Chapter 9 - Electromagnetic Waves

9.1 Waves in One Dimension

Figure below shows a wave drawn at two
different times, one at t=0 and the other fz, 0) Az 1)
at a later time t. f v

The shape is same at two different times.
The displacement at point z, at the later 7
time t is the same as the displacement a u

distance vt to the left (z — vt) back at time t = 0.

f(z,t) = f(z—vt,0) = g(z — vt)

Where g(z — vt) is the initial shape of the string at t=0. This means that the function f(z, t)
which might depend on z and t in any old way, in fact depends on them in the very special
combination z — vt; when that is true, the function f(z, t) represents a wave of a fixed shape
travelling in the z-direction at speed v.

When a taut string is displaced from its equilibrium position, ¥
a transverse force on the segment between z and z+Az is: T

AF =Tsin@' —Tsin@

Where 0’ is the angle the string makes with the z-direction at
z + Az and 0 is the angle that string makes with the z-axis at

point z. If the distortion is not too great then these angles are

small and we can replace the sine functions with tangent z T+ A4z
functions:
0 0 0?2
AF=Ttan9’—Ttan9=T(—f ——f )ET—fAZ
0zl,0n, 0zl, 0z2
If the mass per unit length is u, Newton’s second law says:
0%f
AF = u(Az)—
ndz) =
aZf _ 92f ) aZf_'uBZf
Taz2 Az = p(Az) a2’ 9z2 T at?

9*f 10Y
0z~ vtz

Where v is the speed of the wave on the string. The above equation is called Wave equation
because it admits as solutions all functions of the form:

fzt) = g(z—vt)



Since the wave equation involves the square of v, so another set of solutions can be generated
by changing the sign of v:

f(z,t) = h(z+vt)

Which represents the waves propagating in the negative z-direction. The general wave solution,
however, would be:

f(z,t) = g(z—vt) + h(z + vt)
Example 1:

Show that the standing wave f(z,t) = A sin(kz) cos(kvt) satisfies the wave equation and
express it as the sum of a wave travelling to the left and a wave travelling to the right.



9.1.2 Sinusoidal Waves
A sinusoidal wave can be written in the following form:

f(z,t) = Acos(kz — wt + )
Where k is the wavenumber which is related to the wavelength as:

_271

=%

And w is the angular frequency given as:

w=2mv =kv

And § is the phase constant where % is the

: : : Central
distance for which wave is delayed. Maximum f(z.0)
In the figure shown = vt — § /k , the phase is /\ . m .
zero; lets call this the “central maximum?”. ; A - f
i N
If § = 0, the central maximum passes through N —
the origin at time t=0, so 6 /k is the distance by
Sz, 0) Central

which the central maximum and the whole wave is delayed.

/ maximum
In view of the Euler’s formula: y /\
e = cos@ +isinf /F/k \/ Yz

The sinusoidal wave can be written as:

f(z,t) = Re[Aeikz-wt+d)]
The complex wavefunction can be written as:
f(z,t) = Aeitkz—wD)
Where A = Ae'® is the complex amplitude. Hence
f(z,t) = Re[f(z, t)]

Any wave can be expressed as a linear combination of sinusoidal ones:

f(z,t) = foo,ai (k)eitkz=wd g,

—00



9.1.3 Boundary Conditions: Reflections and Transmission

When the string is not infinitely long then when the wave propagates and reaches at the end of
the string then it matters how the string is attached at the end. For example the string is simply
tied to another second string. The tension is the same for both the strings but the linear mass
density is different so speed of the wave will be different in the two string. Let’s say the knot is
at z=0, then the incident wave will be:

fi(z,t) = Ajeilaz=08 for (z < 0)
Coming in from the left, gives rise to a reflected wave along the same string 1,
fr(z,t) = Agelk1Z=9D for (z < 0)
And part of the incident wave will be transmitted, which continues to the right in string 2.
fr(z,t) = Apelk2z=90 for (72> 0)

f1(z, t) is a sinusoidal oscillation that extends to z = —oo, similarly reflected wave will go back
to z = —oo and the transmitted wave will go to z = +oo. All parts of the system are oscillating
at the same frequency.

For a sinusoidal incident wave, the net disturbance of the string is:

Ajeitaz=0t) L fpil-kiz-ot) forz<0
f(zt) =

Apeilkez=wt) forz>0

At the joint, (z = 0) the displacement just left and just right of z = 0 must be same, else there
would be a break between the two strings:

f(07,8) = f(0%,0)

If the knot itself has negligible mass then the derivative of f must also be continuous, else there
would be net force on the knot:

of
dz

_f

- 0z

0+

These boundary conditions apply to the real wave functions and apply to complex wave
functions as well:

fon=Ffo%0; L =%

- 0z

O+

Using the boundary condition on the wave equation, we can get the outgoing amplitudes
(A and A7) in terms of the incoming amplitude (4;):

AI+AR:AT



kl(l‘II - AR) = kZAT
Or

= (2524 om0 A= ()4

Or interms of velocities:

Ar =(”2"’1)A, and AT=(2”2 )A,

v1+v;,

The real amplitudes and phases are then related as:

i V-V i i 2v i
ARelaR = (—2 1)A19161 and AT€l6T = (—2 )Ale“g’

v1+v;, v1+v,

If the second string is lighter than the first (u, < u,, so that v, > v;), all three waves have the
same phase angle (6 = 67 = §;), and the outgoing amplitudes are:

Ap=(E2)4; and Ap = (22)4,

v1+v;, v1+v;

If the second string is heavier than the firs (v, < v;) the reflected wave is out of phase by 180°
(6r + =07 =6p)

cos(—k,z — wt + 6; + m) = —cos(—k,z — wt + ;)

It means that reflected wave is upside down, the amplitudes in this case are:

Ap = ("1“’2) A, and Ay = ( 2V )A

v1+v;y v1t+v2

If the second string is infinitely massive, if the first string is nailed down at the end, then
AR = AI and AT = O
9.1.4 Polarization

The waves in which displacement is perpendicular to the direction of the wave travel are called
transverse waves and the waves in which
displacement are parallel to the wave direction are

X
v
called longitudinal wave. I/(ﬂ\h\ /{ﬂ\h\ B
YA

The transverse waves occur in two independent states <

of polarization, we can oscillate the string up-and- y

down so it will be a vertical polarization.
X

f(z,6) = Aeillz=at); v
Or we can oscillate the string horizontally, so it will
be horizontal polarization: z



fh(z» t) — Aei(kz—wt)]'\
Or along any direction in the xy-plane:
f(z,t) = Ae'kz—0Dp

The polarization vector 71 defines the plane of polarization, because the waves are transverse, i
is perpendicular to the direction of the wave travel:

k=0
In terms of polarization angle 6,
fl=cos@i+sinb]

~ L N
f(z,t) = Aeitkz=oDq / YYD %
y e e

f(z,t) = Ae!*kz=®(cos O { + sin 6 f)

f(z,t) = (Acos B)ei*z=wDi 4 (Asin §)eikz-wDj

9.2 Electromagnetic Waves in Vacuum

In a region of space there is no charge or current, hence Maxwell’s equation would become:

VE=0 ; V.BE=0
VxE——E ; VxB—,uoeoa

These equations are set of coupled partial differential equations for EandB. They can be
decoupled using following identities:

VX(VXE)=V(V.E)—-V’2E=VX|——|=——(VxB) = —
(¥ xE) = 7(7.5) (-5) =~ 7 OxB) = ot 3z
V(V.E) — V2E Ho€o 53
Vx (VxB)=V(V.B) - V?B=Vx (yoeo E) uoeoa(V X E) Mooz
-, — — aZE
V(V.B) - V?B = Ho€o 5z
SinceiﬁanndVﬁzO,so
= 92 928
V2E = u,€, —— and V2B Ho€o 5z



These are separate equation for E and B but now the equations are second order differential
equations.

In vacuum, each Cartesian component of Eand B satisfy the three-dimensional wave equation:

Therefore, the above Maxwell’s equation would imply that:
1
vV Ho€o

Which is exactly the speed of light ¢, which implies that light is an electromagnetic wave.

v= = 3.00 X 108 m/s

9.2.2 Monochromatic Plane Waves

The sinusoidal waves that are travelling in the z-direction and have no dependence on x and y
direction are called plane waves because the fields are uniform over any plane perpendicular to
the direction of propagation.

E(z,t) = E, elkz—0t) ; B(z,t) = Byeitkz—wD
Where E, and B, are the complex amplitudes, the physical fields are the real parts of £ and B.
SinceV.E=0andV.B =0 , so it follows that
(EO)Z = (BO)Z =0

This means that electromagnetic waves are transverse, the electric and magnetic fields are
perpendicular to the direction of propagation.

Moreover, Faraday’s law VXE=— g implies that:
—k(EO)y = a)(f}o)x and k(EO)x = w(EO)y
- k -
B, =~ (2% E,)

EandBarein phase and mutually perpendicular, their real amplitudes are related by:

B kE 1E
0= 0 o

If E point in the x-direction then B points in the y-direction:
E(z,t) = E‘Oei(kz—wt)’i and B(z,t) = Eoei(kz—wt)j

Or if we take only the real part, then:



E(zt) = E,cos(kz — wt+6)1

o 1
B(z,t) = EEO cos(kz—wt+6)jf

The wave as a whole is said to be polarized along the x-axis (by convention the direction of
electric field is used to specify the polarization of an electromagnetic wave.)

If the wave is not propagating along the z-direction instead
in any arbitrary direction then vector k is the direction of

propagation. The scalar product k.7 is the appropriate
generalization of kz

E(#0) = E,elF7-w0)p
~ 1 ~ . 7(’ 2 ~ A 1 ~ -
B(#t) = ZEOel( T “’t)(k X ) = Ek x E

o
Where 71 is the polarization vector. Because E is transvers,
so:

Ak=0

Real electric and magnetic fields in a monochromatic plane wave with propagation vector k and
polarization 71 are:

E@#t) = E, cos(k.7 — wt + 8) fi
- 1 - ~ 1. o
B(7,t) = EEO cos(k.r — wt + 6) (k X n) = Z(k X E)
9.2.3 Energy and Momentum in Electromagnetic Waves

Energy per unit volume stored in an electromagnetic field is given by:

1 2 1 2
U = E(EOE +#—B )
0

In the case of monochromatic plane wave:



1
B = 5 E* = €l E”

So the electric and magnetic fields are equal:
Upm = €oE? = €,E2 cos?(kz — wt + &)
As the wave travels, it carries this energy along with it. The energy flux density transported by
the fields is given by the Poynting vector:
R
S = - (E x B)
S = ce,E? cos?(kz — wt + 8) k = cuk

In a time At, a length cAt passes through area A, carrying with an
energy uAcAt. The energy per unit area per unit time is
therefore uc.

cAt

Electromagnetic fields not only carry energy they also carry momentum, and the momentum
density stored in the field is:
- 1.
=735
For monochromatic plane waves:

1 I
= Z(EOEg cos?(kz — wt + 6))k = —u k

In the case of light, the wavelength is so short (~5 X 10~7m) and the period so brief
(~107'35) that any macroscopic measurement will encompass many cycles. Therefore it is
more meaningful to talk about the time average values of energy and momentum over a
complete cycle.

(u) = _EOEZ
(S) = —ceoE2 k
1
(P) = —EoE2 k

The average power per unit area transported by the electromagnetic wave is called the
intensity:

S 1 5 7
[ =(S) = EceoEo k



When light falls on a perfect absorber it delivers its momentum to the surface. In a time At the
momentum transfer is:

AP = (@)AcAt
So the radiation pressure is:

1A 1 I
= ——p = —EOEg = —

AAt 2
On a perfect reflector the pressure is twice as great because the momentum switches the
direction instead of being absorbed.

Example 2:

The intensity of the sunlight hitting the earth is approximately 1300 W/m?2. If sunlight strikes a
perfect absorber, what pressure does it exert? How about a perfect reflector? What fraction of
atmospheric pressure does this amount to?

Solution:

P_I_ 1300
¢ 3.0x108

= 4.3 X 107N /m?
For a perfect reflector the pressure is twice as much, so:
Pperfect Reflector = 8.6 X 10_6N/m2

Pyerfect 8.6 X 107°

Pym  1.03x 105

= 8.3 X 10~ atmospheres

Example 3:

Find all elements of the Maxwell stress tensor for a monochromatic plane wave travelling in the
z—direction and linearly polarized in the x-direction. Does your answer make sense? How is the
momentum flux density related to the energy density, in this case?

Solution:

Components of Maxwell’s stress tensor are given as:

1 1.

o

1 2
Tij = €y (ElE] —E6UE >+

If the EM wave is linearly polarized in the x-direction, it means electric field is along x-axis and
magnetic field is along y-axis and wave is propagating along z-direction.



1 .y 1 1 N 17 1
Txxzeo(ExEx_EE )+M—<BxBx—EB >=E<EOE _[t_B>
0 o

For a monochromatic plane wave:
1
2 _ 2 _ 2
B< = C_ZE = EOHOE

1 2 1 2
Tx = E(EOE _E(EO#OE )) =0

1 .\ 1 1 N\ 1 , 1
Tyy:€o<EyEy_§E )+E(ByBy—§B >:§<—60E +EB )ZO

1 .y 1 1 N\ 1 , 1
TZZZEO(EZEZ_EE >+'u_<BZBZ_§B >:§<—60E _/,l_B >=—u
o o

T,, = €,EZ cos?(kz — wt + &)

The momentum of these fields is in the z direction, and it is being transported in the z direction,
so yes, it does make sense that T,,should be the only nonzero element in T;; .

Since —T.da is the rate at which momentum crosses an area da. Here we have nho momentum
crossing areas oriented in the x or y direction;

The momentum per unit time per unit area flowing across a surface oriented in the z direction
is:

-T,, = u = gpc

A . .
Ap = ocAAt A—’Z = pcA = momentum per unit time crossing area A.



9.3 Electromagnetic Waves in Matter
Inside matter but in regions where there are no free charges or free currents, Maxwell’s

equations are:

VD=0 . VxgE=-2%
ot
VB=0 Vtz?

D=e¢ ; H=-B
u
The Maxwell’s equations reduce to:
VE=0 ; VxE=-2Z
at
VB=0 ,; VXB=uyu >

5
m

Il
Sla

is the index of refraction of the material.

Wheren =
€Eolho

For most materials u is very close to u,, hence

Where €, is almost always greater than 1, and hence light travels slowly through matter. All the
electrodynamics results can be carried over in materials by simply replacing €, = € and u, = u

The energy density in a homogeneous linear material is:
1 1
u = —(GEZ +—BZ>
2 u
And the Poynting vector is:
- 1 = —
S=—(ExB)
U
For a monochromatic plane wave w = kv and the amplitude of Bis 1/v times the amplitude of

E and the intensity is:



1 2
I = EEUEO

When a wave passes from one transparent medium to another medium for example from air to
water or glass, then the boundary conditions are as follows:

(i) e1Ef = e;E5
(i)  Bi =B;
(i)  E}=E)

: 1 5 — 1 5
(IV) Hq Bl U2 BZ

9.3.2 Reflection and Transmission at Normal Incidence

Considering an electromagnetic wave of frequency w is propagating along z-axis and is
polarized along the x-axis. The xy-plane forms the boundary between two linear media.

If the wave is incident on the plane from the left:

Ei(z,t) = E, e'az-ob}

X
- 1. . E
Bi(z,t) = —-E,,e'1770; g O @
1
v] jj; / )— V2
The electric and magnetic fields of the //
reflected wave will be: B, / Br
/|
~ ~ fo _ n % Z
Er(z,t) = Eype'haz-ebj Ep B, ¥ 4
- 1. . I/
Bo(z,t) = — —EoRel(_klz_“’t)j v, Interface
U1
And the electric and magnetic field y
components of the transmitted beam
would be:

Er(z,t) = E, e'kez-oD}
_ 1. )
Br(z,t) = —E, e'*22=00j

V2

Note that magnetic field of the reflected wave is in the negative y-direction because

[B(7t) = %EO cos(E.? — ot + 6) (IG X ﬁ) = %(—z“ X E)] and also Poynting vector points in

the direction of propagation.

At z=0 the combined fields on the left [E£; + Ex] and [B; + Bg]must join the fields on the right
E; and B;.



Hence the boundary conditions (iii) and (iv) require that fields on both side of the interface are
equal:

E, +E,, =E,,

(h -2~ ()
Uq \Uq o1 U oR _llz Uy or
- - U1V1 ~ -
EOI_EOR Uy EOT _ﬁEOT

Where

o L R S L)
U2V Uy

~ _ 1-B8\ = B _ 2 ~
Eop = (355) Bor 7 Bor = (755) B
In most cases the values of permitivities are close to the values in vacuum (u; = yy = o), so
U1y Ny

ﬁ:_ -

UV, My
=~ % =~ = 2172 ~
Bop = (E2)E,, ; Eop = (22)E
OR 'U2+'U1 or 7’ or 172+1.71 01

This result is similar to what we got in the case of wave on a string. The reflected wave is in
phase with the incident wave if v, > v; and out of phase if v, < v;.

The real amplitudes are related as:

2% 2172
E, = Eo, 5 Eop = (-2 ) E
ORrR Vy+vq or’ or vtV o1
ni{—msp 2nq
E,, = Eo, 5 Eop = (22)E
OR nitn, or or nitn, or

The intensity of an electromagnetic waves is given by:

P 1
=9 = _cpE2
Area 2

If 4 = u, = u, then the ratio of the reflected intensity to the incident intensity is:

R Ip EoR 2 (n1 - n2)2
B I B E,, B ny +n,
And the ratio of the transmitted intensity to the incident intensity is:

_ IT _ €U, EOT z _ 4n1n2
B I; B €101 \ E B (ny +ny)?

T

o]



R is called the reflection coefficient and T is called the transmission coefficient, they measure
the fraction of the incident energy that is reflected and transmitted, respectively. And
conservation of energy requires that:

R+T=1

When light passes from air (n=1) into glass (n=1.5), R=0.04 and T=0.96, this means most of the
light is transmitted through the glass and a small portion is reflected.

9.3.3 Reflection and Transmission at Oblique incidence

In this case incident wave hits the interface at an incident angle 8, (normal incidence is a special
case when 6; = 0).

Suppose a monochromatic plane wave approaching the interface from the left is given by:

EI(F, t) — EOIei(kl.F—wt) .
kg

_ 1.
B,(#,t) = U_1(k1 x Ep) Ky

By

The reflected wave is: :

N Plane of Incidence

k. OR®

E‘R(F, t) = EORei(%R'F_wt) ; ER(F, t) = Ui(’IER X ER)
1

And a transmitted wave is given by:

E‘T(F, t) = EOTei(kT'F_wt) ; ET(F, t) = i (ET X ET)
V2
All three waves have the same frequency w and the three wavenumbers are related as:
Uy ng
k1U1 :kva :kTUZ =w or kI :kR :_kT :_kT
V1 n;

The combined fields in medium (1), E; + E and B, + By are related with the transmitted fields
E; and By using the boundary conditions:

() eEf = 6By
(i)  Bi =B;

(i)  El=E)

: Lo _1pl
(iv) ™ B w2 B,

These all share the same generic structure:
( )ei(Tc)I.F—wt) +( )ei(TéR.F—wt) =( )ei(Tc'T.F—wt) atz =0

Notice all x,y and t dependence are in the exponents, and since boundary conditions must hold
at all the points on the plane at z=0, so the exponents must be equal, which gives:



- - - N X
k;.7 = kg. 7" = ky.7 whenz=0 kg N

x(kp)y + y(kl)y = x(kg)x + y(kR)y
=x(kr)y + y(kT)y

For all x and all y at z=0.

The above equation holds only if the components
separately are equal. For say x=0

(kl)y = (kR)y = (kT)y
Similarly for y=0
(kp)x = (kp)x = (k7)y

We can in fact orient our axes such that k; lies in the xz-plane so that (k;),, = 0 = (kg), =
(kr)y

First Law: The incident, reflected and transmitted wave vector form a plane (called plane of
incidence), which also includes normal to the surface (z-axis in this case).

L2
©

Also the equation:
(kl)x = (kR)x = (kT)x

Implies that: k] sin 91 == kR sin QR - kT sin 9’1‘

Where 6, is the angle of incidence and 65 is the angle of reflection and 6 is the angle of
transmission also called angle of refraction and they are all measured with respect to the
normal.

Second Law: The angle of incidence is equal to the angle of reflection.
0, =0y Law of Reflection
Third Law: For the transmitted angle

sinf; ng

sinf; n,
This is the law of refraction or Snell’s Law.
These are the three fundamental laws of geometrical optics.
The boundary conditions imply that:
() €1(Eo, + Eop), = €2(Eoy),
(ii) (B, + BOR)Z = (BOT)Z
(iii) (E,, + Eop iy = (EOT)W



15 ~ 1 /=

(iv) w (BOI + BOR)x‘y = Uy (BOT)x,y
~ 1/~ ~

Where B, = —(k x E,)

Suppose the polarization of the incident wave is parallel to the plane of incidence (xz plane in

the figure above.) Then the first boundary condition (i) implies that:

€1(—E,, sin6, + E,, sin6g) = €,(—E,, sin67)

Since B has no z-component, hence boundary condition (ii) does not add anything. Boundary
condition (iii) implies:

E, cos0; + E,, cos 6g = E,_ cos O

- . cosOr - .
Eo, +E,, = c0s 6, Eo. = akE,,
cos Ot
Where o = ——
cos @;
And boundary condition (iv) gives:
1 (E g ) 1
pyvy ~ RS vy 07
Using the laws of reflection and refraction, we get:
EOI - EOR = @EOT = IBEOT

v n n
Where p =82 A~
UzV2 Uznq nq

E,, = (%) E,, and E, = (ai—ﬁ) B,

These are known as Fresnel’s equations for the case of polarization in the plane of the
incidence.

From the above equation we can see that transmitted wave is always in phase with the
incidence but the reflected wave is in phase with the incidence wave if @ > f and will be out of
phase by 180° if a < .

The amplitudes of the transmitted and reflected wave depend on the angle of incidence:

v cosOr 41 — sin? 0 _ Jl o [(Z_;) Singl]z

cos 6, cos 6, cos 0,




In the case of normal incidence §;, = 0anda =1

At grazing incidence angel 8; = 90 and a diverges, which means that the wave is totally
reflected.

Bop = (55) Boy = oy and Eop = (155) By = 0

a+p

There is an intermediate angle (65, Brewster’s angle) where the reflected wave is completely
extinguished and this occurs when a = f5.

) J1- () sinas]

cos Oy =F
1—p?
sin? g = —
) -+
n;
Typically gy = pp, so f = ny/ny Lo~
p? I ]
2 — 0.8
sin® 0 =
B 1 + '82 - EUT J
0.6 E
n s O 1
2
tan HB = — 04+ E
ny i |
02 Op ]
W20 e —6" & o
The figure shows a plot of the reflected ) _”/
and transmitted amplitudes as a function 0 i Eoy
of incidence angle 0, , for light incident on 04" Ey,

glass (ny = 1.5) from air (n; = 1.0).

The power per unit area striking the surface is S.2 , thus the incident intensity is:

1 2
I, = EElleOI cos 0,
While the reflected and transmitted intensities are:

— 2
Iz = EelleoR cos 6y

— 2
Iy = EEZ‘UZEOT cos 01

The reflection and transmission coefficients of waves polarized along the plane of incidence
are:



2 N
0= () - (55)

T_IT_Ezv2 E,, 2cos@T_ ( 2 )2
L ey E,,) cos6, = ab a+p

The figure shows a plot of reflection 1.0
and transmission coefficients as a [

. N 0.8
function of incidence angle (from . T |
air/glass interface). 0.6 .
R+T=1 as required by the 047 . .
conservation of energy. At Brewster’s 02 I R B
angle the refection coefficient is zero 00 i

.. .. . . ! — ‘ ——— ! 0

whereas transmission coefficient is 1. 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° !

Example 4: The index of refraction of diamond is 2.42. Construct the graph of E— and = Rys. 0,

o oy

(incidence angle) for the air/diamond interface. (Assume p; = U, = U,). Calculate:

a) The amplitudes at normal incidence.
b) Brewster’s angle
¢) The “crossover” angle at which the reflected and transmitted amplitudes are equal.

Solution:
a)

v n n 2.42
=ﬂ1 1=ll1 2 _Na _ - — 242

UV UMy My

m Jl— sm@,]z_\/l [zizsmO] _ .

cos 0, cos 9, cos 0
5 = (“B\E B =(2)E
Eop = (a+[>’) Eoy s Eop = (a+ﬁ) Eo,

E 1—2.42
e = —0.415

E, 1+24



T

2
T — = 0.585

E,, 1+24
b)
n;
tanfy = — = 2.42
nq
0, = tan~1(2.42) = 67.5°
c)
~ _ a_ﬁ ~ ~ _ 2 .
EOR - (m) EOI ’ EOT - (m) EOI 1 R S
F —F 081
OR or 0.6 L [Eg/EI] 7
a—B=22a=F+2=442 il 2
2
1-— (%) sin? 6, 0.2
a’ = 2 > 0 o =i i L. AR ) l
cos® 6; 0" 20° 30° 40° 50° 60770 80"
02k
0, =78.3°
I 0.4 Y [ES) ]
0.6} .




9.4 Absorption and Dispersion
9.4.1 Electromagnetic Waves in Conductors

In conductors, the free charge density and hence the free current density is not zero. According
to Ohm’s law, the free current density in a conductor is proportional to the applied electric
field,

- =

]fZO'E

Hence, Maxwell’s equation for linear media assume the form:

= 0B
(iii) \Y =—3 )
(iv) Vx§=uaﬁ+yez—f

— > apf
V)= ——
4 ot
Together with Ohm’s law and Gauss’s law:
—=—0(V.E)=——

For a homogeneous linear medium,

g
pr(0) = e"8p(0)
Thus any initial free charge density will dissipate in a characteristic time 7 = €/0.

This reflects the fact that if we have some free charge on a conductor, it will flow out to the
edges. For a good conductor 0 = o0 and 7 = 0, which means that 7 is much less than any other
relevant times. For an oscillatory system it would mean that T << 1/w and for a poor conductor
> w.

After disappearance of any accumulated charge on the conductor:

(iv) Vxﬁ=ua§+ue—t

If we apply curl to last two equations above, we get:



- e o - o
Vx(VxE)z—a(VxB)

_ —U2F — _U2F — — - _ il
Vx (VxE)=V(V.E) — V’E = —V2E at(VxB) at(/wE+/1€ 6t>

o e o - o 0 —
Vx(VxB)=ua(VxE)+ueE(V><E)

3’E dE 3’B B
ne 572 4—[L0'at ne 72 + uo 5

These equations still give plane-wave solutions:
E(Z, 1) = Eoei(kz—a)t)’ ﬁ(Z, 1) = ﬁoei(kz—g)f)

But this time k is complex:

k? = pew? + ipow or k=k+ix

Where
_ 11/2
2
k=w %u 1+(%) +1
_ 11/2
2
K=w %u 1+(%) -1

The imaginary part of k results in an attenuation of the wave (decreasing amplitude with
increasing z):

E(Z, t) — E’voe—xzei(kz—wt)
E(Z, t) — Eoe—kzei(kz—wt)

The distance it takes to reduce the amplitude by a factor of 1/e (about a third) is called the skin
depth.

d

Ll N

This is a measure of how far a wave can penetrate into a conductor. And the real part of k
determines the wavelength, the propagation speed and index of refraction:

271 w ck
A== and v=— and n=-—
k w



Now let’s consider E is polarized along x-axis, then:

E(zt) = E e "zeikz-wdj
D E & —kz i(kz—wt) 3
B(z,t) = ZEoe e j

Like any complex number k can be expressed as:

k = Ke'®

K=|E|=\/m=a) Eu 1+(%)2
¢ = tan"(x/k)
We can write the complex amplitudes of the electric and magnetic field as:
E,=E,e%t and B, = B,e'’s
i¢

. Ke )
B,ei®B = ——F e!dE
)

Evidently, the electric and magnetic field are no longer in phase, and

0p — 6 =¢

The magnetic field lags behind the electric field, and the real amplitudes of E and B are related
by:

The real electric and magnetic fields are:
E(z,t) = E,e **cos(kz — wt + 8g) 1

B(z,t) = Boe ™ cos(kz—wt+ 65+ @) j




Example 5:

(a) Suppose some free charge is embedded in a piece of glass (n=1.5). About how long
would it take for the charge to flow to the surface. Consider the conductivity of the glass
tobe (o = % =10"2(Q.m)

(b) Silver is an excellent conductor with resistivity p = 1.59 X 10~ Q.. m but it is expensive.

To design a microwave experiment that can operate a frequency of 10%° Hz, how thick
should be the silver coatings.

(c) Find the wavelength and propagation speed in copper for radio waves at 1 MHz.
Compare the corresponding values in air or vacuum.

Solution:



Example 6:

(a) Show that the skin depth in a poor conductor (o < we) is (g) \ €/u (independent of

frequency). Find the skin depth (in meters) for pure water.

(b) Show that the skin depth in a good conductor (o > we) is A/2m (where A is the
wavelength in the conductor). Find the skin depth (in nanometers) for a typical metal
(0 = 107 (Q.m)~1) in the visible range (w =~ 10° s71), assuming € =~ €, and u = p,,.
Why are metal opaque?

(c) Show that in a good conductor the magnetic field lags the electric field by 45° and fund
the ratio of their amplitudes. Fir a numerical example, use the typical metal in part (b).



9.4.2 Reflection at a conducting surface
The boundary conditions between two surfaces that involve free charges are as follows:

€,Ef — €,E5 = of

B —B+ =0

El —E}=0
iB"—lB”zl_() x A
258 ! Uz 2 !

Where o5 is the free surface charge density and I_()f is the free surface current and 7 is the unit
vector perpendicular to the surface, pointing from medium (2) into medium (1).

For Ohmic conductorsff =oE (here o is the conductivity), there can be no surface current
because this will require infinite electric field at the boundary.

Suppose now that xy-plane forms the boundary E, @ @ Er
between a nonconducting linear medium (1) and a I v, ! / )‘ v,
conductor (2). A monochromatic plane wave B! , A B,
travelling in the z-direction and polarized in the x- ,

direction, approaches from the left as shown in Er l//%* ‘

BR ’\
the figure. v, ._I/ Interface

EI(Z, t) — E'Olei(klz—wt)i

- 1. .
B(z,t) = —Eye'7=@0)
%1
The reflected waves will be:
i _ i(—kiz—wt)4 . D __ 1 i(—kiz—wt) 4
Eg(z,t) = E et ™" i ; Bizt)= ” E, et 7
1
And the transmitted wave in the conductor will be:

Er(z,t) = E"OTei(Tczz—wt)i . Br(zt) = %EOTei(Tczz—wt)j — ZZEOTei(kzz—wt)j
Now applying the boundary condition, since E{- = E5 = 0, hence it means that or = 0.

Third boundary condition Ef - Eg = 0 will yield:

Eo,+E,, =E,,

And fourth BC with K; = 0 will yield:



v (EOI EOR) - ‘uszOT =0
_ vk, - .
EOI_EOR - Uy EOT zﬁEOT
Where
ﬁ =
Ho

These results appear similar to the one that apply at the boundary between nonconductors but
here f is a complex number.

For a perfect conductor (¢ = o0) and k, = oo hence § = oo and hence

Remember:

k=k+ik, (9.125)

where

1/2 1/2
EN o \2 7 o \?
= . 1 — = - -\ -
k=ow 5 I: +(€w) +1J , K=w 5 I: 1+(€w) l:l . (9.126)

In the case of a perfect conductor the incoming EM wave is completely reflected with 180°
phase shift. This is why a mirror is made by coating thin layer of silver onto a glass and the light
is reflected perfectly from the silver coating. Since the skin depth in silver for optical frequency
is ~100A, so we don’t need a thick layer of silver anyway.



Example 7:

Calcualte the reflection coefficient for light at an air-to-silver interface (4, = u, = u, and e; =
€, and o = 6 x 107 (Q.m) 1) at optical frequencies (w = 4 x 101°/s)



9.4.3 The frequency dependence of Permittivity

So far, we have considered permittivity, permeability and conductivity as constants but in
reality these parameters to some extent depend on the frequency of the waves we are
considering.

We know from experience that a prism or raindrop bends blue light more sharply than the red
light and spreads white light into a rainbow of

colors. This phenomenon is called dispersion and 1480 |
when the speed of a wave depends on its
frequency, the medium is called dispersive.

Index of refraction

1.470 [
Because of waves of different frequencies travel at i
. . . . . 1.460 -
different speeds in a dispersive medium, a
waveform that incorporates a range of frequencies 450
145

will change shape as it propagates. 4000 5000 6000 7000 Angstroms
Wavelength, A (in air)

A sharply peaked wave typically flattens out and
whereas each sinusoidal components travels at the ordinary wave velocity (phase velocity).

W
vV=—
k
. dw
The packet as a whole (the “envelope”) travels at the group velocity v,. Ug = E

e ——— -

The energy carried out by a wave packet in a dispersive medium ordinarily travels at the group
velocity not the phase velocity.

Now lets’ consider the frequency dependence of € in non-conductors. Considering the electrons
in non-conductors are bound to specific molecules, we can consider this force to be spring

force:
Electron
Fbinding = _kspringx = _mng X
E
Where x is the displacement from the equilibrium _1_J_.. kSPTiﬂg

and m is the mass of the electron and w,, is the

natural oscillation frequency. ‘ W <




Any binding force can be approximated this way for sufficiently small displacements from
equilibrium. By expanding the potential energy in a Taylor series about the equilibrium point:

U(x) =U(0)+xU'(0) + %szu(O) 4 e

The first term is constant and we can adjust the zero of the potential energy so that U(0) = 0.
. d L I - .
The second term is zero because d—: = —F which is zero at equilibrium position for spring-mass

like forces. The third term however is the potential energy of a spring with spring constant:

d?U
kspring = W
x=0
For small displacements, the higher terms in the series can be ignored.

There will be some damping force on the bound electron:
d . . . .
Faamping = —myd—: [damping force is opposite to velocity]

An oscillating charge radiates and the energy is lost due to radiation emission.

In the presence of EM wave of frequency w, polarized in the x-direction, the electron is subject
to driving force, given as:

Fdriving = qE = qE, cos(wt)

Where q is the charge of the electron and E,, is the amplitude of the wave at a point z where
the electron is located.

Now using Newton’s second law:

d?x
m dt? = Fior = Fbinding + Fdamping + Fdriving

d2x+ dx+ sx =qE t
mdt2 mydt mwyx = qE, cos(wt)

We can write a similar equation in complex form and real part of it will be exactly the above
equation.
d?x N dx
FTORRAPT:

. 9 _i
+ w2% = —E et
m

In the steady-state the system oscillates at the driving frequency:
%(t) = ¥ et

Using this in the above equation we get:



The dipole moment is the real part of:

q*/m

: E e—iwt
w2 — w?—iyw °

p(t) = qx(t) =

The imaginary term in the denominator means that p is out of phase with E (lagging behind by

an angle:
W
tant (1)
Wi —w

which is small for w < w, and rises to T when w > w,.

In general, differently situated electrons within a given molecule experience different natural
frequencies and damping coefficients.

Consider there are f; electrons with frequency w; and damping y; in each molecule. If there are

N molecules per unit volume, the polarization Pis given by the real part of:

_ Ng¢* - -
LU [ —
m — Wi — W* — 1YW

J

And
P=ex.E
Where J, is the complex electrical susceptibility.
The proportionality between D and E is the complex permittivity, like D = ¢E
€=¢€,(1+ JXe)

The complex dielectric constant is:

NS AL
" e, me, £ wf — w? = iyjw

In a dispersive medium the wave equation for a given frequency is:

L, 0%
\Y% E=€MOW

And the solution of this differential equation is:

E(z t) = E,eilkz-wt)



Where complex wavenumber k:

k=.éu,w
k=k+ix
E(Z, t) — Eoe—rczei(kz—a)t)
The quantity
a = 2k

Is called the absorption coefficient. The wave velocity is w/k and the index of refraction is:

ck
n=—
W
Here k and k are different than what we used before in the electromagnetic waves in
conductors, because here they have nothing to do with the conductivity, rather they are

determined by the parameters of damped harmonic oscillator.

1/2

- 1) 1) Ng? ;
k=.€Euw=—€=—|1+ qz 5 ];J -
c c me, £m wF — w? — iy

FLw Ngq? ' fj . . . . . . .
k = . [1 + Tme, 2 wjz-—wz—iij] using Binomial expansion (ignoring higher order terms)
ck - Ng? fi(w} — w?)
n=—=
w 2me, - (wjz _ wz)z +Y2w?
And
Na?w? Y
a=2k= q 1iv;

me,cC ; (w]z — wz)z + )/]-zwz

Mostly, the index of refraction n rises gradually
with the increasing frequency. However, in the
immediate vicinity of the resonance frequency the
index of refraction drops sharply. Because this
behavior is atypical, so it is called anomalous
dispersion.

As can be seen from the figure below that region
of anomalous dispersion (w; < w < w,) coincides o -2
with the region of high absorption.




The material in fact is opaque in this frequency range. The reason is that electrons are being
driven at their resonant frequencies and they have large amplitude of oscillations and hence
large energy dissipation by damping mechanism.

In the figure, we can also notice that n < 1 above the resonant frequency (w;), which means
that wave speed exceed c. But the energy does not travel at wave speed but the group velocity
and also this is an approximation, here the graph does not include other terms in the sum,
which add a relatively constant background and keep n > 1 on both sides of the resonance.

If the EM wave frequency is away from the resonance, then damping can be ignored and hence:

Ng? fi
2

n=1+
2me, L w7 — w?
j

J

For transparent materials, the nearest significant resonances typically lie in the Ultraviolet, so

And in terms of wavelength in vacuum (A = 2ntc/w):

B
TL=1+A(1+ﬁ>

This is known as Cauchy’s formula, the constant A is called the coefficient of refraction and B is
called the coefficient of dispersion.



Example 8:

A primitive model of an atom consists of a point nucleus (+q) surrounded by a uniformly
charged spherical cloud (-q) of radius a.

a) what is the natural frequency of an atom with such a primitive model.

b) Where in the electromagnetic spectrum does this lie assuming the radius of the atom is
0.5 A?

c) Find the coefficient of refraction and dispersion and compare them with those for
hydrogen at 0 °C and atmospheric pressure.

Solution:
(a) The atomic model is like a dipole and electric field due to a dipole is:

1 qd
 4me, a3

Force on an electron in this electric field would be:

1 g2 X
F=—qFE =—- 4n€05 X = —KspringX = —Mwgx
R
© Ame,ma3
(b)
w 1 1.6 X 10719)2
V= — = — — ( _) — =7.16 x 10'5Hz
2n 2w |4m(8.85 x 10-12)(9.11 X 10-31)(0.5 x 10~10)3

(This is ultraviolet frequency)

(c) The coefficient of refraction is given by:

Ng? ;
A=[—L E -~
2me, L wj

J

Avogadro's number _ 6.02 x 10

N . _ =
of molecules per unit volume 22 4 litres 22 4 % 10-3

i
=2.69 X 10*° —
m

Ng* f 2.69 X 1025 x (1.6 X 10719)2 x 1

== =42x107°
2me, wZ 2%9.11 x 10731 % 8.85 X 10712 x 472(7.16 x 101°)?




This is about 1/3 the actual value.

B (ch)z 310 1.8 * 10~ 15m?2
= = = 1.8 %
w0, 2m+7.16 x 1015 m

This is about 1/4 the actual value. So even this crude model gets very close to the actual value.



9.5 Guided Waves
9.5.1 Wave Guides

We can confine the electromagnetic waves in the interior of a hollow pipe which can be called

waveguide. We will assume that waveguide is a perfect conductor so that E=0andB =0
inside the material itself and hence the boundary conditions on the inner walls are:

(i) E"=0 1)
(i) Bt=0

We will consider the electromagnetic waves that
propagate down the tube have the generic form of E
and B:

E(x,y,2,t) = E,(x,y)elkz=o0 _ (2)
B(x,y,z,t) = B,(x,y)eikz-ot) _ (3)

Here, k is real because the wave propagates in the
hollow part of the tube. The electric and magnetic fields must satisfy Maxwell’s equations in the
interior of the wave:

(i) VE=0 (iii) VXE= ot (4)
(ii) V.B=0 (iv) VxB= =
Inside the material of the conducting wave guide, hence
() VxE=-2=0 >§Edi=-=[B.di=0>E"=0 (since El4, = 0)

(i) .B=0 >¢B.di=0->BL =0 (since By, =0)

We need to find the electric and magnetic fields which are not in general transverse, to meet
the boundary conditions, so we will include the longitudinal components:

E, = Exi+ E,j + E;2 and B, = Byl + B,j + B,Z - (5)
Where each of the component is a function of x and y.

Using these in Maxwell’s equations (iii) and (iv), we get:

n OBy 0B _ . i) OBy _09Bx _ o B

(i) ™ 3y ilwB, (iv) ™ y -~ @ E,

.. 0E, . . 3B, _ . _iw

(ii) % ikE, = iwBy (v) ™ ikB, = = E, )
. 0E, _ . . . 0B, _iw

(iii) IkE, — = iwB, (vi) kB, — = —;Ey




Equations (ii), (iii), (v) and (vi) can be solved for E,, Ey, B, and By:

i oE, 9B, I
Ex = w\? <k6x+w6y)
(2) -#2
E - [ (k JE, aBZ>
(@Y e oy o )
C -
B — i (k 0B, w aEZ)
o (2)2 _ g2\ 0x 20y
c

B - i ( 6Bz+cu6EZ

Y w2 dy C_ZW)
- _ ]2

(2) —*

Using equations (7) into other Maxwell’s equations, yields, uncoupled longitudinal components
of electric and magnetic field:

_/

(8)

If E, = 0, we call this transverse electric (TE) waves, and if B, = 0 they are called transverse
magnetic (TM) waves. And if both E, = B, = 0, then they are called transverse electric and
magnetic (TEM) waves.

TEM waves cannot occur in a hollow waveguide. Because if E, = B, = 0 then from equations

(6):

O O oL FE=0
—_— = - . =

dx  dy

oE, OE > o
y X

——-———=0->VXE=0

dx dy -

If the divergence and curl of electric field is zero then E = _V)Vscalar and V.E = VVseatar = 0

From the boundary condition E! = 0 on the inner surface of the wave guide, means that the
inner surface of the waveguide is equipotential, i.e. Vscq1ar = constant

Since Laplace’s equation does not allow any local minima or maxima, hence it means that

potential is same everywhere in the waveguide or E =0inthe waveguide i.e. no EM wave in
the waveguide.



9.5.2 TE Waves in a Rectangular Waveguide:

Suppose a uniform perfectly conducting hollow

rectangular waveguide of inner height a and
width b.

TE waves are propagating in the waveguide:
E,=0andB, #0

To solve for Bz, let’s use the separation of
variables:

B,(x,y) = X(x)Y(y)

So that equation (8) becomes:

2 2
[%"’aa_yﬁ(%) — k2

IX(X)Y(JI) =0

D¢ d?y W~ 2
Y- 4+ X +[(?) —kZ]XYzo

dx? dy?
1d?X 1d?Y

Xdxz Ydyr '

1d%X

C)z—kz] =0

——— = —k2 - X(x) = Asin(kyx) + B cos(k,x) ... (9)

X dx?
1d%Y
Y dy?

2

= —k} - Y(y) = Csin(k,y) + D cos(kyy) ... (10)

—kZ—KZ+ (%) —k2=0..(11)

The boundary condition (B* = 0) requires that B, = 0 at x=0 and x=a and also from equation

(7)(iii) in the previous section Z—i = 0 at x=0 and x=a.

Equation (9) at x=0 would give B = 0 :

X(x) = Asin(k,x)

And at x=a the above equation gives:

mm
Asin(k,a) =0 -k, = - (m=0,12,..)

Similarly for Y,



nm
ky=— (1=012,..)

B,(x,y) = X(x)Y(y) = B, cos (mn g) cos (nn %)

This solution is called the TEmn mode (the first index is associated with the larger dimension so
a = b) and at least one of the indices must be non-zero.

From equation (11):

If w<ecm (%)2 “F (g)z = Wmn

Then the wavenumber is imaginary and instead of travelling wave we get exponentially
attenuated field. For this reason w,,, is called cutoff frequency for the mode in question. The
lowest cutoff frequency for a given waveguide occurs for the mode TE;:

- &) + () =7
W19 = CTT p b = p

A wave with frequency less than this will not propagate at all.

k=%\/w2—w,2,m
w c
vV=—- =
k O N2
- (%52)

Which is greater than ¢, however the energy carried by the wave travels at the group velocity:




Example 9:

(a) Show that the mode TEq cannot occur in a rectangular waveguide.

(b) Consider a rectangular waveguide with dimensions 2.28cm x 1.01 cm. What TE modes

will propagate in this waveguide, if the driving frequency is 1.70x10%° Hz?

(c) If you want to excite only one TE mode, what range of frequencies (and corresponding

wavelengths in open space) could you use?
Solution:

(@) TE mode impliesthat E, =0,andform =n =20

() 52-52=iwB, (v 2-E=-2E
(ii) ‘;iy — ikE, = iwB, (v) ‘% — ikB, = —ZE,
(i) ikE, — 2% = iwB, (Vi) kB, —2Z=-2F,
And equation 6(ii) with E, = 0 becomes:
@z—%mz—wx

And equation 6(iii) becomes:
E, = (w/k)B, = cB,

And equation 6(v) becomes:

0B, . iw iw iw ]

3y — ikB), = _C_zEx = _C_ZCBy = _TBy = —ikB,
0B, -
dy

And equation 6(vi) becomes:

. 0B, iw iw lw .
ikB, — I = —C—ZEy = _C_Z(_CBX) = TBx = ikBy
0B, _
0x

Since B, is a function of x and y only, so it means B, is constant.

(6)



According to Faraday’s law:

Applying to the cross-section of the waveguide:
fﬁ.d7= iwelkz-wb) J B,da = iwB,e'**=®)(gh)

Since the boundary goes inside the metal where E = 0 so this makes B, = 0, so this would be
TEM mode which we know cannot exist inside the waveguide.

(b)

- (%)2 + (g)z

T -2
= —_ = —= = 4, *
@10 = €T I\ @ 228+10°2

b

Wy _ 4.13%10°

= 0.66 * 10'°Hz (allowed)

Vio =

2T 2T
® 2cm/a ¢ 3x108
vy =220 =2 _ ¢ 30 _ 1316+ 10'°Hz (allowed)
2%TT 2%TT a 2.28%10~2
w 3cm/a  3c 3%3%108
Vo = 20 S 3m/a 3¢ 330 _ 4974 10Hz (Not allowed)
2%TT 2%TT 2a 2%2.28+¥1072
w cmt/b c 3%108
vop =2 =T - 3 _ 1494 10Hz (allowed)
2%TT 2%TT 2b 2%1.01x10~2
1) 2cm/b c 3%108
vy =22 2 ¢ - 30 _ 5974 10'Hz (Not allowed)

2%TT 2%TT b~ 1.01%10"2

1 1
T |t 4108/ (2.28)2 7 (1.01)2 %102
= Qo _Na? 02 cVadbE 30 @200 _ g g9, 101K, (allowed)

2%TT 2%TT 2ab 2%2.28%1.01%10~%

(c) To excite only one mode, the frequency should be between 0.66*10%° Hz — 1.32*10%° Hz.

c
A= " — 2.28cm — 4.55 cm



