
Chapter 9 - Electromagnetic Waves 

9.1 Waves in One Dimension 

Figure below shows a wave drawn at two 

different times, one at t=0 and the other 

at a later time t. 

The shape is same at two different times. 

The displacement at point z, at the later 

time t is the same as the displacement a 

distance 𝑣𝑡 to the left (𝑧 − 𝑣𝑡) back at time 𝑡 = 0. 

𝑓(𝑧, 𝑡) = 𝑓(𝑧 − 𝑣𝑡, 0) = 𝑔(𝑧 − 𝑣𝑡) 

Where 𝑔(𝑧 − 𝑣𝑡) is the initial shape of the string at t=0. This means that the function 𝑓(𝑧, 𝑡) 

which might depend on z and t in any old way, in fact depends on them in the very special 

combination 𝑧 − 𝑣𝑡; when that is true, the function 𝑓(𝑧, 𝑡) represents a wave of a fixed shape 

travelling in the z-direction at speed 𝑣.   

When a taut string is displaced from its equilibrium position, 

a transverse force on the segment between z and z+z is: 

∆𝐹 = 𝑇 sin 𝜃′ − 𝑇 sin 𝜃 

Where 𝜃′ is the angle the string makes with the z-direction at 

𝑧 + ∆𝑧 and 𝜃 is the angle that string makes with the z-axis at 

point z. If the distortion is not too great then these angles are 

small and we can replace the sine functions with tangent 

functions: 

∆𝐹 = 𝑇 tan𝜃′ − 𝑇 tan𝜃 = 𝑇 (
𝜕𝑓

𝜕𝑧
|
𝑧+∆𝑧

−
𝜕𝑓

𝜕𝑧
|
𝑧
) ≅ 𝑇

𝜕2𝑓

𝜕𝑧2
∆𝑧 

If the mass per unit length is 𝜇, Newton’s second law says: 

∆𝐹 = 𝜇(∆𝑧)
𝜕2𝑓

𝜕𝑡2
 

𝑇
𝜕2𝑓

𝜕𝑧2 ∆𝑧 = 𝜇(∆𝑧)
𝜕2𝑓

𝜕𝑡2  ;   
𝜕2𝑓

𝜕𝑧2 =
𝜇

𝑇

𝜕2𝑓

𝜕𝑡2 

𝜕2𝑓

𝜕𝑧2
=

1

𝑣2

𝜕2𝑓

𝜕𝑡2
 

Where 𝑣 is the speed of the wave on the string. The above equation is called Wave equation 

because it admits as solutions all functions of the form: 

𝑓(𝑧, 𝑡) = 𝑔(𝑧 − 𝑣𝑡) 



Since the wave equation involves the square of 𝑣, so another set of solutions can be generated 

by changing the sign of 𝑣: 

𝑓(𝑧, 𝑡) = ℎ(𝑧 + 𝑣𝑡) 

Which represents the waves propagating in the negative z-direction. The general wave solution, 

however, would be: 

𝑓(𝑧, 𝑡) = 𝑔(𝑧 − 𝑣𝑡) + ℎ(𝑧 + 𝑣𝑡) 

Example 1:  

Show that the standing wave 𝑓(𝑧, 𝑡) = 𝐴 sin(𝑘𝑧) cos(𝑘𝑣𝑡) satisfies the wave equation and 

express it as the sum of a wave travelling to the left and a wave travelling to the right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.1.2 Sinusoidal Waves 

A sinusoidal wave can be written in the following form: 

𝑓(𝑧, 𝑡) = 𝐴 cos(𝑘𝑧 − 𝜔𝑡 + 𝛿) 

Where 𝑘 is the wavenumber which is related to the wavelength as: 

𝜆 =
2𝜋

𝑘
 

And 𝜔 is the angular frequency given as: 

𝜔 = 2𝜋𝜈 = 𝑘𝑣 

And 𝛿 is the phase constant where 
𝛿

𝑘
 is the 

distance for which wave is delayed. 

In the figure shown = 𝑣𝑡 − 𝛿/𝑘 , the phase is 

zero; lets call this the “central maximum”.  

If 𝛿 = 0, the central maximum passes through 

the origin at time t=0, so 𝛿/𝑘 is the distance by 

which the central maximum and the whole wave is delayed.  

In view of the Euler’s formula: 

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 

The sinusoidal wave can be written as: 

𝑓(𝑧, 𝑡) = 𝑅𝑒[𝐴𝑒𝑖(𝑘𝑧−𝜔𝑡+𝛿)] 

The complex wavefunction can be written as: 

𝑓(𝑧, 𝑡) = 𝐴̃𝑒𝑖(𝑘𝑧−𝜔𝑡) 

Where 𝐴̃ = 𝐴𝑒𝑖𝛿 is the complex amplitude. Hence 

𝑓(𝑧, 𝑡) = 𝑅𝑒[𝑓(𝑧, 𝑡)] 

Any wave can be expressed as a linear combination of sinusoidal ones: 

𝑓(𝑧, 𝑡) = ∫ 𝐴̃
∞

−∞

(𝑘)𝑒𝑖(𝑘𝑧−𝜔𝑡)𝑑𝑘 

 

 

 



9.1.3 Boundary Conditions: Reflections and Transmission 

When the string is not infinitely long then when the wave propagates and reaches at the end of 

the string then it matters how the string is attached at the end. For example the string is simply 

tied to another second string. The tension is the same for both the strings but the linear mass 

density is different so speed of the wave will be different in the two string. Let’s say the knot is 

at z=0, then the incident wave will be: 

𝑓𝐼(𝑧, 𝑡) = 𝐴̃𝐼𝑒
𝑖(𝑘1𝑧−𝜔𝑡)   for    (𝑧 < 0) 

Coming in from the left, gives rise to a reflected wave along the same string 1, 

𝑓𝑅(𝑧, 𝑡) = 𝐴̃𝑅𝑒𝑖(−𝑘1𝑧−𝜔𝑡)   for    (𝑧 < 0) 

And part of the incident wave will be transmitted, which continues to the right in string 2. 

𝑓𝑇(𝑧, 𝑡) = 𝐴̃𝑇𝑒
𝑖(𝑘2𝑧−𝜔𝑡)   for    (𝑧 > 0) 

𝑓𝐼(𝑧, 𝑡) is a sinusoidal oscillation that extends to 𝑧 = −∞, similarly reflected wave will go back 

to 𝑧 = −∞ and the transmitted wave will go to 𝑧 = +∞. All parts of the system are oscillating 

at the same frequency. 

For a sinusoidal incident wave, the net disturbance of the string is: 

𝑓(𝑧, 𝑡) = {
𝐴̃𝐼𝑒

𝑖(𝑘1𝑧−𝜔𝑡) + 𝐴̃𝑅𝑒𝑖(−𝑘1𝑧−𝜔𝑡), 𝑓𝑜𝑟 𝑧 < 0 

𝐴̃𝑇𝑒
𝑖(𝑘2𝑧−𝜔𝑡),                                       𝑓𝑜𝑟 𝑧 > 0

 

At the joint, (𝑧 = 0) the displacement just left and just right of 𝑧 = 0 must be same, else there 

would be a break between the two strings: 

𝑓(0−, 𝑡) = 𝑓(0+, 𝑡) 

If the knot itself has negligible mass then the derivative of 𝑓 must also be continuous, else there 

would be net force on the knot: 

𝜕𝑓

𝜕𝑧
|
0−

=
𝜕𝑓

𝜕𝑧
|
0+

 

These boundary conditions apply to the real wave functions and apply to complex wave 

functions as well: 

𝑓(0−, 𝑡) = 𝑓(0+, 𝑡)  ;   
𝜕𝑓̃

𝜕𝑧
|
0−

=
𝜕𝑓̃

𝜕𝑧
|
0+

 

Using the boundary condition on the wave equation, we can get the outgoing amplitudes 

(𝐴̃𝑅 𝑎𝑛𝑑 𝐴̃𝑇) in terms of the incoming amplitude (𝐴̃𝐼): 

𝐴̃𝐼 + 𝐴̃𝑅 = 𝐴̃𝑇 



𝑘1(𝐴̃𝐼 − 𝐴̃𝑅) = 𝑘2𝐴̃𝑇  

Or 

𝐴̃𝑅 = (
𝑘1−𝑘2

𝑘1+𝑘2
) 𝐴̃𝐼   and   𝐴̃𝑇 = (

2𝑘1

𝑘1+𝑘2
) 𝐴̃𝐼 

Or interms of velocities: 

𝐴̃𝑅 = (
𝑣2−𝑣1

𝑣1+𝑣2
) 𝐴̃𝐼   and   𝐴̃𝑇 = (

2𝑣2

𝑣1+𝑣2
) 𝐴̃𝐼 

The real amplitudes and phases are then related as: 

𝐴𝑅𝑒𝑖𝛿𝑅 = (
𝑣2−𝑣1

𝑣1+𝑣2
)𝐴𝐼𝑒

𝑖𝛿𝐼    and   𝐴𝑇𝑒
𝑖𝛿𝑇 = (

2𝑣2

𝑣1+𝑣2
)𝐴𝐼𝑒

𝑖𝛿𝐼  

If the second string is lighter than the first (𝜇2 < 𝜇1 , so that 𝑣2 > 𝑣1), all three waves have the 

same phase angle (𝛿𝑅 = 𝛿𝑇 = 𝛿𝐼), and the outgoing amplitudes are: 

𝐴𝑅 = (
𝑣2−𝑣1

𝑣1+𝑣2
)𝐴𝐼   and   𝐴𝑇 = (

2𝑣2

𝑣1+𝑣2
)𝐴𝐼 

If the second string is heavier than the firs (𝑣2 < 𝑣1) the reflected wave is out of phase by 180° 

(𝛿𝑅 + 𝜋 = 𝛿𝑇 = 𝛿𝐼) 

cos(−𝑘1𝑧 − 𝜔𝑡 + 𝛿𝐼 + 𝜋) = −cos(−𝑘1𝑧 − 𝜔𝑡 + 𝛿𝐼) 

It means that reflected wave is upside down, the amplitudes in this case are: 

𝐴𝑅 = (
𝑣1−𝑣2

𝑣1+𝑣2
)𝐴𝐼   and   𝐴𝑇 = (

2𝑣2

𝑣1+𝑣2
)𝐴𝐼 

If the second string is infinitely massive, if the first string is nailed down at the end, then 

𝐴𝑅 = 𝐴𝐼    and   𝐴𝑇 = 0 

9.1.4 Polarization 

The waves in which displacement is perpendicular to the direction of the wave travel are called 

transverse waves and the waves in which 

displacement are parallel to the wave direction are 

called longitudinal wave. 

The transverse waves occur in two independent states 

of polarization, we can oscillate the string up-and-

down so it will be a vertical polarization.  

𝑓𝑣(𝑧, 𝑡) = 𝐴̃𝑒𝑖(𝑘𝑧−𝜔𝑡)𝑖 ̂

Or we can oscillate the string horizontally, so it will 

be horizontal polarization:  



𝑓ℎ(𝑧, 𝑡) = 𝐴̃𝑒𝑖(𝑘𝑧−𝜔𝑡)𝑗̂ 

Or along any direction in the xy-plane: 

𝑓(𝑧, 𝑡) = 𝐴̃𝑒𝑖(𝑘𝑧−𝜔𝑡)𝑛̂ 

The polarization vector 𝑛̂ defines the plane of polarization, because the waves are transverse, 𝑛̂ 

is perpendicular to the direction of the wave travel: 

𝑛̂. 𝑘̂ = 0 

In terms of polarization angle 𝜃, 

𝑛̂ = cos 𝜃 𝑖̂ + sin 𝜃 𝑗 ̂

𝑓(𝑧, 𝑡) = 𝐴̃𝑒𝑖(𝑘𝑧−𝜔𝑡)𝑛̂ 

𝑓(𝑧, 𝑡) = 𝐴̃𝑒𝑖(𝑘𝑧−𝜔𝑡)(cos𝜃 𝑖̂ + sin 𝜃 𝑗̂) 

𝑓(𝑧, 𝑡) = (𝐴̃ cos 𝜃)𝑒𝑖(𝑘𝑧−𝜔𝑡)𝑖̂ + (𝐴̃ sin 𝜃)𝑒𝑖(𝑘𝑧−𝜔𝑡)𝑗̂ 

 

9.2 Electromagnetic Waves in Vacuum 

In a region of space there is no charge or current, hence Maxwell’s equation would become: 

∇⃗⃗ . E⃗⃗ = 0      ;       ∇⃗⃗ . B⃗⃗ = 0 

∇⃗⃗ × E⃗⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
       ;    ∇⃗⃗ × B⃗⃗ = 𝜇𝑜𝜖𝑜

𝜕𝐸⃗ 

𝜕𝑡
 

These equations are set of coupled partial differential equations for E⃗⃗  and B⃗⃗ . They can be 

decoupled using following identities: 

∇⃗⃗ × (∇⃗⃗ × E⃗⃗ ) = ∇⃗⃗ (∇⃗⃗ . E⃗⃗ ) − ∇2E⃗⃗ = ∇⃗⃗ × (−
𝜕𝐵⃗ 

𝜕𝑡
) = −

𝜕

𝜕𝑡
(∇⃗⃗ × B⃗⃗ ) = −𝜇𝑜𝜖𝑜

𝜕2𝐸

𝜕𝑡2
 

∇⃗⃗ (∇⃗⃗ . E⃗⃗ ) − ∇2E⃗⃗ = −𝜇𝑜𝜖𝑜

𝜕2𝐸

𝜕𝑡2
 

∇⃗⃗ × (∇⃗⃗ × B⃗⃗ ) = ∇⃗⃗ (∇⃗⃗ . B⃗⃗ ) − ∇2B⃗⃗ = ∇⃗⃗ × (𝜇𝑜𝜖𝑜

𝜕𝐸⃗ 

𝜕𝑡
) = 𝜇𝑜𝜖𝑜

𝜕

𝜕𝑡
(∇⃗⃗ × E⃗⃗ ) = −𝜇𝑜𝜖𝑜

𝜕2𝐵⃗ 

𝜕𝑡2
 

∇⃗⃗ (∇⃗⃗ . B⃗⃗ ) − ∇2B⃗⃗ = −𝜇𝑜𝜖𝑜

𝜕2𝐵⃗ 

𝜕𝑡2
 

Since ∇⃗⃗ . E⃗⃗ = 0 and ∇⃗⃗ . B⃗⃗ = 0 , so 

∇2E⃗⃗ = 𝜇𝑜𝜖𝑜
𝜕2𝐸

𝜕𝑡2     and    ∇2B⃗⃗ = 𝜇𝑜𝜖𝑜
𝜕2𝐵⃗ 

𝜕𝑡2  



These are separate equation for E⃗⃗  and B⃗⃗  but now the equations are second order differential 

equations. 

In vacuum, each Cartesian component of E⃗⃗  and B⃗⃗  satisfy the three-dimensional wave equation: 

∇2𝑓 =
1

𝑣2

𝜕2𝑓

𝜕𝑡2
 

Therefore, the above Maxwell’s equation would imply that: 

𝑣 =
1

√𝜇𝑜𝜖𝑜

= 3.00 × 108 𝑚/𝑠 

Which is exactly the speed of light c, which implies that light is an electromagnetic wave. 

9.2.2 Monochromatic Plane Waves 

The sinusoidal waves that are travelling in the z-direction and have no dependence on x and y 

direction are called plane waves because the fields are uniform over any plane perpendicular to 

the direction of propagation. 

𝐸̃(𝑧, 𝑡) = 𝐸̃𝑜𝑒
𝑖(𝑘𝑧−𝜔𝑡)         ;         𝐵̃(𝑧, 𝑡) = 𝐵̃𝑜𝑒

𝑖(𝑘𝑧−𝜔𝑡) 

Where 𝐸̃𝑜 and 𝐵̃𝑜 are the complex amplitudes, the physical fields are the real parts of 𝐸̃ and 𝐵̃. 

Since ∇⃗⃗ . E⃗⃗ = 0 and ∇⃗⃗ . B⃗⃗ = 0 , so it follows that 

(𝐸̃𝑜)𝑧
= (𝐵̃𝑜)𝑧

= 0  

This means that electromagnetic waves are transverse, the electric and magnetic fields are 

perpendicular to the direction of propagation.  

Moreover, Faraday’s law ∇⃗⃗ × E⃗⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
 implies that: 

−𝑘(𝐸̃𝑜)𝑦
= 𝜔(𝐵̃𝑜)𝑥

     and      𝑘(𝐸̃𝑜)𝑥
= 𝜔(𝐵̃𝑜)𝑦

 

𝐵̃𝑜 =
𝑘

𝜔
(𝑧̂ × 𝐸̃𝑜) 

E⃗⃗  and B⃗⃗  are in phase and mutually perpendicular, their real amplitudes are related by: 

𝐵𝑜 =
𝑘

𝜔
𝐸𝑜 =

1

𝑐
𝐸𝑜 

If E⃗⃗  point in the x-direction then B⃗⃗  points in the y-direction: 

𝐸̃(𝑧, 𝑡) = 𝐸̃𝑜𝑒
𝑖(𝑘𝑧−𝜔𝑡)𝑖̂    and   𝐵̃(𝑧, 𝑡) = 𝐵̃𝑜𝑒

𝑖(𝑘𝑧−𝜔𝑡)𝑗̂ 

Or if we take only the real part, then: 



𝐸⃗ (𝑧, 𝑡) = 𝐸𝑜 cos(𝑘𝑧 − 𝜔𝑡 + 𝛿) 𝑖̂ 

𝐵⃗ (𝑧, 𝑡) =
1

𝑐
𝐸𝑜 cos(𝑘𝑧 − 𝜔𝑡 + 𝛿) 𝑗̂ 

 

The wave as a whole is said to be polarized along the x-axis (by convention the direction of 

electric field is used to specify the polarization of an electromagnetic wave.) 

If the wave is not propagating along the z-direction instead 

in any arbitrary direction then vector 𝑘⃗  is the direction of 

propagation. The scalar product 𝑘⃗ . 𝑟  is the appropriate 

generalization of 𝑘𝑧 

𝐸̃(𝑟 , 𝑡) = 𝐸̃𝑜𝑒
𝑖(𝑘⃗ .𝑟 −𝜔𝑡)𝑛̂ 

𝐵̃(𝑟 , 𝑡) =
1

𝑐
𝐸̃𝑜𝑒

𝑖(𝑘⃗ .𝑟 −𝜔𝑡)(𝑘̂ × 𝑛̂) =
1

𝑐
𝑘̂ × 𝐸⃗  

Where 𝑛̂ is the polarization vector. Because 𝐸⃗  is transvers, 

so: 

𝑛̂. 𝑘̂ = 0 

Real electric and magnetic fields in a monochromatic plane wave with propagation vector 𝑘̂ and 

polarization 𝑛̂ are: 

𝐸⃗ (𝑟 , 𝑡) = 𝐸𝑜 cos(𝑘⃗ . 𝑟 − 𝜔𝑡 + 𝛿) 𝑛̂ 

𝐵⃗ (𝑟 , 𝑡) =
1

𝑐
𝐸𝑜 cos(𝑘⃗ . 𝑟 − 𝜔𝑡 + 𝛿) (𝑘̂ × 𝑛̂) =

1

𝑐
(𝑘̂ × 𝐸⃗ ) 

9.2.3 Energy and Momentum in Electromagnetic Waves 

Energy per unit volume stored in an electromagnetic field is given by: 

𝑢𝑒𝑚 =
1

2
(𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2) 

In the case of monochromatic plane wave: 



𝐵2 =
1

𝑐2
𝐸2 = 𝜖𝑜𝜇𝑜𝐸

2 

So the electric and magnetic fields are equal: 

𝑢𝑒𝑚 = 𝜖𝑜𝐸
2 = 𝜖𝑜𝐸𝑜

2 cos2(𝑘𝑧 − 𝜔𝑡 + 𝛿) 

As the wave travels, it carries this energy along with it. The energy flux density transported by 

the fields is given by the Poynting vector: 

𝑆 =
1

𝜇𝑜
(𝐸⃗ × 𝐵⃗ ) 

𝑆 = 𝑐𝜖𝑜𝐸𝑜
2 cos2(𝑘𝑧 − 𝜔𝑡 + 𝛿) 𝑘̂ = 𝑐𝑢𝑘̂ 

In a time t, a length ct passes through area A, carrying with an 

energy 𝑢𝐴𝑐∆𝑡. The energy per unit area per unit time is 

therefore 𝑢𝑐. 

Electromagnetic fields not only carry energy they also carry momentum, and the momentum 

density stored in the field is: 

℘⃗⃗⃗ =
1

𝑐2
𝑆  

For monochromatic plane waves: 

℘⃗⃗⃗ =
1

𝑐
(𝜖𝑜𝐸𝑜

2 cos2(𝑘𝑧 − 𝜔𝑡 + 𝛿))𝑘̂ =
1

𝑐
𝑢 𝑘̂ 

In the case of light, the wavelength is so short (~5 × 10−7𝑚) and the period so brief 

(~10−15𝑠)  that any macroscopic measurement will encompass many cycles. Therefore it is 

more meaningful to talk about the time average values of energy and momentum over a 

complete cycle. 

〈𝑢〉 =
1

2
𝜖𝑜𝐸𝑜

2 

〈𝑆 〉 =
1

2
𝑐𝜖𝑜𝐸𝑜

2 𝑘̂ 

〈℘⃗⃗⃗ 〉 =
1

2𝑐
𝜖𝑜𝐸𝑜

2 𝑘̂ 

The average power per unit area transported by the electromagnetic wave is called the 

intensity: 

𝐼 ≡ 〈𝑆 〉 =
1

2
𝑐𝜖𝑜𝐸𝑜

2 𝑘̂ 



When light falls on a perfect absorber it delivers its momentum to the surface. In a time t the 

momentum transfer is:  

∆𝑝 = 〈℘⃗⃗⃗ 〉𝐴𝑐∆𝑡 

So the radiation pressure is: 

𝑃 =
1

𝐴

∆𝑝

∆𝑡
=

1

2
𝜖𝑜𝐸𝑜

2 =
𝐼

𝑐
 

On a perfect reflector the pressure is twice as great because the momentum switches the 

direction instead of being absorbed. 

Example 2: 

The intensity of the sunlight hitting the earth is approximately 1300 W/m2. If sunlight strikes a 

perfect absorber, what pressure does it exert? How about a perfect reflector? What fraction of 

atmospheric pressure does this amount to? 

Solution: 

𝑃 =
𝐼

𝑐
=

1300

3.0 × 108
= 4.3 × 10−6𝑁/𝑚2 

For a perfect reflector the pressure is twice as much, so: 

𝑃𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑜𝑟 = 8.6 × 10−6𝑁/𝑚2 

𝑃𝑝𝑒𝑟𝑓𝑒𝑐𝑡

𝑃𝑎𝑡𝑚
=

8.6 × 10−6

1.03 × 105
= 8.3 × 10−11𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒𝑠 

 

Example 3: 

Find all elements of the Maxwell stress tensor for a monochromatic plane wave travelling in the 

z–direction and linearly polarized in the x-direction. Does your answer make sense? How is the 

momentum flux density related to the energy density, in this case? 

Solution: 

Components of Maxwell’s stress tensor are given as: 

𝑇𝑖𝑗 = 𝜖𝑜 (𝐸𝑖𝐸𝑗 −
1

2
𝛿𝑖𝑗𝐸

2) +
1

𝜇𝑜
(𝐵𝑖𝐵𝑗 −

1

2
𝛿𝑖𝑗𝐵

2) 

If the EM wave is linearly polarized in the x-direction, it means electric field is along x-axis and 

magnetic field is along y-axis and wave is propagating along z-direction. 



𝑇𝑥𝑥 = 𝜖𝑜 (𝐸𝑥𝐸𝑥 −
1

2
𝐸2) +

1

𝜇𝑜
(𝐵𝑥𝐵𝑥 −

1

2
𝐵2) =

1

2
(𝜖𝑜𝐸

2 −
1

𝜇𝑜
𝐵2) 

For a monochromatic plane wave:  

𝐵2 =
1

𝑐2
𝐸2 = 𝜖𝑜𝜇𝑜𝐸

2 

𝑇𝑥𝑥 =
1

2
(𝜖𝑜𝐸

2 −
1

𝜇𝑜
(𝜖𝑜𝜇𝑜

𝐸2)) = 0 

𝑇𝑦𝑦 = 𝜖𝑜 (𝐸𝑦𝐸𝑦 −
1

2
𝐸2) +

1

𝜇𝑜
(𝐵𝑦𝐵𝑦 −

1

2
𝐵2) =

1

2
(−𝜖𝑜𝐸

2 +
1

𝜇𝑜
𝐵2) = 0 

𝑇𝑧𝑧 = 𝜖𝑜 (𝐸𝑧𝐸𝑧 −
1

2
𝐸2) +

1

𝜇𝑜
(𝐵𝑧𝐵𝑧 −

1

2
𝐵2) =

1

2
(−𝜖𝑜𝐸

2 −
1

𝜇𝑜
𝐵2) = −𝑢 

𝑇𝑧𝑧 = 𝜖𝑜𝐸𝑜
2 cos2(𝑘𝑧 − 𝜔𝑡 + 𝛿) 

The momentum of these fields is in the z direction, and it is being transported in the z direction, 

so yes, it does make sense that 𝑇𝑧𝑧should be the only nonzero element in 𝑇𝑖𝑗 .  

Since −𝑇. 𝑑𝑎 is the rate at which momentum crosses an area 𝑑𝑎. Here we have no momentum 

crossing areas oriented in the x or y direction;  

The momentum per unit time per unit area flowing across a surface oriented in the z direction 

is:  

−𝑇𝑧𝑧  =  𝑢 =  ℘𝑐  
 

∆𝑝 = ℘𝑐𝐴∆𝑡    ;       
∆𝑝

∆𝑡
= ℘𝑐𝐴 = momentum per unit time crossing area A.  

 

 

 

 

 

 

 

 

 

 



9.3 Electromagnetic Waves in Matter 

Inside matter but in regions where there are no free charges or free currents, Maxwell’s 

equations are: 

∇⃗⃗ . D⃗⃗ = 0       ;     ∇⃗⃗ × E⃗⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
 

∇⃗⃗ . B⃗⃗ = 0       ;     ∇⃗⃗ × H⃗⃗ =
𝜕𝐷⃗⃗ 

𝜕𝑡
 

If the medium is linear and homogeneous (so that 𝜖 and 𝜇 does not vary from point to point), 

D⃗⃗ = 𝜖𝐸⃗        ;    H⃗⃗ =
1

𝜇
𝐵⃗  

The Maxwell’s equations reduce to: 

∇⃗⃗ . E⃗⃗ = 0       ;     ∇⃗⃗ × E⃗⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
 

∇⃗⃗ . B⃗⃗ = 0       ;     ∇⃗⃗ × B⃗⃗ = 𝜇𝜖
𝜕𝐸⃗ 

𝜕𝑡
 

The speed of electromagnetic wave through a linear homogeneous medium is: 

𝑣 =
1

√𝜇𝜖
=

𝑐

𝑛
 

Where  𝑛 = √
𝜖𝜇

𝜖𝑜𝜇𝑜
   is the index of refraction of the material. 

For most materials 𝜇 is very close to 𝜇𝑜, hence 

𝑛 ≅ √
𝜖

𝜖𝑜
= √𝜖𝑟 

Where 𝜖𝑟 is almost always greater than 1, and hence light travels slowly through matter. All the 

electrodynamics results can be carried over in materials by simply replacing 𝜖𝑜 → 𝜖 and 𝜇𝑜 → 𝜇 

The energy density in a homogeneous linear material is: 

𝑢 =
1

2
(𝜖𝐸2 +

1

𝜇
𝐵2) 

And the Poynting vector is: 

𝑆 =
1

𝜇
(𝐸⃗ × 𝐵⃗ ) 

For a monochromatic plane wave 𝜔 = 𝑘𝑣 and the amplitude of 𝐵⃗  is 1/𝑣 times the amplitude of 

𝐸⃗  and the intensity is: 



𝐼 =
1

2
𝜖𝑣𝐸𝑜

2 

When a wave passes from one transparent medium to another medium for example from air to 

water or glass, then the boundary conditions are as follows: 

(i) 𝜖1𝐸1
⊥ = 𝜖2𝐸2

⊥ 

(ii) 𝐵1
⊥ = 𝐵2

⊥ 

(iii) 𝐸1
∥=𝐸2

∥ 

(iv) 
1

𝜇1
𝐵1

∥ =
1

𝜇2
𝐵2

∥ 

9.3.2 Reflection and Transmission at Normal Incidence 

Considering an electromagnetic wave of frequency 𝜔 is propagating along z-axis and is 

polarized along the x-axis. The xy-plane forms the boundary between two linear media.  

If the wave is incident on the plane from the left: 

𝐸̃𝐼(𝑧, 𝑡) = 𝐸̃𝑜𝐼
𝑒𝑖(𝑘1𝑧−𝜔𝑡)𝑖̂ 

𝐵̃𝐼(𝑧, 𝑡) =
1

𝑣1
𝐸̃𝑜𝐼

𝑒𝑖(𝑘1𝑧−𝜔𝑡)𝑗 ̂

The electric and magnetic fields of the 

reflected wave will be: 

𝐸̃𝑅(𝑧, 𝑡) = 𝐸̃𝑜𝑅
𝑒𝑖(−𝑘1𝑧−𝜔𝑡)𝑖̂ 

𝐵̃𝑅(𝑧, 𝑡) = −
1

𝑣1
𝐸̃𝑜𝑅

𝑒𝑖(−𝑘1𝑧−𝜔𝑡)𝑗̂ 

And the electric and magnetic field 

components of the transmitted beam 

would be: 

𝐸̃𝑇(𝑧, 𝑡) = 𝐸̃𝑜𝑇
𝑒𝑖(𝑘2𝑧−𝜔𝑡)𝑖̂ 

𝐵̃𝑇(𝑧, 𝑡) =
1

𝑣2
𝐸̃𝑜𝑇

𝑒𝑖(𝑘2𝑧−𝜔𝑡)𝑗 ̂

Note that magnetic field of the reflected wave is in the negative y-direction because  

[𝐵⃗ (𝑟 , 𝑡) =
1

𝑐
𝐸𝑜 cos(𝑘⃗ . 𝑟 − 𝜔𝑡 + 𝛿) (𝑘̂ × 𝑛̂) =

1

𝑐
(−𝑧̂ × 𝐸⃗ )] and also Poynting vector points in 

the direction of propagation. 

At z=0 the combined fields on the left [𝐸̃𝐼 + 𝐸̃𝑅] and [𝐵̃𝐼 + 𝐵̃𝑅]must join the fields on the right 

𝐸̃𝑇 and 𝐵̃𝑇.  



Hence the boundary conditions (iii) and (iv) require that fields on both side of the interface are 

equal: 

𝐸̃𝑜𝐼
+ 𝐸̃𝑜𝑅

= 𝐸̃𝑜𝑇
 

1

𝜇1
(
1

𝑣1
𝐸̃𝑜𝐼

−
1

𝑣1
𝐸̃𝑜𝑅

) =
1

𝜇2
(
1

𝑣2
𝐸̃𝑜𝑇

) 

𝐸̃𝑜𝐼
− 𝐸̃𝑜𝑅

=
𝜇1𝑣1

𝜇2𝑣2
𝐸̃𝑜𝑇

= 𝛽𝐸̃𝑜𝑇
 

Where  

𝛽 =
𝜇1𝑣1

𝜇2𝑣2
=

𝜇1𝑛2

𝜇2𝑛1
 

𝐸̃𝑜𝑅
= (

1−𝛽

1+𝛽
) 𝐸̃𝑜𝐼

  ;  𝐸̃𝑜𝑇
= (

2

1+𝛽
) 𝐸̃𝑜𝐼

 

In most cases the values of permitivities are close to the values in vacuum (𝜇1 = 𝜇2 = 𝜇0), so 

𝛽 =
𝑣1

𝑣2
=

𝑛2

𝑛1
 

𝐸̃𝑜𝑅
= (

𝑣2−𝑣1

𝑣2+𝑣1
) 𝐸̃𝑜𝐼

  ;  𝐸̃𝑜𝑇
= (

2𝑣2

𝑣2+𝑣1
) 𝐸̃𝑜𝐼

 

This result is similar to what we got in the case of wave on a string. The reflected wave is in 

phase with the incident wave if 𝑣2 > 𝑣1 and out of phase if 𝑣2 < 𝑣1. 

The real amplitudes are related as: 

𝐸𝑜𝑅
= |

𝑣2−𝑣1

𝑣2+𝑣1
| 𝐸𝑜𝐼

  ;  𝐸𝑜𝑇
= (

2𝑣2

𝑣2+𝑣1
)𝐸𝑜𝐼

 

𝐸𝑜𝑅
= |

𝑛1−𝑛2

𝑛1+𝑛2
| 𝐸𝑜𝐼

  ;  𝐸𝑜𝑇
= (

2𝑛1

𝑛1+𝑛2
)𝐸𝑜𝐼

 

The intensity of an electromagnetic waves is given by: 

𝐼 =
𝑃𝑎𝑣𝑔

𝐴𝑟𝑒𝑎
=

1

2
𝜖𝑣𝐸𝑜

2 

If 𝜇1 = 𝜇2 = 𝜇𝑜 then the ratio of the reflected intensity to the incident intensity is: 

𝑅 =
𝐼𝑅
𝐼𝐼

= (
𝐸𝑜𝑅

𝐸𝑜𝐼

)

2

= (
𝑛1 − 𝑛2

𝑛1 + 𝑛2
)
2

 

And the ratio of the transmitted intensity to the incident intensity is: 

𝑇 =
𝐼𝑇
𝐼𝐼

=
𝜖2𝑣2

𝜖1𝑣1
(
𝐸𝑜𝑇

𝐸𝑜𝐼

)

2

=
4𝑛1𝑛2

(𝑛1 + 𝑛2)2
 



R is called the reflection coefficient and T is called the transmission coefficient, they measure 

the fraction of the incident energy that is reflected and transmitted, respectively. And 

conservation of energy requires that: 

𝑅 + 𝑇 = 1 

When light passes from air (n=1) into glass (n=1.5), R=0.04 and T=0.96, this means most of the 

light is transmitted through the glass and a small portion is reflected. 

9.3.3 Reflection and Transmission at Oblique incidence 

In this case incident wave hits the interface at an incident angle 𝜃𝐼  (normal incidence is a special 

case when 𝜃𝐼 = 0). 

Suppose a monochromatic plane wave approaching the interface from the left is given by: 

𝐸̃𝐼(𝑟 , 𝑡) = 𝐸̃𝑜𝐼
𝑒𝑖(𝑘⃗ 𝐼.𝑟 −𝜔𝑡) 

𝐵̃𝐼(𝑟 , 𝑡) =
1

𝑣1
(𝑘̂𝐼 × 𝐸̃𝐼)  

The reflected wave is: 

𝐸̃𝑅(𝑟 , 𝑡) = 𝐸̃𝑜𝑅
𝑒𝑖(𝑘⃗ 𝑅.𝑟 −𝜔𝑡) ;  𝐵̃𝑅(𝑟 , 𝑡) =

1

𝑣1
(𝑘̂𝑅 × 𝐸̃𝑅)  

And a transmitted wave is given by: 

𝐸̃𝑇(𝑟 , 𝑡) = 𝐸̃𝑜𝑇
𝑒𝑖(𝑘⃗ 𝑇.𝑟 −𝜔𝑡) ;  𝐵̃𝑇(𝑟 , 𝑡) =

1

𝑣2
(𝑘̂𝑇 × 𝐸̃𝑇)  

All three waves have the same frequency 𝜔 and the three wavenumbers are related as: 

𝑘𝐼𝑣1 = 𝑘𝑅𝑣1 = 𝑘𝑇𝑣2 = 𝜔       or      𝑘𝐼 = 𝑘𝑅 =
𝑣2

𝑣1
𝑘𝑇 =

𝑛1

𝑛2
𝑘𝑇 

The combined fields in medium (1), 𝐸̃𝐼 + 𝐸̃𝑅 and 𝐵̃𝐼 + 𝐵̃𝑅 are related with the transmitted fields 

𝐸̃𝑇 and 𝐵̃𝑇 using the boundary conditions: 

(i) 𝜖1𝐸1
⊥ = 𝜖2𝐸2

⊥ 

(ii) 𝐵1
⊥ = 𝐵2

⊥ 

(iii) 𝐸1
∥=𝐸2

∥ 

(iv) 
1

𝜇1
𝐵1

∥ =
1

𝜇2
𝐵2

∥ 

These all share the same generic structure: 

( )𝑒𝑖(𝑘⃗ 𝐼.𝑟 −𝜔𝑡) + ( )𝑒𝑖(𝑘⃗ 𝑅.𝑟 −𝜔𝑡) = ( )𝑒𝑖(𝑘⃗ 𝑇.𝑟 −𝜔𝑡)     at 𝑧 = 0 

Notice all x,y and t dependence are in the exponents, and since boundary conditions must hold 

at all the points on the plane at z=0, so the exponents must be equal, which gives: 



𝑘⃗ 𝐼 . 𝑟 = 𝑘⃗ 𝑅 . 𝑟 = 𝑘⃗ 𝑇 . 𝑟    when 𝑧 = 0 

𝑥(𝑘𝐼)𝑥 + 𝑦(𝑘𝐼)𝑦 = 𝑥(𝑘𝑅)𝑥 + 𝑦(𝑘𝑅)𝑦

= 𝑥(𝑘𝑇)𝑥 + 𝑦(𝑘𝑇)𝑦 

For all x and all y at z=0. 

The above equation holds only if the components 

separately are equal. For say x=0 

(𝑘𝐼)𝑦 = (𝑘𝑅)𝑦 = (𝑘𝑇)𝑦 

Similarly for y=0 

(𝑘𝐼)𝑥 = (𝑘𝑅)𝑥 = (𝑘𝑇)𝑥 

We can in fact orient our axes such that 𝑘𝐼 lies in the xz-plane so that (𝑘𝐼)𝑦 = 0 = (𝑘𝑅)𝑦 =

(𝑘𝑇)𝑦 

First Law: The incident, reflected and transmitted wave vector form a plane (called plane of 

incidence), which also includes normal to the surface (z-axis in this case). 

Also the equation:  

(𝑘𝐼)𝑥 = (𝑘𝑅)𝑥 = (𝑘𝑇)𝑥 

Implies that:    𝑘𝐼 sin 𝜃𝐼 = 𝑘𝑅 sin 𝜃𝑅 = 𝑘𝑇 sin 𝜃𝑇  

Where 𝜃𝐼  is the angle of incidence and 𝜃𝑅  is the angle of reflection and 𝜃𝑇 is the angle of 

transmission also called angle of refraction and they are all measured with respect to the 

normal. 

Second Law: The angle of incidence is equal to the angle of reflection. 

𝜃𝐼 = 𝜃𝑅                  Law of Reflection 

Third Law: For the transmitted angle 

sin 𝜃𝑇

sin 𝜃𝐼
=

𝑛1

𝑛2
 

This is the law of refraction or Snell’s Law. 

These are the three fundamental laws of geometrical optics. 

The boundary conditions imply that: 

(i) 𝜖1(𝐸̃𝑜𝐼
+ 𝐸̃𝑜𝑅

)
𝑧
= 𝜖2(𝐸̃𝑜𝑇

)
𝑧
 

(ii) (𝐵̃𝑜𝐼
+ 𝐵̃𝑜𝑅

)
𝑧
= (𝐵̃𝑜𝑇

)
𝑧
 

(iii) (𝐸̃𝑜𝐼
+ 𝐸̃𝑜𝑅

)
𝑥,𝑦

= (𝐸̃𝑜𝑇
)
𝑥,𝑦

 



(iv) 
1

𝜇1
(𝐵̃𝑜𝐼

+ 𝐵̃𝑜𝑅
)
𝑥,𝑦

=
1

𝜇2
(𝐵̃𝑜𝑇

)
𝑥,𝑦

 

Where 𝐵̃𝑜 =
1

𝑣
(𝑘̂ × 𝐸̃𝑜) 

Suppose the polarization of the incident wave is parallel to the plane of incidence (xz plane in 

the figure above.) Then the first boundary condition (i) implies that: 

𝜖1(−𝐸̃𝑜𝐼
sin 𝜃𝐼 + 𝐸̃𝑜𝑅

sin 𝜃𝑅) = 𝜖2(−𝐸̃𝑜𝑇
sin 𝜃𝑇) 

Since B has no z-component, hence boundary condition (ii) does not add anything. Boundary 

condition (iii) implies: 

𝐸̃𝑜𝐼
cos 𝜃𝐼 + 𝐸̃𝑜𝑅

cos 𝜃𝑅 = 𝐸̃𝑜𝑇
cos 𝜃𝑇 

𝐸̃𝑜𝐼
+ 𝐸̃𝑜𝑅

=
cos 𝜃𝑇

cos 𝜃𝐼
𝐸̃𝑜𝑇

= 𝛼𝐸̃𝑜𝑇
 

Where  𝛼 =
cos𝜃𝑇

cos𝜃𝐼
 

And boundary condition (iv) gives:   

1

𝜇1𝑣1
(𝐸̃𝑜𝐼

− 𝐸̃𝑜𝑅
) =

1

𝜇2𝑣2
𝐸̃𝑜𝑇

 

Using the laws of reflection and refraction, we get: 

𝐸̃𝑜𝐼
− 𝐸̃𝑜𝑅

=
𝜇1𝑣1

𝜇2𝑣2
𝐸̃𝑜𝑇

= 𝛽𝐸̃𝑜𝑇
 

Where   𝛽 =
𝜇1𝑣1

𝜇2𝑣2
=

𝜇1𝑛2

𝜇2𝑛1
≅

𝑛2

𝑛1
 

𝐸̃𝑜𝑅
= (

𝛼−𝛽

𝛼+𝛽
) 𝐸̃𝑜𝐼

    and    𝐸̃𝑜𝑇
= (

2

𝛼+𝛽
) 𝐸̃𝑜𝐼

 

These are known as Fresnel’s equations for the case of polarization in the plane of the 

incidence.  

From the above equation we can see that transmitted wave is always in phase with the 

incidence but the reflected wave is in phase with the incidence wave if 𝛼 > 𝛽 and will be out of 

phase by 180° if 𝛼 < 𝛽. 

The amplitudes of the transmitted and reflected wave depend on the angle of incidence: 

𝛼 =
cos 𝜃𝑇

cos 𝜃𝐼
=

√1 − sin2 𝜃𝑇

cos 𝜃𝐼
=

√1 − [(
𝑛1

𝑛2
) sin 𝜃𝐼]

2

cos 𝜃𝐼
 

 



In the case of normal incidence 𝜃𝐼 = 0 and 𝛼 = 1 

At grazing incidence angel 𝜃𝐼 = 90 and 𝛼 diverges, which means that the wave is totally 

reflected. 

𝐸̃𝑜𝑅
= (

𝛼−𝛽

𝛼+𝛽
) 𝐸̃𝑜𝐼

= 𝐸̃𝑜𝐼
    and    𝐸̃𝑜𝑇

= (
2

𝛼+𝛽
) 𝐸̃𝑜𝐼

= 0 

There is an intermediate angle (𝜃𝐵, Brewster’s angle) where the reflected wave is completely 

extinguished and this occurs when 𝛼 = 𝛽. 

𝛼 =
√1 − [(

𝑛1

𝑛2
) sin 𝜃𝐵]

2

cos 𝜃𝐵
= 𝛽 

sin2 𝜃𝐵 =
1 − 𝛽2

(
𝑛1

𝑛2
)
2

− 𝛽2

 

Typically 𝜇1 ≅ 𝜇2, so 𝛽 ≅ 𝑛2/𝑛1 

sin2 𝜃𝐵 =
𝛽2

1 + 𝛽2
 

tan 𝜃𝐵 ≅
𝑛2

𝑛1
 

 

The figure shows a plot of the reflected 

and transmitted amplitudes as a function 

of incidence angle 𝜃𝐼  , for light incident on 

glass (𝑛2 = 1.5) from air (𝑛1 = 1.0). 

The power per unit area striking the surface is 𝑆 . 𝑧̂ , thus the incident intensity is: 

𝐼𝐼 =
1

2
𝜖1𝑣1𝐸𝑜𝐼

2 cos 𝜃𝐼  

While the reflected and transmitted intensities are: 

𝐼𝑅 =
1

2
𝜖1𝑣1𝐸𝑜𝑅

2 cos 𝜃𝑅 

𝐼𝑇 =
1

2
𝜖2𝑣2𝐸𝑜𝑇

2 cos 𝜃𝑇  

The reflection and transmission coefficients of waves polarized along the plane of incidence 

are: 

 



𝑅 =
𝐼𝑅
𝐼𝐼

= (
𝐸𝑜𝑅

𝐸𝑜𝐼

)

2

= (
𝛼 − 𝛽

𝛼 + 𝛽
)
2

  

𝑇 =
𝐼𝑇
𝐼𝐼

=
𝜖2𝑣2

𝜖1𝑣1
 (

𝐸𝑜𝑇

𝐸𝑜𝐼

)

2
cos 𝜃𝑇

cos 𝜃𝐼
 = 𝛼𝛽 (

2

𝛼 + 𝛽
)
2

 

 

The figure shows a plot of reflection 

and transmission coefficients as a 

function of incidence angle (from 

air/glass interface). 

R+T=1 as required by the 

conservation of energy. At Brewster’s 

angle the refection coefficient is zero 

whereas transmission coefficient is 1. 

 

 

Example 4: The index of refraction of diamond is 2.42. Construct the graph of 
𝐸𝑜𝑇

𝐸𝑜𝑖

 and 
𝐸𝑜𝑅

𝐸𝑜𝐼 

 vs. 𝜃𝐼  

(incidence angle) for the air/diamond interface. (Assume 𝜇1 = 𝜇2 = 𝜇𝑜). Calculate: 

a) The amplitudes at normal incidence. 

b) Brewster’s angle 

c) The “crossover” angle at which the reflected and transmitted amplitudes are equal. 

Solution: 

a)  

𝛽 =
𝜇1𝑣1

𝜇2𝑣2
=

𝜇1𝑛2

𝜇2𝑛1
=

𝑛2

𝑛1
=

2.42

1
= 2.42 

𝛼 =
√1 − sin2 𝜃𝑇

cos 𝜃𝐼
=

√1 − [(
𝑛1

𝑛2
) sin 𝜃𝐼]

2

cos 𝜃𝐼
=

√1 − [
1

2.42 sin 0]

cos 0
= 1 

𝐸̃𝑜𝑅
= (

𝛼−𝛽

𝛼+𝛽
) 𝐸̃𝑜𝐼

 ,  𝐸̃𝑜𝑇
= (

2

𝛼+𝛽
) 𝐸̃𝑜𝐼

 

𝐸̃𝑜𝑅

𝐸̃𝑜𝐼

=
1 − 2.42

1 + 2.4
= −0.415 



𝐸̃𝑜𝑇

𝐸̃𝑜𝐼

=
2

1 + 2.4
= 0.585 

b)  

tan 𝜃𝐵 =
𝑛2

𝑛1
= 2.42 

𝜃𝐵 = tan−1(2.42) = 67.5° 

c)  

𝐸̃𝑜𝑅
= (

𝛼−𝛽

𝛼+𝛽
) 𝐸̃𝑜𝐼

 ,  𝐸̃𝑜𝑇
= (

2

𝛼+𝛽
) 𝐸̃𝑜𝐼

 

𝐸̃𝑜𝑅
= 𝐸̃𝑜𝑇

 

𝛼 − 𝛽 = 2  𝛼 = 𝛽 + 2 = 4.42 

𝛼2 =
1 − (

𝑛1

𝑛2
)
2

sin2 𝜃𝐼

cos2 𝜃𝐼
 

𝜃𝐼 = 78.3° 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.4 Absorption and Dispersion 

9.4.1 Electromagnetic Waves in Conductors 

In conductors, the free charge density and hence the free current density is not zero. According 

to Ohm’s law, the free current density in a conductor is proportional to the applied electric 

field, 

𝐽 𝑓 = 𝜎𝐸⃗  

Hence, Maxwell’s equation for linear media assume the form: 

(i) ∇⃗⃗ . E⃗⃗ =
1

𝜖
𝜌𝑓       

(ii) ∇⃗⃗ . B⃗⃗ = 0 

(iii) ∇⃗⃗ × E⃗⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
 

(iv) ∇⃗⃗ × B⃗⃗ = 𝜇𝜎𝐸⃗ + 𝜇𝜖
𝜕𝐸⃗ 

𝜕𝑡
 

Now the continuity equation for the free charge is: 

∇⃗⃗ . J 𝑓 = −
𝜕𝜌𝑓

𝜕𝑡
 

Together with Ohm’s law and Gauss’s law: 

𝜕𝜌𝑓

𝜕𝑡
= −𝜎(∇⃗⃗ . 𝐸⃗ ) = −

𝜎

𝜖
𝜌𝑓 

For a homogeneous linear medium,  

𝜌𝑓(𝑡) = 𝑒(−
𝜎
𝜖
)𝑡𝜌𝑓(0) 

Thus any initial free charge density will dissipate in a characteristic time 𝜏 = 𝜖 𝜎⁄ . 

 This reflects the fact that if we have some free charge on a conductor, it will flow out to the 

edges. For a good conductor 𝜎 = ∞ and 𝜏 = 0, which means that 𝜏 is much less than any other 

relevant times. For an oscillatory system it would mean that 𝜏 ≪ 1/𝜔 and for a poor conductor 

≫ 𝜔 . 

After disappearance of any accumulated charge on the conductor: 

(i) ∇⃗⃗ . E⃗⃗ = 0       

(ii) ∇⃗⃗ . B⃗⃗ = 0 

(iii) ∇⃗⃗ × E⃗⃗ = −
𝜕𝐵⃗ 

𝜕𝑡
 

(iv) ∇⃗⃗ × B⃗⃗ = 𝜇𝜎𝐸⃗ + 𝜇𝜖
𝜕𝐸⃗ 

𝜕𝑡
 

If we apply curl to last two equations above, we get: 



∇⃗⃗ × (∇⃗⃗ × E⃗⃗ ) = −
𝜕

𝜕𝑡
(∇⃗⃗ × 𝐵⃗ ) 

∇⃗⃗ × (∇⃗⃗ × E⃗⃗ ) = ∇⃗⃗ (∇⃗⃗ . E⃗⃗ ) − ∇2E⃗⃗ = −∇2E⃗⃗ = −
𝜕

𝜕𝑡
(∇⃗⃗ × 𝐵⃗ ) = −

𝜕

𝜕𝑡
(𝜇𝜎𝐸⃗ + 𝜇𝜖

𝜕𝐸⃗ 

𝜕𝑡
) 

∇⃗⃗ × (∇⃗⃗ × B⃗⃗ ) = 𝜇𝜎(∇⃗⃗ × 𝐸⃗ ) + 𝜇𝜖
𝜕

𝜕𝑡
(∇⃗⃗ × 𝐸⃗ ) 

 

These equations still give plane-wave solutions: 

 

But this time 𝑘̃ is complex: 

𝑘̃2 = 𝜇𝜖𝜔2 + 𝑖𝜇𝜎𝜔     or      𝑘̃ = 𝑘 + 𝑖𝜅 

Where  

𝑘 = 𝜔√
𝜖𝜇

2
[√1 + (

𝜎

𝜖𝜔
)
2

+ 1]

1/2

 

𝜅 = 𝜔√
𝜖𝜇

2
[√1 + (

𝜎

𝜖𝜔
)
2

− 1]

1/2

 

The imaginary part of 𝑘̃ results in an attenuation of the wave (decreasing amplitude with 

increasing z): 

𝐸̃(𝑧, 𝑡) = 𝐸̃𝑜𝑒
−𝜅𝑧𝑒𝑖(𝑘𝑧−𝜔𝑡) 

𝐵̃(𝑧, 𝑡) = 𝐵̃𝑜𝑒
−𝜅𝑧𝑒𝑖(𝑘𝑧−𝜔𝑡) 

The distance it takes to reduce the amplitude by a factor of 1/𝑒 (about a third) is called the skin 

depth. 

𝑑 ≡
1

𝜅
 

This is a measure of how far a wave can penetrate into a conductor. And the real part of 𝑘̃ 

determines the wavelength, the propagation speed and index of refraction: 

𝜆 =
2𝜋

𝑘
      and      𝑣 =

𝜔

𝑘
     and     𝑛 =

𝑐𝑘

𝜔
 



Now let’s consider 𝑬⃗⃗  is polarized along x-axis, then: 

𝑬̃(𝑧, 𝑡) = 𝐸̃𝑜𝑒
−𝜅𝑧𝑒𝑖(𝑘𝑧−𝜔𝑡)𝒊̂ 

𝑩̃(𝑧, 𝑡) =
𝑘̃

𝜔
𝐸̃𝑜𝑒

−𝜅𝑧𝑒𝑖(𝑘𝑧−𝜔𝑡)𝒋̂ 

Like any complex number 𝑘̃ can be expressed as: 

𝑘̃ = 𝐾𝑒𝑖𝜙 

𝐾 = |𝑘̃| = √𝑘2 + 𝜅2 = 𝜔√𝜖𝜇(√1 + (
𝜎

𝜖𝜔
)
2

) 

𝜙 = tan−1(𝜅/𝑘) 

We can write the complex amplitudes of the electric and magnetic field as: 

𝐸̃𝑜 = 𝐸𝑜𝑒
𝑖𝛿𝐸    and    𝐵̃𝑜 = 𝐵𝑜𝑒

𝑖𝛿𝐵  

𝐵𝑜𝑒
𝑖𝛿𝐵 =

𝐾𝑒𝑖𝜙

𝜔
𝐸𝑜𝑒

𝑖𝛿𝐸  

Evidently, the electric and magnetic field are no longer in phase, and 

𝛿𝐵 − 𝛿𝐸 = 𝜙 

The magnetic field lags behind the electric field, and the real amplitudes of E and B are related 

by: 

𝐵𝑜

𝐸𝑜
=

𝐾

𝜔
= √𝜖𝜇 (√1 + (

𝜎

𝜖𝜔
)
2

) 

The real electric and magnetic fields are: 

𝑬(𝑧, 𝑡) = 𝐸𝑜𝑒
−𝜅𝑧 cos(𝑘𝑧 − 𝜔𝑡 + 𝛿𝐸) 𝒊̂ 

𝑩(𝑧, 𝑡) = 𝐵𝑜𝑒
−𝜅𝑧 cos(𝑘𝑧 − 𝜔𝑡 + 𝛿𝐸 + 𝜙) 𝒋̂ 

 

 

 

 

 



Example 5:  

(a) Suppose some free charge is embedded in a piece of glass (n=1.5). About how long 

would it take for the charge to flow to the surface. Consider the conductivity of the glass 

to be (𝜎 =
1

𝜌
= 10−12(Ω.𝑚)−1.  

(b) Silver is an excellent conductor with resistivity 𝜌 = 1.59 × 10−8 Ω.𝑚 but it is expensive. 

To design a microwave experiment that can operate a frequency of 1010 Hz, how thick 

should be the silver coatings. 

(c) Find the wavelength and propagation speed in copper for radio waves at 1 MHz. 

Compare the corresponding values in air or vacuum. 

Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Example 6: 

(a) Show that the skin depth in a poor conductor (𝜎 ≪ 𝜔𝜖) is (
2

𝜎
)√𝜖/𝜇 (independent of 

frequency). Find the skin depth (in meters) for pure water. 

(b) Show that the skin depth in a good conductor (𝜎 ≫ 𝜔𝜖) is 𝜆/2𝜋 (where 𝜆 is the 

wavelength in the conductor). Find the skin depth (in nanometers) for a typical metal 

(𝜎 ≈ 107 (Ω.𝑚)−1) in the visible range (𝜔 ≈ 1015 𝑠−1), assuming 𝜖 ≈ 𝜖𝑜 and 𝜇 ≈ 𝜇𝑜. 

Why are metal opaque? 

(c) Show that in a good conductor the magnetic field lags the electric field by 45° and fund 

the ratio of their amplitudes. Fir a numerical example, use the typical metal in part (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.4.2 Reflection at a conducting surface 

The boundary conditions between two surfaces that involve free charges are as follows: 

𝜖1𝐸1
⊥ − 𝜖2𝐸2

⊥ = 𝜎𝑓 

𝐵1
⊥ − 𝐵2

⊥ = 0 

𝐸1
∥ − 𝐸2

∥ = 0 

1

𝜇1
𝐵1

∥ −
1

𝜇2
𝐵2

∥ = 𝐾⃗⃗ 𝑓 × 𝑛̂ 

Where 𝜎𝑓 is the free surface charge density and 𝐾⃗⃗ 𝑓 is the free surface current and 𝑛̂ is the unit 

vector perpendicular to the surface, pointing from medium (2) into medium (1).  

For Ohmic conductors 𝐽 𝑓 = 𝜎𝐸⃗  (here 𝜎 is the conductivity), there can be no surface current 

because this will require infinite electric field at the boundary. 

 

Suppose now that xy-plane forms the boundary 

between a nonconducting linear medium (1) and a 

conductor (2). A monochromatic plane wave 

travelling in the z-direction and polarized in the x-

direction, approaches from the left as shown in 

the figure. 

𝐸̃𝐼(𝑧, 𝑡) = 𝐸̃𝑜𝐼
𝑒𝑖(𝑘1𝑧−𝜔𝑡)𝑖̂ 

𝐵̃𝐼(𝑧, 𝑡) =
1

𝑣1
𝐸̃𝑜𝐼

𝑒𝑖(𝑘1𝑧−𝜔𝑡)𝑗 ̂

The reflected waves will be: 

𝐸̃𝑅(𝑧, 𝑡) = 𝐸̃𝑜𝑅
𝑒𝑖(−𝑘1𝑧−𝜔𝑡)𝑖̂      ;      𝐵̃𝐼(𝑧, 𝑡) = −

1

𝑣1
𝐸̃𝑜𝑅

𝑒𝑖(−𝑘1𝑧−𝜔𝑡)𝑗 ̂

And the transmitted wave in the conductor will be: 

𝐸̃𝑇(𝑧, 𝑡) = 𝐸̃𝑜𝑇
𝑒𝑖(𝑘̃2𝑧−𝜔𝑡)𝑖 ̂     ;      𝐵̃𝑇(𝑧, 𝑡) =

1

𝑣2
𝐸̃𝑜𝑇

𝑒𝑖(𝑘̃2𝑧−𝜔𝑡)𝑗̂ =
𝑘̃2

𝜔
𝐸̃𝑜𝑇

𝑒𝑖(𝑘̃2𝑧−𝜔𝑡)𝑗 ̂

Now applying the boundary condition, since 𝐸1
⊥ = 𝐸2

⊥ = 0 , hence it means that 𝜎𝑓 = 0. 

Third boundary condition 𝐸1
∥ − 𝐸2

∥ = 0 will yield: 

𝐸̃𝑜𝐼
+ 𝐸̃𝑜𝑅

= 𝐸̃𝑜𝑇
 

And fourth BC with 𝐾⃗⃗ 𝑓 = 0 will yield: 



1

𝜇1𝑣1
(𝐸̃𝑜𝐼

− 𝐸̃𝑜𝑅
) −

𝑘̃2

𝜇2𝜔
𝐸̃𝑜𝑇

= 0 

𝐸̃𝑜𝐼
− 𝐸̃𝑜𝑅

=
𝜇1𝑣1𝑘̃2

𝜇2𝜔
𝐸̃𝑜𝑇

= 𝛽𝐸̃𝑜𝑇
 

Where  

𝛽 =
𝜇1𝑣1

𝜇2𝜔
𝑘̃2 

𝐸̃𝑜𝑅
= (

1 − 𝛽

1 + 𝛽
) 𝐸̃𝑜𝐼

 

𝐸̃𝑜𝑇
= (

2

1 + 𝛽
) 𝐸̃𝑜𝐼

 

These results appear similar to the one that apply at the boundary between nonconductors but 

here 𝛽 is a complex number. 

For a perfect conductor (𝜎 = ∞) and 𝑘̃2 = ∞ hence 𝛽 = ∞ and hence 

𝐸̃𝑜𝑅
= −𝐸̃𝑜𝐼

    ;    𝐸̃𝑜𝑇
= 0 

Remember:

 

 

In the case of a perfect conductor the incoming EM wave is completely reflected with 180° 

phase shift. This is why a mirror is made by coating thin layer of silver onto a glass and the light 

is reflected perfectly from the silver coating. Since the skin depth in silver for optical frequency 

is ~100Å, so we don’t need a thick layer of silver anyway. 

 

 

 

 



Example 7: 

Calcualte the reflection coefficient for light at an air-to-silver interface (𝜇1 = 𝜇2 = 𝜇𝑜 and 𝜖1 =

𝜖𝑜 and 𝜎 = 6 × 107 (Ω.𝑚)−1) at optical frequencies (𝜔 = 4 × 1015/𝑠) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.4.3 The frequency dependence of Permittivity 

So far, we have considered permittivity, permeability and conductivity as constants but in 

reality these parameters to some extent depend on the frequency of the waves we are 

considering. 

We know from experience that a prism or raindrop bends blue light more sharply than the red 

light and spreads white light into a rainbow of 

colors. This phenomenon is called dispersion and 

when the speed of a wave depends on its 

frequency, the medium is called dispersive. 

Because of waves of different frequencies travel at 

different speeds in a dispersive medium, a 

waveform that incorporates a range of frequencies 

will change shape as it propagates. 

A sharply peaked wave typically flattens out and 

whereas each sinusoidal components travels at the ordinary wave velocity (phase velocity). 

𝑣 =
𝜔

𝑘
 

The packet as a whole (the “envelope”) travels at the group velocity 𝑣𝑔. 𝑣𝑔 =
𝑑𝜔

𝑑𝑘
 

 

The energy carried out by a wave packet in a dispersive medium ordinarily travels at the group 

velocity not the phase velocity. 

Now lets’ consider the frequency dependence of 𝜖 in non-conductors. Considering the electrons 

in non-conductors are bound to specific molecules, we can consider this force to be spring 

force:  

𝐹𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = −𝑘𝑠𝑝𝑟𝑖𝑛𝑔𝑥 = −𝑚𝜔𝑜
2𝑥 

Where x is the displacement from the equilibrium 

and m is the mass of the electron and 𝜔𝑜 is the 

natural oscillation frequency. 



Any binding force can be approximated this way for sufficiently small displacements from 

equilibrium. By expanding the potential energy in a Taylor series about the equilibrium point: 

𝑈(𝑥) = 𝑈(0) + 𝑥𝑈′(0) +
1

2
𝑥2𝑈′′(0) + ⋯ 

The first term is constant and we can adjust the zero of the potential energy so that 𝑈(0) = 0. 

The second term is zero because 
𝑑𝑈

𝑑𝑥
= −𝐹 which is zero at equilibrium position for spring-mass 

like forces. The third term however is the potential energy of a spring with spring constant: 

𝑘𝑠𝑝𝑟𝑖𝑛𝑔 =
𝑑2𝑈

𝑑𝑥2
|
𝑥=0

 

For small displacements, the higher terms in the series can be ignored. 

There will be some damping force on the bound electron: 

𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔 = −𝑚𝛾
𝑑𝑥

𝑑𝑡
   [damping force is opposite to velocity] 

An oscillating charge radiates and the energy is lost due to radiation emission. 

In the presence of EM wave of frequency 𝜔, polarized in the x-direction, the electron is subject 

to driving force, given as: 

𝐹𝑑𝑟𝑖𝑣𝑖𝑛𝑔 = 𝑞𝐸 = 𝑞𝐸𝑜 cos(𝜔𝑡) 

Where q is the charge of the electron and 𝐸𝑜 is the amplitude of the wave at a point z where 

the electron is located. 

Now using Newton’s second law: 

𝑚
𝑑2𝑥

𝑑𝑡2
= 𝐹𝑡𝑜𝑡 = 𝐹𝑏𝑖𝑛𝑑𝑖𝑛𝑔 + 𝐹𝑑𝑎𝑚𝑝𝑖𝑛𝑔 + 𝐹𝑑𝑟𝑖𝑣𝑖𝑛𝑔 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑚𝛾

𝑑𝑥

𝑑𝑡
+ 𝑚𝜔𝑜

2𝑥 = 𝑞𝐸𝑜 cos(𝜔𝑡) 

We can write a similar equation in complex form and real part of it will be exactly the above 

equation. 

𝑑2𝑥̃

𝑑𝑡2
+ 𝛾

𝑑𝑥̃

𝑑𝑡
+ 𝜔𝑜

2𝑥̃ =
𝑞

𝑚
𝐸𝑜𝑒

−𝑖𝜔𝑡 

In the steady-state the system oscillates at the driving frequency: 

𝑥̃(𝑡) = 𝑥̃𝑜𝑒
−𝑖𝜔𝑡 

Using this in the above equation we get: 



𝑥̃𝑜 =
𝑞/𝑚

𝜔𝑜
2 − 𝜔2 − 𝑖𝛾𝜔

𝐸𝑜 

The dipole moment is the real part of: 

𝑝(𝑡) = 𝑞𝑥̃(𝑡) =
𝑞2/𝑚

𝜔𝑜
2 − 𝜔2 − 𝑖𝛾𝜔

𝐸𝑜𝑒
−𝑖𝜔𝑡 

The imaginary term in the denominator means that p is out of phase with E (lagging behind by 

an angle:  

tan−1 (
𝛾𝜔

𝜔𝑜
2 − 𝜔2

) 

which is small for 𝜔 ≪ 𝜔𝑜 and rises to 𝜋 when 𝜔 ≫ 𝜔𝑜. 

In general, differently situated electrons within a given molecule experience different natural 

frequencies and damping coefficients. 

Consider there are 𝑓𝑗  electrons with frequency 𝜔𝑗 and damping 𝛾𝑗 in each molecule. If there are 

N molecules per unit volume, the polarization 𝑃⃗  is given by the real part of: 

𝑃̃ =
𝑁𝑞2

𝑚
(∑

𝑓𝑗

𝜔𝑗
2 − 𝜔2 − 𝑖𝛾𝑗𝜔

𝑗

) 𝐸̃ 

And  

𝑃̃ = 𝜖𝑜𝜒̃𝑒𝐸̃ 

Where 𝜒̃𝑒 is the complex electrical susceptibility. 

The proportionality between 𝐷̃ and 𝐸̃ is the complex permittivity, like 𝐷̃ = 𝜖̃𝐸̃ 

𝜖̃ = 𝜖𝑜(1 + 𝜒̃𝑒) 

The complex dielectric constant is: 

𝜖𝑟̃ =
𝜖̃

𝜖𝑜
= 1 +

𝑁𝑞2

𝑚𝜖𝑜
∑

𝑓𝑗

𝜔𝑗
2 − 𝜔2 − 𝑖𝛾𝑗𝜔

𝑗

 

In a dispersive medium the wave equation for a given frequency is: 

∇2𝐸̃ = 𝜖̃𝜇𝑜

𝜕2𝐸̃

𝜕𝑡2
 

And the solution of this differential equation is: 

𝐸̃(𝑧, 𝑡) = 𝐸̃𝑜𝑒
𝑖(𝑘̃𝑧−𝜔𝑡) 



Where complex wavenumber 𝑘̃: 

𝑘̃ = √𝜖̃𝜇𝑜𝜔 

𝑘̃ = 𝑘 + 𝑖𝜅 

𝐸̃(𝑧, 𝑡) = 𝐸̃𝑜𝑒
−𝜅𝑧𝑒𝑖(𝑘𝑧−𝜔𝑡) 

The quantity  

𝛼 = 2𝜅 

Is called the absorption coefficient. The wave velocity is 𝜔/𝑘  and the index of refraction is: 

𝑛 =
𝑐𝑘

𝜔
 

Here 𝑘 and 𝜅 are different than what we used before in the electromagnetic waves in 

conductors, because here they have nothing to do with the conductivity, rather they are 

determined by the parameters of damped harmonic oscillator. 

𝑘̃ = √𝜖̃𝜇𝑜𝜔 =
𝜔

𝑐
√𝜖𝑟̃ =

𝜔

𝑐
[1 +

𝑁𝑞2

𝑚𝜖𝑜
∑

𝑓𝑗

𝜔𝑗
2 − 𝜔2 − 𝑖𝛾𝑗𝜔

𝑗

]

1/2

 

𝑘̃ ≅
𝜔

𝑐
[1 +

𝑁𝑞2

2𝑚𝜖𝑜
∑

𝑓𝑗

𝜔𝑗
2−𝜔2−𝑖𝛾𝑗𝜔

𝑗 ]     using Binomial expansion (ignoring higher order terms) 

𝑛 =
𝑐𝑘

𝜔
≅ 1 +

𝑁𝑞2

2𝑚𝜖𝑜
∑

𝑓𝑗(𝜔𝑗
2 − 𝜔2)

(𝜔𝑗
2 − 𝜔2)

2
+ 𝛾𝑗

2𝜔2
𝑗

 

And  

𝛼 = 2𝜅 ≅
𝑁𝑞2𝜔2

𝑚𝜖𝑜𝑐
∑

𝑓𝑗𝛾𝑗

(𝜔𝑗
2 − 𝜔2)

2
+ 𝛾𝑗

2𝜔2
𝑗

 

 Mostly, the index of refraction n rises gradually 

with the increasing frequency. However, in the 

immediate vicinity of the resonance frequency the 

index of refraction drops sharply. Because this 

behavior is atypical, so it is called anomalous 

dispersion. 

As can be seen from the figure below that region 

of anomalous dispersion (𝜔1 < 𝜔 < 𝜔2) coincides 

with the region of high absorption. 



The material in fact is opaque in this frequency range. The reason is that electrons are being 

driven at their resonant frequencies and they have large amplitude of oscillations and hence 

large energy dissipation by damping mechanism. 

In the figure, we can also notice that 𝑛 < 1 above the resonant frequency (𝜔𝑗), which means 

that wave speed exceed c. But the energy does not travel at wave speed but the group velocity 

and also this is an approximation, here the graph does not include other terms in the sum, 

which add a relatively constant background and keep 𝑛 > 1 on both sides of the resonance. 

If the EM wave frequency is away from the resonance, then damping can be ignored and hence: 

𝑛 = 1 +
𝑁𝑞2

2𝑚𝜖𝑜
∑

𝑓𝑗

𝜔𝑗
2 − 𝜔2

𝑗

 

For transparent materials, the nearest significant resonances typically lie in the Ultraviolet, so 

𝜔 < 𝜔𝑗 

1

𝜔𝑗
2 − 𝜔2

=
1

𝜔𝑗
2 (1 −

𝜔2

𝜔𝑗
2)

−1

≅
1

𝜔𝑗
2 (1 +

𝜔2

𝜔𝑗
2)  

𝑛 = 1 + (
𝑁𝑞2

2𝑚𝜖𝑜
∑

𝑓𝑗

𝜔𝑗
2

𝑗

) + 𝜔2 (
𝑁𝑞2

2𝑚𝜖𝑜
∑

𝑓𝑗

𝜔𝑗
4

𝑗

) 

And in terms of wavelength in vacuum (𝜆 = 2𝜋𝑐/𝜔): 

𝑛 = 1 + 𝐴 (1 +
𝐵

𝜆2
) 

This is known as Cauchy’s formula, the constant A is called the coefficient of refraction and B is 

called the coefficient of dispersion. 

 

 

 

 

 

 

 

 

 



Example 8: 

A primitive model of an atom consists of a point nucleus (+q) surrounded by a uniformly 

charged spherical cloud (-q) of radius a.  

a) what is the natural frequency of an atom with such a primitive model. 

b) Where in the electromagnetic spectrum does this lie assuming the radius of the atom is 

0.5 Å?  

c) Find the coefficient of refraction and dispersion and compare them with those for 

hydrogen at 0 °C and atmospheric pressure.   

Solution: 

(a) The atomic model is like a dipole and electric field due to a dipole is: 

𝐸 =
1

4𝜋𝜖𝑜

𝑞𝑑

𝑎3
 

Force on an electron in this electric field would be: 

𝐹 = −𝑞𝐸 = −(
1

4𝜋𝜖𝑜

𝑞2

𝑎3
) 𝑥 = −𝑘𝑠𝑝𝑟𝑖𝑛𝑔𝑥 = −𝑚𝜔𝑜

2𝑥 

𝜔𝑜 = √
𝑞2

4𝜋𝜖𝑜𝑚𝑎3
 

(b)  

𝜈 =
𝜔𝑜

2𝜋
=

1

2𝜋
√

(1.6 × 10−19)2

4𝜋(8.85 × 10−12)(9.11 × 10−31)(0.5 × 10−10)3
= 7.16 × 1015𝐻𝑧 

(This is ultraviolet frequency) 

(c) The coefficient of refraction is given by: 

𝐴 = (
𝑁𝑞2

2𝑚𝜖𝑜
∑

𝑓𝑗

𝜔𝑗
2

𝑗

) 

𝑁 = # 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 =
𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜′𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

22.4 𝑙𝑖𝑡𝑟𝑒𝑠
=

6.02 × 1023

22.4 × 10−3

= 2.69 × 1025
#

𝑚3
 

𝐴 =
𝑁𝑞2

2𝑚𝜖𝑜

𝑓

𝜔𝑜
2
=

2.69 × 1025 × (1.6 × 10−19)2 ∗ 1

2 ∗ 9.11 × 10−31 ∗ 8.85 × 10−12 ∗ 4𝜋2(7.16 × 1015)2
= 4.2 × 10−5 



This is about 1/3 the actual value. 

𝐵 = (
2𝜋𝑐

𝜔𝑜
)
2

= (
2𝜋 ∗ 3 ∗ 108

2𝜋 ∗ 7.16 × 1015
)

2

= 1.8 ∗ 10−15𝑚2 

 

This is about 1/4 the actual value. So even this crude model gets very close to the actual value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.5 Guided Waves 

9.5.1 Wave Guides 

We can confine the electromagnetic waves in the interior of a hollow pipe which can be called 

waveguide. We will assume that waveguide is a perfect conductor so that 𝐸⃗ = 0 and 𝐵⃗ = 0 

inside the material itself and hence the boundary conditions on the inner walls are: 

(i) 𝐸∥ = 0   

(ii) 𝐵⊥ = 0 

We will consider the electromagnetic waves that 

propagate down the tube have the generic form of 𝐸⃗  

and 𝐵⃗ : 

𝐸̃(𝑥, 𝑦, 𝑧, 𝑡) = 𝐸̃𝑜(𝑥, 𝑦)𝑒𝑖(𝑘𝑧−𝜔𝑡) …(2) 

𝐵̃(𝑥, 𝑦, 𝑧, 𝑡) = 𝐵̃𝑜(𝑥, 𝑦)𝑒𝑖(𝑘𝑧−𝜔𝑡) …(3) 

Here, 𝑘 is real because the wave propagates in the 

hollow part of the tube. The electric and magnetic fields must satisfy Maxwell’s equations in the 

interior of the wave: 

(i) ∇⃗⃗ . E⃗⃗ = 0        (iii)  ∇⃗⃗ × E⃗⃗ = −
𝜕B⃗⃗ 

𝜕𝑡
                                          

(ii) ∇⃗⃗ . B⃗⃗ = 0        (iv)  ∇⃗⃗ × B⃗⃗ =
1

𝑐2

𝜕E⃗⃗ 

𝜕𝑡
                                              

Inside the material of the conducting wave guide, hence 

(i) ∇⃗⃗ × E⃗⃗ = −
𝜕B⃗⃗ 

𝜕𝑡
= 0    ∮ 𝐸⃗ . 𝑑𝑙 = −

𝑑

𝑑𝑡
∫ 𝐵⃗ . 𝑑𝑎 = 0  𝐸∥ = 0  (since 𝐸𝑖𝑛𝑠𝑖𝑑𝑒

∥ = 0) 

(ii) ∇⃗⃗ . B⃗⃗ = 0    ∮ 𝐵⃗ . 𝑑𝑎 = 0  𝐵⊥ = 0    (since 𝐵𝑖𝑛𝑠𝑖𝑑𝑒
⊥ = 0) 

We need to find the electric and magnetic fields which are not in general transverse, to meet 

the boundary conditions, so we will include the longitudinal components: 

𝐸̃𝑜 = 𝐸𝑥𝑖̂ + 𝐸𝑦𝑗̂ + 𝐸𝑧𝑧̂  and   𝐵̃𝑜 = 𝐵𝑥𝑖̂ + 𝐵𝑦𝑗̂ + 𝐵𝑧𝑧̂  -------(5) 

Where each of the component is a function of x and y. 

Using these in Maxwell’s equations (iii) and (iv), we get: 

(i) 
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= 𝑖𝜔𝐵𝑧 

(ii) 
𝜕𝐸𝑧

𝜕𝑦
− 𝑖𝑘𝐸𝑦 = 𝑖𝜔𝐵𝑥 

(iii) 𝑖𝑘𝐸𝑥 −
𝜕𝐸𝑧

𝜕𝑥
= 𝑖𝜔𝐵𝑦 

(iv) 
𝜕𝐵𝑦

𝜕𝑥
−

𝜕𝐵𝑥

𝜕𝑦
= −

𝑖𝜔

𝑐2
𝐸𝑧 

(v) 
𝜕𝐵𝑧

𝜕𝑦
− 𝑖𝑘𝐵𝑦 = −

𝑖𝜔

𝑐2
𝐸𝑥 

(vi) 𝑖𝑘𝐵𝑥 −
𝜕𝐵𝑧

𝜕𝑥
= −

𝑖𝜔

𝑐2
𝐸𝑦 

(1) 

(4) 

(6) 



 

Equations (ii), (iii), (v) and (vi) can be solved for 𝐸𝑥, 𝐸𝑦, 𝐵𝑥  and 𝐵𝑦: 

𝐸𝑥 =
𝑖

(
𝜔
𝑐 )

2

− 𝑘2

(𝑘
𝜕𝐸𝑧

𝜕𝑥
+ 𝜔

𝜕𝐵𝑧

𝜕𝑦
)

𝐸𝑦 =
𝑖

(
𝜔
𝑐 )

2

− 𝑘2

(𝑘
𝜕𝐸𝑧

𝜕𝑦
− 𝜔

𝜕𝐵𝑧

𝜕𝑥
)

𝐵𝑥 =
𝑖

(
𝜔
𝑐
)
2

− 𝑘2

(𝑘
𝜕𝐵𝑧

𝜕𝑥
−

𝜔

𝑐2

𝜕𝐸𝑧

𝜕𝑦
)

𝐵𝑦 =
𝑖

(
𝜔
𝑐 )

2

− 𝑘2

(𝑘
𝜕𝐵𝑧

𝜕𝑦
+

𝜔

𝑐2

𝜕𝐸𝑧

𝜕𝑥
)

Using equations (7) into other Maxwell’s equations, yields, uncoupled longitudinal components 

of electric and magnetic field: 

(i) [
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 + (
𝜔

𝑐
)
2

− 𝑘2] 𝐸𝑧 = 0 

(ii) [
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 + (
𝜔

𝑐
)
2

− 𝑘2] 𝐵𝑧 = 0 

If 𝐸𝑧 = 0, we call this transverse electric (TE) waves, and if 𝐵𝑧 = 0 they are called transverse 

magnetic (TM) waves. And if both 𝐸𝑧 = 𝐵𝑧 = 0, then they are called transverse electric and 

magnetic (TEM) waves. 

TEM waves cannot occur in a hollow waveguide. Because if 𝐸𝑧 = 𝐵𝑧 = 0 then from equations 

(6): 

𝜕𝐸𝑥

𝜕𝑥
+

𝜕𝐸𝑦

𝜕𝑦
= 0 →  ∇⃗⃗ . E⃗⃗ = 0 

𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= 0 → ∇⃗⃗ × E⃗⃗ = 0  

If the divergence and curl of electric field is zero then E⃗⃗ = −∇⃗⃗ 𝑉𝑠𝑐𝑎𝑙𝑎𝑟 and ∇⃗⃗ . E⃗⃗ = ∇2𝑉𝑠𝑐𝑎𝑙𝑎𝑟 = 0 

From the boundary condition 𝐸∥ = 0 on the inner surface of the wave guide, means that the 

inner surface of the waveguide is equipotential, i.e.  𝑉𝑠𝑐𝑎𝑙𝑎𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Since Laplace’s equation does not allow any local minima or maxima, hence it means that 

potential is same everywhere in the waveguide or E⃗⃗ = 0 in the waveguide i.e. no EM wave in 

the waveguide. 

(7) 

(8) 



9.5.2 TE Waves in a Rectangular Waveguide: 

Suppose a uniform perfectly conducting hollow 

rectangular waveguide of inner height a and 

width b.  

TE waves are propagating in the waveguide: 

𝐸𝑧 = 0 and 𝐵𝑧 ≠ 0 

To solve for Bz, let’s use the separation of 

variables: 

𝐵𝑧(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) 

So that equation (8) becomes: 

[
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ (

𝜔

𝑐
)
2

− 𝑘2] 𝑋(𝑥)𝑌(𝑦) = 0 

𝑌
𝑑2𝑋

𝑑𝑥2
+ 𝑋

𝑑2𝑌

𝑑𝑦2
+ [(

𝜔

𝑐
)
2

− 𝑘2] 𝑋𝑌 = 0 

1

𝑋

𝑑2𝑋

𝑑𝑥2
+

1

𝑌

𝑑2𝑌

𝑑𝑦2
+ [(

𝜔

𝑐
)
2

− 𝑘2] = 0 

1

𝑋

𝑑2𝑋

𝑑𝑥2
= −𝑘𝑥

2 → 𝑋(𝑥) = 𝐴 sin(𝑘𝑥𝑥) + 𝐵 cos(𝑘𝑥𝑥)… (9) 

1

𝑌

𝑑2𝑌

𝑑𝑦2
= −𝑘𝑦

2 → 𝑌(𝑦) = 𝐶 sin(𝑘𝑦𝑦) + 𝐷 cos(𝑘𝑦𝑦)… (10) 

−𝑘𝑥
2 − 𝑘𝑦

2 + (
𝜔

𝑐
)
2

− 𝑘2 = 0…(11) 

The boundary condition (𝐵⊥ = 0)  requires that 𝐵𝑥 = 0 at x=0 and x=a and also from equation 

(7)(iii) in the previous section 
𝑑𝑋

𝑑𝑥
= 0 at x=0 and x=a.  

Equation (9) at x=0 would give 𝐵 = 0 : 

𝑋(𝑥) = 𝐴 sin(𝑘𝑥𝑥) 

And at x=a the above equation gives: 

𝐴 sin(𝑘𝑥𝑎) = 0 → 𝑘𝑥 =
𝑚𝜋

𝑎
 (𝑚 = 0,1,2, … ) 

Similarly for Y,  



𝑘𝑦 =
𝑛𝜋

𝑏
 (𝑛 = 0,1,2, … ) 

𝐵𝑧(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) = 𝐵𝑜 cos (𝑚𝜋
𝑥

𝑎
) cos (𝑛𝜋

𝑦

𝑏
) 

This solution is called the TEmn mode (the first index is associated with the larger dimension so 

𝑎 ≥ 𝑏) and at least one of the indices must be non-zero. 

From equation (11): 

𝑘 = √(
𝜔

𝑐
)
2

− 𝜋2 [(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

] 

If  𝜔 < 𝑐𝜋√(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

≡ 𝜔𝑚𝑛 

Then the wavenumber is imaginary and instead of travelling wave we get exponentially 

attenuated field. For this reason 𝜔𝑚𝑛 is called cutoff frequency for the mode in question. The 

lowest cutoff frequency for a given waveguide occurs for the mode 𝑇𝐸10: 

𝜔10 = 𝑐𝜋√(
1

𝑎
)
2

+ (
0

𝑏
)
2

=
𝑐𝜋

𝑎
 

A wave with frequency less than this will not propagate at all. 

𝑘 =
1

𝑐
√𝜔2 − 𝜔𝑚𝑛

2  

𝑣 =
𝜔

𝑘
=

𝑐

√1 − (
𝜔𝑚𝑛

𝜔 )
2
 

Which is greater than c, however the energy carried by the wave travels at the group velocity: 

𝑣𝑔 =
𝑑𝜔

𝑑𝑘
= 𝑐√1 − (

𝜔𝑚𝑛

𝜔
)
2

< 𝑐 

 

 

 

 

 



Example 9:  

(a) Show that the mode TE00 cannot occur in a rectangular waveguide. 

(b) Consider a rectangular waveguide with dimensions 2.28cm x 1.01 cm. What TE modes 

will propagate in this waveguide, if the driving frequency is 1.70x1010 Hz? 

(c) If you want to excite only one TE mode, what range of frequencies (and corresponding 

wavelengths in open space) could you use? 

Solution: 

(a) TE mode implies that 𝐸𝑧 = 0 , and for 𝑚 = 𝑛 = 0 

𝑘 = √(
𝜔

𝑐
)
2

− 𝜋2 [(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

] =
𝜔

𝑐
 

(i) 
𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= 𝑖𝜔𝐵𝑧 

(ii) 
𝜕𝐸𝑧

𝜕𝑦
− 𝑖𝑘𝐸𝑦 = 𝑖𝜔𝐵𝑥 

(iii) 𝑖𝑘𝐸𝑥 −
𝜕𝐸𝑧

𝜕𝑥
= 𝑖𝜔𝐵𝑦 

(iv) 
𝜕𝐵𝑦

𝜕𝑥
−

𝜕𝐵𝑥

𝜕𝑦
= −

𝑖𝜔

𝑐2 𝐸𝑧 

(v) 
𝜕𝐵𝑧

𝜕𝑦
− 𝑖𝑘𝐵𝑦 = −

𝑖𝜔

𝑐2 𝐸𝑥 

(vi) 𝑖𝑘𝐵𝑥 −
𝜕𝐵𝑧

𝜕𝑥
= −

𝑖𝜔

𝑐2 𝐸𝑦 

And equation 6(ii) with 𝐸𝑧 = 0 becomes: 

𝐸𝑦 = −
𝜔

𝑘
𝐵𝑥 = −𝑐𝐵𝑥 

And equation 6(iii) becomes: 

𝐸𝑥 = (𝜔 𝑘⁄ )𝐵𝑦 = 𝑐𝐵𝑦 

And equation 6(v) becomes: 

𝜕𝐵𝑧

𝜕𝑦
− 𝑖𝑘𝐵𝑦 = −

𝑖𝜔

𝑐2
𝐸𝑥 = −

𝑖𝜔

𝑐2
𝑐𝐵𝑦 = −

𝑖𝜔

𝑐
𝐵𝑦 = −𝑖𝑘𝐵𝑦 

𝜕𝐵𝑧

𝜕𝑦
= 0 

And equation 6(vi) becomes: 

𝑖𝑘𝐵𝑥 −
𝜕𝐵𝑧

𝜕𝑥
= −

𝑖𝜔

𝑐2
𝐸𝑦 = −

𝑖𝜔

𝑐2
(−𝑐𝐵𝑥) =

𝑖𝜔

𝑐
𝐵𝑥 = 𝑖𝑘𝐵𝑥 

𝜕𝐵𝑧

𝜕𝑥
= 0 

Since 𝐵𝑧 is a function of x and y only, so it means 𝐵𝑧 is constant. 

(6) 



According to Faraday’s law: 

∮𝐸⃗ . 𝑑𝑙 = −∫
𝜕𝐵⃗ 

𝜕𝑡
. 𝑑𝑎  

As  𝐵̃(𝑥, 𝑦, 𝑧, 𝑡) = 𝐵̃𝑜(𝑥, 𝑦)𝑒𝑖(𝑘𝑧−𝜔𝑡) , so: 

𝜕𝐵⃗ 

𝜕𝑡
= −𝑖𝜔𝐵⃗  

∮𝐸⃗ . 𝑑𝑙 = 𝑖𝜔∫ 𝐵⃗ . 𝑑𝑎  

Applying to the cross-section of the waveguide: 

∮𝐸⃗ . 𝑑𝑙 = 𝑖𝜔𝑒𝑖(𝑘𝑧−𝜔𝑡) ∫𝐵𝑧𝑑𝑎 = 𝑖𝜔𝐵𝑧𝑒
𝑖(𝑘𝑧−𝜔𝑡)(𝑎𝑏) 

Since the boundary goes inside the metal where 𝐸⃗ = 0 so this makes 𝐵𝑧 = 0 , so this would be 

TEM mode which we know cannot exist inside the waveguide. 

(b)  

𝜔𝑚𝑛 = 𝑐𝜋√(
𝑚

𝑎
)
2

+ (
𝑛

𝑏
)
2

 

𝜔10 = 𝑐𝜋√(
1

𝑎
)
2

+ (
0

𝑏
)
2

=
𝑐𝜋

𝑎
=

3 ∗ 108 ∗ 𝜋

2.28 ∗ 10−2
= 4.13 ∗ 1010 

𝜈10 =
𝜔10

2∗𝜋
=

4.13∗1010

2∗𝜋
= 0.66 ∗ 1010𝐻𝑧 (allowed) 

𝜈20 =
𝜔20

2∗𝜋
=

2𝑐𝜋/𝑎

2∗𝜋
=

𝑐

𝑎
=

3∗108

2.28∗10−2 = 1.316 ∗ 1010𝐻𝑧   (allowed) 

𝜈30 =
𝜔30

2∗𝜋
=

3𝑐𝜋/𝑎

2∗𝜋
=

3𝑐

2𝑎
=

3∗3∗108

2∗2.28∗10−2
= 1.97 ∗ 1010𝐻𝑧   (Not allowed) 

𝜈01 =
𝜔01

2∗𝜋
=

𝑐𝜋/𝑏

2∗𝜋
=

𝑐

2𝑏
=

3∗108

2∗1.01∗10−2 = 1.49 ∗ 1010𝐻𝑧   (allowed) 

𝜈02 =
𝜔02

2∗𝜋
=

2𝑐𝜋/𝑏

2∗𝜋
=

𝑐

𝑏
=

3∗108

1.01∗10−2
= 2.97 ∗ 1010𝐻𝑧   (Not allowed) 

𝜈11 =
𝜔01

2∗𝜋
=

𝑐𝜋√
1

𝑎2+
1

𝑏2

2∗𝜋
=

𝑐√𝑎2+𝑏2

2𝑎𝑏
=

3∗108√(2.28)2+(1.01)2∗10−2

2∗2.28∗1.01∗10−4 = 1.62 ∗ 1010𝐻𝑧   (allowed) 

(c) To excite only one mode, the frequency should be between 0.66*1010 Hz – 1.32*1010 Hz. 

𝜆 =
𝑐

𝜈
→ 2.28𝑐𝑚 − 4.55 𝑐𝑚 


