜇𝑜𝐼2

8𝜋2𝑠2
∗ 2𝜋𝑠𝑙 ∗ 𝑑𝑠 =

𝜇𝑜𝐼2𝑙

4𝜋
(

𝑑𝑠

𝑠
) 

Integrating from a to b, we get: 

𝑊 = ∫
𝜇𝑜𝐼2𝑙

4𝜋
(

𝑑𝑠

𝑠
)

𝑏

𝑎

=
𝜇𝑜𝐼2𝑙

4𝜋
ln (

𝑏

𝑎
) 

Since also, 𝑊 =
1

2
𝐿𝐼2, so 

𝐿 =
𝜇𝑜𝑙

2𝜋
ln (

𝑏

𝑎
) 



Example 11: 

Suppose the circuit in the figure below has been connected for a very long time when suddenly at 

t=0, the switch is thrown at B, disconnecting the battery from the circuit.  

a) What is the current I at any subsequent time. 

b) What is the total energy delivered to the resistor. 

c) Show that this is energy is same as originally stored in 

the inductor. 

Solution: 

(a) Initial current is 𝐼𝑜 =
𝜀𝑜

𝑅
  

𝐿
𝑑𝐼

𝑑𝑡
= 𝐼𝑅 

𝐼 = 𝐼𝑜𝑒−
𝑅
𝐿

𝑡 =
𝜀𝑜

𝑅
𝑒−(

𝑅
𝐿

)𝑡
 

(b)  

𝑃 = 𝐼2𝑅 =
𝜀𝑜

2

𝑅
𝑒−2(

𝑅
𝐿

)𝑡 =
𝑑𝑊

𝑑𝑡
 

𝑊 =
𝜀𝑜

2

𝑅
∫ 𝑒−2(

𝑅
𝐿

)𝑡𝑑𝑡 
∞

0

=
𝜀𝑜

2

𝑅
(−

𝐿

2𝑅
𝑒−

2𝑅
𝐿

𝑡)|
0

∞

=
1

2
𝐿 (

𝜀𝑜

𝑅
)

2

 

(c)  

𝑊 =
1

2
𝐿𝐼𝑜

2 =
1

2
𝐿 (

𝜀𝑜

𝑅
)

2

 

 

 

 

 

 

 

 

 

 



7.4. The Maxwell Equations 

The electric and magnetic fields in electrostatics and magnetostatics are described by the 

following four equations: 

 

 

In systems with non-steady currents not all of these equations are valid anymore. For example, 

 

 

for every vector function. However, according to Ampere's law 

 

 

which is only zero for steady currents (for which  is a constant, independent of position). For 

non-steady currents 

 

 

We thus conclude that Ampere's law does not hold for non-steady currents. The failure of 

Ampere's law can also be observed in a system in which a capacitor is being charged (see Figure 

7.8). During the charging process a current I is flowing through the wire, and consequently there 

will be a magnetic field present. The magnetic field generated by the charging current can be 

calculated using Ampere's law. When we are far away from the capacitor the generated magnetic 

field will be that of a line current. Consider an Amperian loop of radius r, centered on the wire. 

The line integral of  around this loop is equal to 

 

 

According to Ampere's law the line integral of  around a 

closed loop is proportional to the current intercepted by a 

surface spanned by this loop. For the system shown in the 

figure, the intercepted current is ill defined. Consider first 

surface 1. The current intercepted by surface 1 is equal to I. 

Surface 2 is also spanned by the Amperian loop, but the 

current intercepted by this loop is zero. We thus conclude 

that Ampere's law does not apply in systems where the 

current is not continuous. 



 

 

Maxwell modified Ampere's law in the following manner: 

 

 

The term added by Maxwell is called the displacement current. It is defined as 

 

 

Consider the region between the capacitor plates in Figure 7.8. The electric field in this region is 

equal to 

 

 

where we have assumed that the field produced is that of an ideal capacitor with surface 

area A and the z axis is in the direction of the current. The rate of change of the electric field is 

equal to 

 

 

The surface integral of  across surface 2 is therefore equal to 

 

 

The surface integral of  across surface 2 is equal to 

 

 

The modification of Ampere's law by Maxwell insures that the surface integral of  is 

independent of the surface chosen. In electrostatics and magnetostatics the electric and magnetic 

fields are constant in time, and therefore, the new form of Ampere's law reduces to the form of 

Ampere's law we have been using so far. 

In a region where there are no free charges or free currents Maxwell's equations become very 

symmetric 

 

 



The symmetry is broken when electric charges are present, unless besides electric charges there 

are magnetic monopoles. If the magnetic charge density is equal to η and the magnetic current is 

equal to  then Maxwell's equation become 

 

 

To obtain Maxwell's equations that describe the electric and magnetic fields in matter we must 

take the bound charges and bound currents into account: 

 

 
 

 

In the non-static case, the polarization can be time dependent. Therefore, also the bound charge 

density is time dependent, and a net current can be associated with the change in the bound 

charge density. This current is called the polarization current  and is equal to 

 

 

Maxwell's equations in matter are therefore equal to 

 

 

It is common to rewrite Maxwell's equations in terms of the parameters we can control (the free 

charge density and the free current density). Gauss's law can be rewritten as 

 

 

where  is called the electric displacement. Ampere's law can be rewritten as 

 

 

where  is called the H field. The most general form of Maxwell's equations, in terms of the 

free charges and free currents, is given by 



 

 

 


