
Chapter 8. Conservation Laws 

 

8.1 Charge and Energy 

8.1.1 The Continuity Equation 

In this chapter we study the conservation of energy, momentum and angular momentum in 

electrodynamics. They all start from the conservation of charge. 

The conservation of charge means that if the total charge in some volume changes then exactly 

that amount of charge must have passed in or out through the surface. 

𝑄(𝑡) = ∫𝜌(𝑟, 𝑡)𝑑𝜏 

And the current flowing through the boundary is: 

𝑑𝑄

𝑑𝑡
= −∫𝐽 . 𝑑𝑎⃗ 

Combining the above two equations, we get 

∫
𝜕𝜌

𝜕𝑡
𝑑𝜏 = −∫ ∇⃗⃗⃗. 𝐽 𝑑𝜏 

Since this is true for any volume, so 

𝜕𝜌

𝜕𝑡
= −∇⃗⃗⃗. 𝐽 

This is called continuity equation, the precise mathematical statement of conservation of charge. In this 

chapter we will learn energy density and momentum density (analogs to 𝜌) and energy current and 

momentum current (analogs to 𝐽). 

8.1.2 Poynting’s Theorem 

Since we know the work necessary to assemble static charge distribution is: 

𝑊𝑒 =
𝜖𝑜
2
∫𝐸2𝑑𝜏 

Where E is the resulting electric field. 

Similarly the work required to get current going (against the back EMF) is: 

𝑊𝑚 =
1

2𝜇𝑜
∫𝐵2𝑑𝜏 

Where B is the resulting magnetic field. 

Hence the total energy stored in an electromagnetic field is given by: 



𝑈𝑒𝑚 =
1

2
[∫(𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2) ] 𝑑𝜏 

Now suppose we have some charge and current configuration at time t, produces fields E and B. In the 

next instant dt, the charges move around a bit. How much work, dW, is done by the electromagnetic 

forces acting on these charges in the interval dt? 

According to Lorentz force law: 

𝑑𝑊 = 𝐹⃗. 𝑑𝑙 = 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗). 𝑣⃗𝑑𝑡 = 𝑞𝐸⃗⃗. 𝑣⃗𝑑𝑡 

Now 𝑞 = 𝜌𝑑𝜏 and 𝜌𝑣⃗ = 𝐽, so the rate at which work is done on all the charges in a volume V is: 

𝑑𝑊

𝑑𝑡
= ∫(𝐸⃗⃗. 𝐽)𝑑𝜏 

So 𝐸⃗⃗. 𝐽 is the work done per unit time per unit volume, i.e. Power delivered per unit volume. 

𝐸⃗⃗. 𝐽 = 𝐸⃗⃗. [
1

𝜇𝑜
(∇⃗⃗⃗ × 𝐵⃗⃗) − 𝜖𝑜

𝜕𝐸⃗⃗

𝜕𝑡
] 

∇⃗⃗⃗. (𝐸⃗⃗ × 𝐵⃗⃗) = B⃗⃗⃗. (∇⃗⃗⃗ × 𝐸⃗⃗) − E⃗⃗⃗. (∇⃗⃗⃗ × 𝐵⃗⃗) 

Form Faraday’s law: ∇⃗⃗⃗ × 𝐸⃗⃗ = −
𝜕𝐵⃗⃗

𝜕𝑡
 

E⃗⃗⃗. (∇⃗⃗⃗ × 𝐵⃗⃗) = −B⃗⃗⃗.
𝜕𝐵⃗⃗

𝜕𝑡
− ∇⃗⃗⃗. (𝐸⃗⃗ × 𝐵⃗⃗) = −

1

2

𝜕𝐵2

𝜕𝑡
− ∇⃗⃗⃗. (𝐸⃗⃗ × 𝐵⃗⃗) 

So  

𝐸⃗⃗. 𝐽 = 𝐸⃗⃗. [
1

𝜇𝑜
(∇⃗⃗⃗ × 𝐵⃗⃗) − 𝜖𝑜

𝜕𝐸⃗⃗

𝜕𝑡
] = −

1

2𝜇𝑜

𝜕𝐵2

𝜕𝑡
−
1

𝜇𝑜
∇⃗⃗⃗. (𝐸⃗⃗ × 𝐵⃗⃗) −

𝜖𝑜
2

𝜕𝐸2

𝜕𝑡
 

𝐸⃗⃗. 𝐽 = −
1

2

𝜕

𝜕𝑡
(𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2) −

1

𝜇𝑜
∇⃗⃗⃗. (𝐸⃗⃗ × 𝐵⃗⃗) 

𝑑𝑊

𝑑𝑡
= ∫(𝐸⃗⃗. 𝐽)𝑑𝜏 = −

𝑑

𝑑𝑡
∫
1

2
(𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2)𝑑𝜏 −

1

𝜇𝑜
∮(𝐸⃗⃗ × 𝐵⃗⃗). 𝑑𝑎⃗ 

Where S is the surface bounding the volume V. And this is the Poynting Theorem, it is the work-energy 

theorem of electrodynamics. The first integral is the total energy stored in the electromagnetic field and 

the second term represents the rate at which energy is carried out of the volume V, across its boundary 

surface, by the electromagnetic field. 

The Poynting Theorem states that “The work done on the charges by the electromagnetic force is 

equal to the decrease in energy stored in the field, less the energy flowed out through the surface” 

The energy per unit time, per unit area, transported by the fields is called Poynting Vector. 

𝑆 =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) 



And 𝑆. 𝑑𝑎⃗ is the energy per unit time across the infinitesimal surface da- the energy flux, so 𝑆 is the 

energy flux density. 

We can write Poynting’s Theorem more compactly as: 

𝑑𝑊

𝑑𝑡
= −

𝑑𝑈𝑒𝑚
𝑑𝑡

− ∮𝑆. 𝑑𝑎⃗ 

Since the work done on the charges will increase the mechanical energy (kinetic, potential etc), if umech is 

the mechanical energy density, so 

𝑑𝑊

𝑑𝑡
=
𝑑

𝑑𝑡
∫𝑢𝑚𝑒𝑐ℎ𝑑𝜏 

And energy density of the electromagnetic fields is: 

𝑢𝑒𝑚 =
1

2
(𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2) 

 

𝑑

𝑑𝑡
∫(𝑢𝑚𝑒𝑐ℎ + 𝑢𝑒𝑚)𝑑𝜏 = −∮𝑆. 𝑑𝑎⃗ = −∫(∇⃗⃗⃗. 𝑆)𝑑𝜏 

 

𝜕

𝜕𝑡
(𝑢𝑚𝑒𝑐ℎ + 𝑢𝑒𝑚) = −(∇⃗⃗⃗. 𝑆) 

This is differential form of Poynting’s theorem. Comparing it with the continuity equation:  

𝜕𝜌

𝜕𝑡
= −∇⃗⃗⃗. 𝐽 

The charge density is replaced by the energy density (mechanical+electromagnetic) and the current 

density is replaced by the Poynting vector. This means that flow of energy through any volume is the 

same as flow of charge through any volume. 

 

Example 1:  

Calculate the power (energy per unit time) transported down a long coaxial cable carrying current I (the 

current flows down the surface of the inner cylinder of radius a and back along the outer cylinder of 

radius b), assuming the two cylinders are kept at potential difference V. 

Solution: 

Electric field between the cylinders: 

𝐸⃗⃗ =
1

2𝜋𝜖𝑜

𝜆

𝑠
𝑠̂ 



𝐵⃗⃗ =
𝜇𝑜𝐼

2𝜋𝑠
𝜙̂ 

So  

𝑆 =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) = (

𝜆𝐼

4𝜋2𝜖𝑜

1

𝑠2
𝑘̂)  

𝑃𝑜𝑤𝑒𝑟 = 𝑃 = ∮𝑆. 𝑑𝑎⃗ = ∫ 𝑆 ∗ 2𝜋𝑠 ∗ 𝑑𝑠 =
𝑏

𝑎

∫
𝜆𝐼

2𝜋𝜖𝑜

1

𝑠
∗ 𝑑𝑠 =

𝑏

𝑎

𝜆𝐼

2𝜋𝜖𝑜
ln (

𝑏

𝑎
) 

𝑉 = ∫ 𝐸⃗⃗. 𝑑𝑙 =
𝑏

𝑎

𝜆

2𝜋𝜖𝑜
∫

1

𝑠

𝑏

𝑎

𝑑𝑠 =
𝜆

2𝜋𝜖𝑜
ln (

𝑏

𝑎
) 

𝑃 = 𝑉𝐼 =
𝜆𝐼

2𝜋𝜖𝑜
ln (

𝑏

𝑎
) 

Example 2: 

A wire of radius a carries a constant current I, uniformly distributed over its cross-section. A narrow gap 

in the wire of width w<<a , forms a parallel plate capacitor as shown in the figure.  

(a) Find the electric and magnetic field in the gap as a function of the distance s from the axis and 

the time t. 

(b) Find the energy density 𝑢𝑒𝑚 and 

the Poynting vector 𝑺⃗⃗⃗ in the gap. 

(c) Determine the total energy in the 

gap as a function of time. Calculate 

the total power flowing into the 

gap, for a volume of radius b<a. 

Solution: 

(a) Electric field in the gap is:  

𝐸⃗⃗(𝑡) =
𝜎

𝜖𝑜
𝑘̂ =

𝑄(𝑡)

𝜋𝑎2𝜖𝑜
𝑘̂ =

𝐼𝑡

𝜋𝑎2𝜖𝑜
𝑘̂ 

∇⃗⃗⃗ × B⃗⃗⃗ = 𝜇𝑜 (𝐽 + 𝜖𝑜
𝜕𝐸⃗⃗

𝜕𝑡
) 

∫ B⃗⃗⃗ . 𝑑𝑙 = ∫(∇⃗⃗⃗ × B⃗⃗⃗) . 𝑑𝑎⃗ = ∫𝜇𝑜 (𝐽 + 𝜖𝑜
𝜕𝐸⃗⃗

𝜕𝑡
) . 𝑑𝑎⃗ = 𝜇𝑜𝜖𝑜

𝜕𝐸

𝜕𝑡
∗ 𝜋𝑠2 =

𝜇𝑜𝐼𝑠
2

𝑎2
 

𝐵 ∗ 2𝜋𝑠 =
𝜇𝑜𝐼𝑠

2

𝑎2
  𝐵⃗⃗ =

𝜇𝑜𝐼𝑠

2𝜋𝑎2
𝜙̂ 

(b)  

𝑢𝑒𝑚 =
1

2
(𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2) =

1

2
[𝜖𝑜 (

𝐼𝑡

𝜋𝑎2𝜖𝑜
)
2

+
1

𝜇𝑜
(
𝜇𝑜𝐼𝑠

2𝜋𝑎2
)

2

] 



𝑢𝑒𝑚 =
𝜇𝑜𝐼

2

2𝜋2𝑎4
[(𝑐𝑡)2 + (

𝑠

2
)
2

] 

𝑆 =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) =

1

𝜇𝑜
(

𝐼𝑡

𝜋𝑎2𝜖𝑜
)(
𝜇𝑜𝐼𝑠

2𝜋𝑎2
) (𝑘̂ × 𝜙̂) = −

𝐼2𝑡 ∗ 𝑠

2𝜋2𝜖𝑜𝑎
4
𝑠̂ 

(c)  

𝑈𝑒𝑚 =
1

2
[∫(𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2) ] 𝑑𝜏 = ∫𝑢𝑒𝑚𝑑𝜏 =∫𝑢𝑒𝑚𝑤 ∗ 2𝜋𝑠 ∗ 𝑑𝑠 

𝑈𝑒𝑚 = ∫
𝜇𝑜𝐼

2

2𝜋2𝑎4
[(𝑐𝑡)2 + (

𝑠

2
)
2

]𝑤 ∗ 2𝜋𝑠 ∗ 𝑑𝑠
𝑏

0

=
𝜇𝑜𝐼

2𝑤

𝜋𝑎4
[
(𝑐𝑡)2𝑠2

2
+
1

4

 𝑠4

4
]
0

𝑏

 

𝑈𝑒𝑚 =
𝜇𝑜𝐼

2𝑤𝑏2

2𝜋𝑎4
[(𝑐𝑡)2 +

 𝑏2

8
] 

𝑃𝑖𝑛 = −∫𝑆 . 𝑑𝑎⃗ =
𝐼2𝑡

2𝜋2𝜖𝑜𝑎
4
(𝑏𝑠̂. 2𝜋𝑏𝑤𝑠̂) =

𝐼2𝑤𝑡𝑏2

𝜋𝜖𝑜𝑎
4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8.2 Momentum 

8.2.1 Newton’s Third Law in Electrodynamics 

Imagine a point charge q travelling in along the x-axis at a constant speed v, since it is moving its electric 

field is not given by Coulomb’s law but 𝐸⃗⃗ still points radially outward from the instantaneous position of 

the charge. 

Also a moving point charge does not constitute a steady current, its magnetic field is not given by Biot-

Savart law but in fact 𝐵⃗⃗ still circles around the axis in a manner suggested by the right hand rule. 

Now assume there is another identical charge moving along the y-axis and they both interact with each 

other as shown in the figure. Let’s assume they both cannot 

be driven out of their path of travelling due to 

electromagnetic forces on each other. 

Now if we consider the electric force between them they 

will be same in magnitude but opposite in direction along 

the line joining the two charges. 

But the magnetic force on q2 due to q1 will be to the right 

along x-axis and the magnetic force on q1 due to q2 will be 

upward along the y-axis. The magnitude to the magnetic 

forces is equal in magnitude but not opposite in direction, so 

they don’t cancel each other. 

Newton’s third law fails here: means there is no conservation of momentum here. 

Well, in electrodynamics the electromagnetic field themselves carry momentum as we have already 

calculated that electromagnetic fields carry energy. So if we take momentum of electromagnetic field 

and momentum of the charges then total momentum will be conserved. Hence, Newton’s third law is 

not violated in Electrodynamics. 

8.2.2 Maxwell’s Stress Tensor 

Let’s calculate the total electromagnetic force on the charges in a volume V: 

𝐹⃗ = ∫(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗)𝜌𝑑𝜏 = ∫(𝜌𝐸⃗⃗ + 𝐽 × 𝐵⃗⃗)𝑑𝜏 

The force per unit volume will be 

𝑓 = 𝜌𝐸⃗⃗ + 𝐽 × 𝐵⃗⃗ 

The above expression can be written interms of fields by using Maxwell’s equations: 

∇⃗⃗⃗. 𝐸⃗⃗ =
𝜌

𝜖𝑜
     and   ∇⃗⃗⃗ × 𝐵⃗⃗ = 𝜇𝑜𝐽 + 𝜇𝑜𝜖𝑜

𝜕𝐸⃗⃗

𝜕𝑡
 

𝑓 = 𝜖𝑜(∇⃗⃗⃗. 𝐸⃗⃗)𝐸⃗⃗ + (
1

𝜇𝑜
∇⃗⃗⃗ × 𝐵⃗⃗ − 𝜖𝑜

𝜕𝐸⃗⃗

𝜕𝑡
) × 𝐵⃗⃗ 



𝜕

𝜕𝑡
(𝐸⃗⃗ × 𝐵⃗⃗) = (

𝜕𝐸⃗⃗

𝜕𝑡
× 𝐵⃗⃗) + (𝐸⃗⃗ ×

𝜕𝐵⃗⃗

𝜕𝑡
) 

Faraday’s law says: 

𝜕𝐵⃗⃗

𝜕𝑡
= −∇⃗⃗⃗ × 𝐸⃗⃗ 

𝜕𝐸⃗⃗

𝜕𝑡
× 𝐵⃗⃗ =

𝜕

𝜕𝑡
(𝐸⃗⃗ × 𝐵⃗⃗) + 𝐸⃗⃗ × (∇⃗⃗⃗ × 𝐸⃗⃗) 

𝑓 = 𝜖𝑜[(∇⃗⃗⃗. 𝐸⃗⃗)𝐸⃗⃗ − 𝐸⃗⃗ × (∇⃗⃗⃗ × 𝐸⃗⃗)] −
1

𝜇𝑜
(B⃗⃗⃗ × (∇⃗⃗⃗ × 𝐵⃗⃗)) − 𝜖𝑜

𝜕

𝜕𝑡
(𝐸⃗⃗ × 𝐵⃗⃗) 

∇⃗⃗⃗(𝐸2) = 2(E⃗⃗⃗. ∇⃗⃗⃗)𝐸⃗⃗ + 2E⃗⃗⃗ × (∇⃗⃗⃗ × E⃗⃗⃗) 

E⃗⃗⃗ × (∇⃗⃗⃗ × E⃗⃗⃗) =
1

2
∇⃗⃗⃗(𝐸2) − (E⃗⃗⃗. ∇⃗⃗⃗)𝐸⃗⃗ 

Similarly, 

B⃗⃗⃗ × (∇⃗⃗⃗ × 𝐵⃗⃗) =
1

2
∇⃗⃗⃗(𝐵2) − (B⃗⃗⃗. ∇⃗⃗⃗)𝐵⃗⃗ 

𝑓 = 𝜖𝑜 [(∇⃗⃗⃗. 𝐸⃗⃗)𝐸⃗⃗ −
1

2
∇⃗⃗⃗(𝐸2) + (E⃗⃗⃗. ∇⃗⃗⃗)𝐸⃗⃗] −

1

𝜇𝑜
(
1

2
∇⃗⃗⃗(𝐵2) − (B⃗⃗⃗. ∇⃗⃗⃗)𝐵⃗⃗) − 𝜖𝑜

𝜕

𝜕𝑡
(𝐸⃗⃗ × 𝐵⃗⃗) 

𝑓 = 𝜖𝑜 ((∇⃗⃗⃗. 𝐸⃗⃗)𝐸⃗⃗ + (E⃗⃗⃗. ∇⃗⃗⃗)𝐸⃗⃗) +
1

𝜇𝑜
((∇⃗⃗⃗. 𝐵⃗⃗)𝐵⃗⃗ + (B⃗⃗⃗. ∇⃗⃗⃗)𝐵⃗⃗) −

1

2
∇⃗⃗⃗ (𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2) − 𝜖𝑜

𝜕

𝜕𝑡
(𝐸⃗⃗ × 𝐵⃗⃗) 

∇⃗⃗⃗. 𝐵⃗⃗ = 0 

If we use Maxwell’s Stress Tensor: 

𝑇𝑖𝑗 = 𝜖𝑜 (𝐸𝑖𝐸𝑗 −
1

2
𝛿𝑖𝑗𝐸

2) +
1

𝜇𝑜
(𝐵𝑖𝐵𝑗 −

1

2
𝛿𝑖𝑗𝐵

2) 

The indices 𝑖 and 𝑗 refer to the coordinates x, y, and z, so the stress tensor has a total of nine 

components (𝑇𝑥𝑥 , 𝑇𝑦𝑦, 𝑇𝑧𝑧, 𝑇𝑥𝑦, 𝑇𝑥𝑧, … ). The Kronecker delta, 𝛿𝑖𝑗  is 1 if the indices are the same (𝛿𝑥𝑥 =

𝛿𝑦𝑦 = 𝛿𝑧𝑧 = 1) and zero otherwise. 

𝑇𝑥𝑥 =
1

2
𝜖𝑜(𝐸𝑥

2 − 𝐸𝑦
2 − 𝐸𝑧

2) +
1

2𝜇𝑜
(𝐵𝑥

2 − 𝐵𝑦
2 −𝐵𝑧

2) 

𝑇𝑥𝑦 = 𝜖𝑜(𝐸𝑥𝐸𝑦) +
1

𝜇𝑜
(𝐵𝑥𝐵𝑦) 

And so on. A vector carries one index and tensor carries two indices. A dot product between a tensor 

and a vector can be written as: 

(𝑎⃗. 𝑇)
𝑗
= ∑ 𝑎𝑖𝑇𝑖𝑗

𝑖=𝑥,𝑦,𝑧

 



The resulting object that has only one index is itself a vector. The divergence of tensor 𝑇 has as its jth 

component as: 

(∇⃗⃗⃗. 𝑇)
𝑗
= 𝜖𝑜 [(∇⃗⃗⃗. 𝐸⃗⃗)𝐸𝑗 + (E⃗⃗⃗. ∇⃗⃗⃗)𝐸𝑗 −

1

2
∇𝑗(𝐸

2)] +
1

𝜇𝑜
[(∇⃗⃗⃗. 𝐵⃗⃗)𝐵𝑗 + (B⃗⃗⃗. ∇⃗⃗⃗)𝐵𝑗 −

1

2
∇𝑗(𝐵

2)] 

𝑓 = ∇⃗⃗⃗. 𝑇 − 𝜖𝑜𝜇𝑜
𝜕𝑆

𝜕𝑡
 

Where 𝑆 =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) is the Poynting vector. 

The total force on the charges is: 

𝐹⃗ = ∫(∇⃗⃗⃗. 𝑇)𝑑𝜏 − 𝜖𝑜𝜇𝑜
𝑑

𝑑𝑡
 ∫ 𝑆 𝑑𝜏 = ∮𝑇. 𝑑𝑎⃗ − 𝜖𝑜𝜇𝑜

𝑑

𝑑𝑡
 ∫ 𝑆 𝑑𝜏 

 

In the static case or whenever ∫𝑆 𝑑𝜏 is independent of time the force on the charges will be entirely 

given by the stress tensor at the boundary. Physically 𝑇 is the force per unit area (or stress) acting on the 

surface. And 𝑻𝒊𝒋 is the force per unit area in the ith direction acting on an element of surface oriented 

in the jth direction.  

The diagonal elements (𝑇𝑥𝑥 , 𝑇𝑦𝑦, 𝑇𝑧𝑧) represent Pressures and off-diagonal elements (𝑇𝑥𝑦, 𝑇𝑦𝑧, 𝑇𝑧𝑥 , … ) 

are shears.    

Example 3: 

Determine the net force on the northern hemisphere of a uniformly charged solid sphere of radius R and 

charge Q.  

Solution: 

Since the net force on the bowl is: 

𝐹⃗ = ∮𝑇. 𝑑𝑎⃗ − 𝜖𝑜𝜇𝑜
𝑑

𝑑𝑡
 ∫𝑆 𝑑𝜏  

Since the force is only along z-axis, so we need to calculate (𝑇. 𝑑𝑎⃗)
𝑧
 

The boundary surface consists of two parts- a hemispherical “bowl” 

at radius R, and a circular disk at 𝜃 =
𝜋

2
.  

For the bowl,    𝑑𝑎 = 𝑅2 sin 𝜃  𝑑𝜃 𝑑𝜙 𝑟̂ 

𝐸⃗⃗ =
1

4𝜋𝜖𝑜

𝑄

𝑅2
𝑟̂ 

In Cartesian components,  𝑟̂ = sin𝜃 cos𝜙 𝑖̂ + sin 𝜃 sin𝜙 𝑗̂ + cos𝜃 𝑘̂ 

𝐸⃗⃗ =
1

4𝜋𝜖𝑜

𝑄

𝑅2
[sin𝜃 cos𝜙 𝑖̂ + sin𝜃 sin𝜙 𝑗̂ + cos 𝜃 𝑘̂] 



𝑇𝑧𝑥 = 𝜖𝑜(𝐸𝑧𝐸𝑥) +
1

𝜇𝑜
(𝐵𝑧𝐵𝑥) = 𝜖𝑜 (

1

4𝜋𝜖𝑜

𝑄

𝑅2
)
2

sin 𝜃 cos𝜙 cos 𝜃 

𝑇𝑧𝑦 = 𝜖𝑜(𝐸𝑧𝐸𝑦) = 𝜖𝑜 (
1

4𝜋𝜖𝑜

𝑄

𝑅2
)
2

sin𝜃 sin𝜙 cos 𝜃 

𝑇𝑧𝑧 =
1

2
𝜖𝑜(𝐸𝑧

2 − 𝐸𝑥
2 − 𝐸𝑦

2) +
1

2𝜇𝑜
(𝐵𝑧

2 − 𝐵𝑥
2 − 𝐵𝑦

2) 

𝑇𝑧𝑧 =
𝜖𝑜
2
(
1

4𝜋𝜖𝑜

𝑄

𝑅2
)
2

(cos2 𝜃 − sin2 𝜃) 

The net force is in the z-direction so 

(𝑇. 𝑑𝑎⃗)
𝑧
= 𝑇𝑧𝑥𝑑𝑎𝑥 + 𝑇𝑧𝑦𝑑𝑎𝑦 + 𝑇𝑧𝑧𝑑𝑎𝑧 =

𝜖𝑜
2
(
1

4𝜋𝜖𝑜

𝑄

𝑅2
)
2

𝑅2 sin 𝜃 cos 𝜃 𝑑𝜃 𝑑𝜙  

The force on the bowl is : 

𝐹𝑏𝑜𝑤𝑙 = ∮(𝑇. 𝑑𝑎⃗)𝑧 − 𝜖𝑜𝜇𝑜
𝑑

𝑑𝑡
 ∫𝑆 𝑑𝜏 = ∮(𝑇. 𝑑𝑎⃗)

𝑧
= ∫ ∫

𝜖𝑜
2
(
1

4𝜋𝜖𝑜

𝑄

𝑅2
)
2

𝑅2 sin 𝜃 cos 𝜃 𝑑𝜃 𝑑𝜙
𝜋/2

0

2𝜋

0

  

𝐹𝐵𝑜𝑤𝑙 =
𝜖𝑜
2
(
1

4𝜋𝜖𝑜

𝑄

𝑅
)
2

∗ 2𝜋 ∗ ∫ sin 𝜃 cos 𝜃 𝑑𝜃 

𝜋
2

0

=
1

4𝜋𝜖𝑜

𝑄2

8𝑅2
 

For the equatorial disk, 

𝑑𝑎⃗ = −𝑟 𝑑𝑟 𝑑𝜙 𝑘̂ 

𝐸⃗⃗ =
1

4𝜋𝜖𝑜

𝑄

𝑅3
𝑟𝑟̂ =

1

4𝜋𝜖𝑜

𝑄𝑟

𝑅3
(sin 𝜃 cos𝜙 𝑖̂ + sin 𝜃 sin𝜙 𝑗̂ + cos 𝜃 𝑘̂) 

For 𝜃 =
𝜋

2
   ;    𝐸⃗⃗ =

1

4𝜋𝜖𝑜

𝑄𝑟

𝑅3
(cos𝜙 𝑖̂ + sin𝜙 𝑗̂) 

𝑇𝑧𝑧 =
𝜖𝑜
2
(𝐸𝑧

2 − 𝐸𝑥
2 − 𝐸𝑦

2) = −
𝜖𝑜
2
(
1

4𝜋𝜖𝑜

𝑄𝑟

𝑅3
)
2

(cos2𝜙 + sin2𝜙) = −
𝜖𝑜
2
(
1

4𝜋𝜖𝑜

𝑄

𝑅3
)
2

𝑟2 

(𝑇. 𝑑𝑎⃗)
𝑧
= 𝑇𝑧𝑥𝑑𝑎𝑥 + 𝑇𝑧𝑦𝑑𝑎𝑦 + 𝑇𝑧𝑧𝑑𝑎𝑧 =

𝜖𝑜
2
(
1

4𝜋𝜖𝑜

𝑄

𝑅3
)
2

𝑟3 𝑑𝑟 𝑑𝜙 

𝐹𝑑𝑖𝑠𝑘 =
𝜖𝑜
2
(
1

4𝜋𝜖𝑜

𝑄

𝑅3
)
2

∫ ∫ 𝑟3 𝑑𝑟 𝑑𝜙
𝑅

0

2𝜋

0

=
1

4𝜋𝜖𝑜

𝑄2

16𝑅2
 

The net force on the norther hemisphere would be: 

𝐹 = 𝐹𝑏𝑜𝑤𝑙 + 𝐹𝑑𝑖𝑠𝑘 =
1

4𝜋𝜖𝑜

𝑄2

8𝑅2
+

1

4𝜋𝜖𝑜

𝑄2

16𝑅2
=

1

4𝜋𝜖𝑜

3𝑄2

16𝑅2
 

-----------------------------------------------------------------   

 



8.2.3 Conservation of Momentum 

According to Newton’s second law, the force on an object is equal to the rate of change of its 

momentum: 

𝐹⃗ =
𝑑𝑝𝑚𝑒𝑐ℎ
𝑑𝑡

= −𝜖𝑜𝜇𝑜
𝑑

𝑑𝑡
 ∫𝑆 𝑑𝜏 + ∮𝑇. 𝑑𝑎⃗ 

Where 𝑝𝑚𝑒𝑐ℎ is the total (mechanical) momentum of the particles contained in volume V. This 

expression is similar in structure to Poynting’s theorem.  

The first integral represents momentum stored in the electromagnetic fields themselves and the second 

integral is the momentum per unit time flowing in through the surface. 

𝑝𝑒𝑚 = 𝜖𝑜𝜇𝑜∫𝑆 𝑑𝜏 

Any increase in the total momentum (mechanical plus electromagnetic) is equal to the momentum 

brought in by the fields. If V is all of space, then no momentum flows in or out, and 𝑝𝑚𝑒𝑐ℎ + 𝑝𝑒𝑚 is 

constant. 

Let ℘⃗⃗⃗⃗𝑚𝑒𝑐ℎ be the density of mechanical momentum and ℘⃗⃗⃗⃗𝑒𝑚 the density of momentum in the fields: 

℘⃗⃗⃗⃗𝑒𝑚 = 𝜇𝑜𝜖𝑜𝑆 

The equation in differential forms says: 

𝜕

𝜕𝑡
(℘⃗⃗⃗⃗𝑚𝑒𝑐ℎ + ℘⃗⃗⃗⃗𝑒𝑚) = ∇⃗⃗⃗. 𝑇 

Evidently −𝑇 is the momentum flux density, playing the role of 𝐽 in the continuity equation or 𝑆 in 

Poynting’s theorem. 

Specifically −𝑇𝑖𝑗 is the momentum in the i direction crossing a surface oriented in the j direction, per 

unit area per unit time. 

𝑆 itself is the energy per unit area per unit time transported by the electromagnetic fields, while 𝜇𝑜𝜖𝑜𝑆 

is the momentum per unit volume stored in the fields. 

Similarly, 𝑇 itself is the electromagnetic stress (force per unit area) acting on the surface and −𝑇 

describes the flow of momentum (the momentum current density) transported by the fields.  

Example 4: 

A long coaxial cable of length l consists of an inner conductor of radius a and an outer conductor of 

radius b. It is connected to a battery at one end and a 

resistor at the other end. The inner conductor carries a 

uniform charge per unit length  and a steady current I 

to the right; the outer conductor has the opposite 

charge and current. What is the electromagnetic 

momentum stored in the fields?  



Solution: 

The fields are: 

𝐸⃗⃗ =
1

2𝜋𝜖𝑜

𝜆

𝑠
𝑠̂   and    𝐵⃗⃗ =

𝜇𝑜

2𝜋

𝐼

𝑠
𝜙̂ 

The poynting vector is: 

𝑆 =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) =

𝜆𝐼

4𝜋2𝜖𝑜𝑠
2
𝑘̂ 

Evidently energy is flowing down the line from the battery to the resistor. In fact, the power transported 

is: 

𝑃 = ∫𝑆. 𝑑𝑎⃗ =
𝜆𝐼

4𝜋2𝜖𝑜𝑠
2
∫

2𝜋𝑠 𝑑𝑠

𝑠2

𝑏

𝑎

=
𝜆𝐼

2𝜋𝜖𝑜
ln (

𝑏

𝑎
) = 𝐼𝑉 

The momentum in the fields is: 

𝑝𝑒𝑚 = 𝜖𝑜𝜇𝑜∫𝑆 𝑑𝜏 = 𝜖𝑜𝜇𝑜
𝜆𝐼

4𝜋2𝜖𝑜𝑠
2
𝑘̂ ∫

𝑙2𝜋𝑠 𝑑𝑠

𝑠2

𝑏

𝑎

=
𝜇𝑜𝜆𝐼𝑙

2𝜋
ln (

𝑏

𝑎
) 𝑘̂ 

This is the momentum in the field, although the cable is not moving but there is a hidden momentum 

due to flow of charges in the cable which cancels the momentum in the field. 

Suppose now we decrease the current to zero by increasing the resistance, for example, then change in 

magnetic field will induce an electric field, which is given as: 

∮ 𝐸⃗⃗. 𝑑𝑙 = −∫
𝜕𝐵⃗⃗

𝜕𝑡
. 𝑑𝑎⃗ = −∫

𝜇𝑜
2𝜋𝑠

𝑑𝐼

𝑑𝑡
 𝑑𝑎 

𝐸(𝑎)𝑙 − 𝐸(𝑠)𝑙 = −
𝜇𝑜
2𝜋

𝑑𝐼

𝑑𝑡
∫

𝑙

𝑠
 𝑑𝑠

𝑠

𝑎

= −
𝜇𝑜𝑙

2𝜋

𝑑𝐼

𝑑𝑡
[ln(𝑠) − ln(𝑎)] 

𝐸⃗⃗(𝑠) = [
𝜇𝑜
2𝜋

𝑑𝐼

𝑑𝑡
ln(𝑠) + 𝐾] 𝑘̂ 

This electric field will exert force on ±𝜆: 

𝐹⃗ = 𝑞𝐸⃗⃗ = 𝜆𝑙 [
𝜇𝑜
2𝜋

𝑑𝐼

𝑑𝑡
ln(𝑎) + 𝐾] 𝑘̂ − 𝜆𝑙 [

𝜇𝑜
2𝜋

𝑑𝐼

𝑑𝑡
ln(𝑏) + 𝐾] 𝑘̂ =

𝜇𝑜𝜆𝑙

2𝜋

𝑑𝐼

𝑑𝑡
ln (

𝑏

𝑎
) 𝑘̂ 

The total momentum imparted to the cable as the current drops from I to 0, is: 

𝑝⃗𝑚𝑒𝑐ℎ = ∫ 𝐹⃗ 𝑑𝑡 =
𝜇𝑜𝜆𝑙𝐼

2𝜋
ln (

𝑏

𝑎
) 𝑘̂ 

Which is exactly the same momentum originally stored in the field. But the cable will not recoil because 

there is equal and opposite impulse delivered by the simultaneous disappearance of the hidden 

momentum. 



Example 5: 

Consider an infinite parallel-plate capacitor, with the lower plate at 𝑧 = −𝑑/2 carrying the 

charge density – and the upper plate at 𝑧 = +𝑑/2 carrying the charge density +. 

a) Determine all nine elements of the stress tensor, in the region between the plates, in 

3x3 matrix form. 

b) Find the force per unit area on the top plate.  

c) What is the momentum per unit area per unit time crossing the xy-plane (or any other 

plane parallel to that one, between the plates). 

d) At the plates, this momentum is absorbed, and the plates recoil (unless there is some 

nonelectrical force holding them in position). Find the recoil force per unit area on the 

top plate and compare your answer to part b.  

Solution: 

a) 𝐸𝑥 = 𝐸𝑦 = 0 and 𝐸𝑧 = −
𝜎

𝜖𝑜
 

Since   𝑇𝑖𝑗 = 𝜖𝑜 (𝐸𝑖𝐸𝑗 −
1

2
𝛿𝑖𝑗𝐸

2) +
1

𝜇𝑜
(𝐵𝑖𝐵𝑗 −

1

2
𝛿𝑖𝑗𝐵

2) 

Therefore 𝑇𝑥𝑦 = 𝑇𝑥𝑧 = 𝑇𝑧𝑦 = ⋯ = 0  whereas  𝑇𝑥𝑥 = 𝑇𝑦𝑦 = −
𝜖𝑜

2
𝐸2 = −

𝜎2

2𝜖𝑜
 and  

𝑇𝑧𝑧 = 𝜖𝑜 (𝐸𝑧
2 −

1

2
𝐸2) =

𝜖𝑜
2
𝐸2 =

𝜎2

2𝜖𝑜
 

𝑇 =
𝜎2

2𝜖𝑜
(
−1 0 0
0 −1 0
0 0 +1

) 

b)   𝐹⃗ = −𝜖𝑜𝜇𝑜
𝑑

𝑑𝑡
 ∫ 𝑆 𝑑𝜏 + ∮𝑇. 𝑑𝑎⃗ 

Since there is no magnetic field, hence 𝑆 =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) = 0 

So,     𝐹⃗ = ∮𝑇. 𝑑𝑎⃗   where  𝑑𝑎⃗ = −𝑑𝑥𝑑𝑦𝑘̂  

𝐹𝑧 = ∫𝑇𝑧𝑧𝑑𝑎𝑧 = −
𝜎2

2𝜖𝑜
𝐴 

And force per unit area would be: 𝑓 =
𝐹𝑧

𝐴
= −

𝜎2

2𝜖𝑜
𝑘̂ 

c) Momentum in the z-direction per unit time per unit area would be:  −𝑇𝑧𝑧 = −
𝜎2

2𝜖𝑜
 

d) The recoil force is the momentum delivered per unit time, so the force per unit area on the top plate 

would be: 𝑓 = −
𝜎2

2𝜖𝑜
𝑘̂ 

This is same as we got in part (b) 



8.2.4 Angular Momentum 

Since the electromagnetic fields carry energy and momentum as given by: 

𝑢𝑒𝑚 =
1

2
(𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2) 

℘⃗⃗⃗⃗𝑒𝑚 = 𝜇𝑜𝜖𝑜𝑆 = 𝜖𝑜(𝐸⃗⃗ × 𝐵⃗⃗) 

So, we can calculate angular momentum as well: 

𝑙𝑒𝑚 = 𝑟 × ℘⃗⃗⃗⃗𝑒𝑚 = 𝜖𝑜[𝑟 × (𝐸⃗⃗ × 𝐵⃗⃗)] 

So even perfectly static fields can carry momentum and angular momentum, as long as 𝐸⃗⃗ × 𝐵⃗⃗ ≠ 0, and 

the classical conservation laws are upheld when the contribution from these static fields are included.  

 

 

Example 5: 

Imagine a very long solenoid of radius R with n turns per unit length and current I. Coaxial with the 

solenoid are two long cylindrical shells of length l - one, inside the solenoid at radius a, carries a charge 

+Q, uniformly distributed over its surface, the other outside the solenoid at radius b, that carries a 

charge –Q. When the current in the solenoid is gradually reduced, the cylinders begin to rotate. Where 

does the angular momentum come from? 

Solution: 

𝐸⃗⃗ =
𝑄

2𝜋𝜖𝑜𝑙

1

𝑠
𝑠̂  (𝑎 < 𝑠 < 𝑏) 

In the region between the cylinders (inside the solenoid): 

𝐵⃗⃗ = 𝜇𝑜𝑛𝐼 𝑘̂  (𝑠 < 𝑅) 

The momentum density is therefore: 

℘⃗⃗⃗⃗𝑒𝑚 = 𝜇𝑜𝜖𝑜𝑆 = 𝜖𝑜(𝐸⃗⃗ × 𝐵⃗⃗) = −
𝜇𝑜𝑛𝐼𝑄

2𝜋𝑙𝑠
 𝜙̂ 

In the region 𝑎 < 𝑠 < 𝑅, the angular momentum density is: 

𝑙𝑒𝑚 = 𝑠 × ℘⃗⃗⃗⃗𝑒𝑚 = −
𝜇𝑜𝑛𝐼𝑄

2𝜋𝑙
𝑘̂ 

To get the total angular momentum in the fields, we simply multiply by the 

volume 𝜋(𝑅2 − 𝑎2)𝑙: 

𝐿⃗⃗𝑒𝑚 = −
1

2
𝜇𝑜𝑛𝐼𝑄(𝑅

2 − 𝑎2)𝑘̂ 



When the current is turned off, the changing magnetic field induces a circumferential electric field, given 

by Faraday’s law: 

∮ 𝐸⃗⃗. 𝑑𝑙 = −∫
𝜕𝐵⃗⃗

𝜕𝑡
. 𝑑𝑎⃗ = −𝜇

𝑜
𝑛
𝑑𝐼

𝑑𝑡
∗ 𝜋𝑠2 

𝐸 ∗ 2𝜋𝑠 = −𝜇𝑜𝑛
𝑑𝐼

𝑑𝑡
∗
𝜋𝑠2

2𝑠
 𝜙̂ 

𝐸⃗⃗ =

{
 

 −
1

2
𝜇𝑜𝑛

𝑑𝐼

𝑑𝑡
∗
𝑅2

𝑠
 𝜙̂                (𝑠 > 𝑅)

−
1

2
𝜇𝑜𝑛

𝑑𝐼

𝑑𝑡
𝑠 𝜙̂                       (𝑠 < 𝑅)

 

Thus the torque on the outer cylinder is: 

𝑁⃗⃗⃗𝑏 = 𝑟 × 𝐹⃗ = 𝑟 × (−𝑄𝐸⃗⃗) =
1

2
𝜇
𝑜
𝑛𝑄𝑅2

𝑑𝐼

𝑑𝑡
𝑘̂ 

And it picks up the angular momentum, 

𝐿⃗⃗𝑏 =
1

2
𝜇
𝑜
𝑛𝑄𝑅2𝑘̂∫

𝑑𝐼

𝑑𝑡

0

𝐼

𝑑𝑡 = −
1

2
𝜇
𝑜
𝑛𝑄𝐼𝑅2𝑘̂ 

Similarly the torque on the inner cylinder is: 

𝑁⃗⃗⃗𝑎 = 𝑟 × 𝐹⃗ = 𝑟 × (+𝑄𝐸⃗⃗) = −
1

2
𝜇
𝑜
𝑛𝑄𝑎2

𝑑𝐼

𝑑𝑡
𝑘̂ 

And its angular momentum increase is: 

𝐿⃗⃗𝑎 = −
1

2
𝜇
𝑜
𝑛𝑄𝑎2𝑘̂∫

𝑑𝐼

𝑑𝑡

0

𝐼

𝑑𝑡 =
1

2
𝜇
𝑜
𝑛𝑄𝐼𝑎2𝑘̂ 

𝐿⃗⃗𝑎 + 𝐿⃗⃗𝑏 = −
1

2
𝜇
𝑜
𝑛𝑄𝐼(𝑅2 − 𝑎

2
)𝑘̂ = 𝐿⃗⃗𝑒𝑚 

The angular momentum lost by the field is precisely equal to the angular momentum gained by the 

cylinders, and hence the total angular momentum is conserved. 


