
Chapter 10 – Potentials and Fields 

10.1 The Potential Formulation 

10.1.1 Scalar and Vector Potentials 

In this chapter we will learn how the charge and current sources (𝜌 and 𝐽) generate electric and 

magnetic fields. In other words, we see general solution to Maxwell’s equations: 

(i) ∇⃗⃗⃗. E⃗⃗⃗ =
1

𝜖𝑜
𝜌       ;  (iii)    ∇⃗⃗⃗ × E⃗⃗⃗ = −

𝜕𝐵⃗⃗

𝜕𝑡
 

(ii) ∇⃗⃗⃗. B⃗⃗⃗ = 0       ;     (iv)    ∇⃗⃗⃗ × B⃗⃗⃗ = 𝜇𝑜𝐽 + 𝜇𝑜𝜖𝑜
𝜕𝐸⃗⃗

𝜕𝑡
 

 

Given 𝜌(𝑟, 𝑡) and 𝐽(𝑟, 𝑡), the electric and magnetic fields can be determined using Coulomb’s 

law and Biot-savart law in the static case. But we seek a general solution that will be good for 

time-dependent configuration as well. 

This can be achieved by representing fields in terms of potentials. 

In electrostatics ∇⃗⃗⃗ × E⃗⃗⃗ = 0 and hence we can write E⃗⃗⃗ as the gradient of a scalar potential: 

E⃗⃗⃗ = ∇⃗⃗⃗𝑉 

But in electrodynamics this is not possible for E⃗⃗⃗ but the magnetic field B⃗⃗⃗ remains 

divergenceless, so as in magnetostatics we can still write: 

B⃗⃗⃗ = ∇⃗⃗⃗ × A⃗⃗⃗     … (2) 

We can write Maxwell’s equation (iii) as: 

∇⃗⃗⃗ × E⃗⃗⃗ = −
𝜕

𝜕𝑡
(∇⃗⃗⃗ × A⃗⃗⃗) = −∇⃗⃗⃗ ×

𝜕A⃗⃗⃗

𝜕𝑡
 

∇⃗⃗⃗ × (E⃗⃗⃗ +
𝜕A⃗⃗⃗

𝜕𝑡
) = 0 

The curl of (E⃗⃗⃗ +
𝜕A⃗⃗⃗

𝜕𝑡
) vanishes, so we can write this quantity as a gradient of a scalar: 

E⃗⃗⃗ +
𝜕A⃗⃗⃗

𝜕𝑡
= −∇⃗⃗⃗𝑉 

E⃗⃗⃗ = −∇⃗⃗⃗𝑉 −
𝜕A⃗⃗⃗

𝜕𝑡
        … (3) 

When A⃗⃗⃗ will be constant then E⃗⃗⃗ = −∇⃗⃗⃗𝑉 like before. 

(1) 



Now using equation (3) into Maxwell’s equation (i), we get: 

∇⃗⃗⃗. (−∇⃗⃗⃗𝑉 −
𝜕A⃗⃗⃗

𝜕𝑡
) =

1

𝜖𝑜
𝜌 

∇2𝑉 +
𝜕

𝜕𝑡
(∇⃗⃗⃗. A⃗⃗⃗) = −

1

𝜖𝑜
𝜌   … (4) 

In the static case, this equation will reduce to Poisson equation. 

Now using equations (2) and (3) in Maxwell’s equation (iv), we get 

∇⃗⃗⃗ × (∇⃗⃗⃗ × A⃗⃗⃗) = 𝜇𝑜𝐽 + 𝜇𝑜𝜖𝑜

𝜕

𝜕𝑡
(−∇⃗⃗⃗𝑉 −

𝜕A⃗⃗⃗

𝜕𝑡
) 

∇⃗⃗⃗ × (∇⃗⃗⃗ × A⃗⃗⃗) = ∇⃗⃗⃗(∇⃗⃗⃗. A⃗⃗⃗) − ∇2A⃗⃗⃗ 

∇⃗⃗⃗(∇⃗⃗⃗. A⃗⃗⃗) − ∇2A⃗⃗⃗ = 𝜇𝑜𝐽 − 𝜇𝑜𝜖𝑜 ∇⃗⃗⃗
𝜕𝑉

𝜕𝑡
− 𝜇𝑜𝜖𝑜

𝜕2A⃗⃗⃗

𝜕𝑡2
 

(∇2A⃗⃗⃗ − 𝜇𝑜𝜖𝑜

𝜕2A⃗⃗⃗

𝜕𝑡2
) − ∇⃗⃗⃗ (∇⃗⃗⃗. A⃗⃗⃗ + 𝜇𝑜𝜖𝑜

𝜕𝑉

𝜕𝑡
) = −𝜇𝑜𝐽   … (5) 

Equations (4) and (5) contain all the information in Maxwell’s equation. 

 

Example 1: 

Find the charge and current distribution that would give rise to the potentials: 

𝑉 = 0  ,   𝐴 = {
𝜇𝑜𝑘

4𝑐
(𝑐𝑡 − |𝑥|)2𝑧̂   𝑓𝑜𝑟 |𝑥| < 𝑐𝑡

0     𝑓𝑜𝑟 |𝑥| > 𝑐𝑡
       

Where 𝑘 is a constant and 𝑐 = 1/√𝜖𝑜𝜇𝑜 

Solution: 

First, let’s determine the electric and magnetic fields using equations (2) and (3): 

For |𝑥| < 𝑐𝑡: 

B⃗⃗⃗ = ∇⃗⃗⃗ × A⃗⃗⃗ = −
𝜇𝑜𝑘

4𝑐

𝜕

𝜕𝑥
(𝑐𝑡 − |𝑥|)2𝑦̂ = ±

𝜇𝑜𝑘

2𝑐
(𝑐𝑡 − |𝑥|)𝑦̂ 

Plus for 𝑥 > 0 and minus for 𝑥 < 0. 

E⃗⃗⃗ = −
𝜕A⃗⃗⃗

𝜕𝑡
= −

𝜇𝑜𝑘

2𝑐
(𝑐𝑡 − |𝑥|)𝑧̂ 



 

 

 

For |𝑥| > 𝑐𝑡: 

E⃗⃗⃗ = B⃗⃗⃗ = 0 

∇⃗⃗⃗. E⃗⃗⃗ = 0   ;   ∇⃗⃗⃗. B⃗⃗⃗ = 0  ; 

∇⃗⃗⃗ × E⃗⃗⃗ = ∓
𝜇𝑜𝑘

2
𝑦̂   ;    ∇⃗⃗⃗ × B⃗⃗⃗ = −

𝜇𝑜𝑘

2𝑐
𝑧̂ 

𝜕E⃗⃗⃗

𝜕𝑡
= −

𝜇𝑜𝑘𝑐

2
𝑧̂ 

𝜕B⃗⃗⃗

𝜕𝑡
= ±

𝜇𝑜𝑘

2
𝑦̂ 

 

We note that Maxwell’s equations are satisfied with 𝜌 and 𝐽 both equal to zero. 

We also note that 𝐵⃗⃗ has discontinuity at 𝑥 = 0 , and this indicates the presence of surface 

current 𝐾⃗⃗⃗ in the yz-plane, the boundary condition for the parallel component of the magnetic 

field:  

1

𝜇1
𝐵1

∥ −
1

𝜇2
𝐵2

∥ = 𝐾⃗⃗⃗𝑓 × 𝑛̂ 

1

𝜇𝑜
(

𝜇𝑜𝑘𝑡

2
) −

1

𝜇𝑜
(

−𝜇𝑜𝑘𝑡

2
) =  𝑘𝑡 𝑦̂ = 𝐾⃗⃗⃗ × 𝑥̂ 

Gives: 

𝐾⃗⃗⃗ = 𝑘𝑡 𝑧̂ 

Evidently there is a uniform surface current in the z-direction over the plane at 𝑥 = 0 which 

starts up at 𝑡 = 0 and increases with time. 

 

 

 

 

 



Example 2: 

For the configuration in the above example 1, consider a rectangular box of length l, width w, 

and height h, situated a distance d above the yz plane. 

(a) Find the energy in the box at time 𝑡1 = 𝑑/𝑐 and 

𝑡2 = (𝑑 + ℎ)/𝑐. 

(b) Find the Poynting vector, and determine the 

energy per unit time flowing into the box during 

the interval 𝑡1 < 𝑡 < 𝑡2. 

(c) Integrate the results in part (b) from t1 to t2 and 

confirm the increase in energy (in part (a)) 

equals the net flux. 

 

Solution: 

(a) 𝑊 =
1

2
∫ (𝜖𝑜𝐸2 +

1

𝜇𝑜
𝐵2) 𝑑𝜏 

At 𝑡1 = 𝑑/𝑐,  𝑥 ≥ 𝑑 = 𝑐𝑡1 , so 𝐸⃗⃗ = 0 and 𝐵⃗⃗ = 0 and hence 𝑊(𝑡1) = 0 

At 𝑡2 = (𝑑 + ℎ)/𝑐  , 𝑐𝑡2 = 𝑑 + ℎ 

We found in example-1 that:  

 

𝐸⃗⃗ = −
𝜇𝑜𝑘

2
(𝑑 + ℎ − 𝑥)𝑧̂  ,  𝐵⃗⃗ =

1

𝑐

𝜇𝑜𝑘

2
(𝑑 + ℎ − 𝑥)𝑦̂ 

Hence 𝐵2 =
1

𝑐2 𝐸2 and 

𝜖𝑜𝐸2 +
1

𝜇𝑜
𝐵2 = 𝜖𝑜𝐸2 +

1

𝜇𝑜𝑐2 𝐸2 = 2𝜖𝑜𝐸2  [where 𝑐2 = 1/𝜖𝑜𝜇𝑜] 

𝑊 =
1

2
∫ (𝜖𝑜𝐸2 +

1

𝜇𝑜
𝐵2) 𝑑𝜏 =

1

2
(2𝜖𝑜) ∫

𝜇𝑜
2𝑘2

4
(𝑑 + ℎ − 𝑥)2

𝑑+ℎ

𝑑

𝑑𝑥(𝑙𝑤) 

𝑊 =
𝜖𝑜𝜇𝑜

2𝑘2𝑙𝑤

4

(𝑑 + ℎ − 𝑥)3

−3
|

𝑑

𝑑+ℎ

=
𝜖𝑜𝜇𝑜

2𝑘2𝑙𝑤ℎ3

12
 

(b) 𝑆(𝑥) =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) =

1

𝜇𝑜𝑐
𝐸2[−𝑧̂ × (±𝑦̂)] = ±

1

𝜇𝑜𝑐
𝐸2𝑥̂ = ±

𝜇𝑜𝑘2

4𝑐
(𝑐𝑡 − |𝑥|)2𝑥̂ 



For  |𝑥| > 𝑐𝑡 , 𝑆 = 0 

So the energy per unit time entering the box in this time interval is: 

𝑑𝑊

𝑑𝑡
= 𝑃 = ∫ 𝑆. 𝑑𝑎⃗ =

𝜇𝑜𝑘2𝑙𝑤

4𝑐
(𝑐𝑡 − 𝑑)2 

Note that no energy flow out the top since 𝑆(𝑑 + ℎ) = 0  

(c) 𝑊 = ∫ 𝑃𝑑𝑡
𝑡2

𝑡1
=

𝜇𝑜𝑘2𝑙𝑤

4𝑐
∫ (𝑐𝑡 − 𝑑)2𝑑𝑡

𝑑+ℎ

𝑐
𝑑

𝑐

=
𝜇𝑜𝑘2𝑙𝑤

4𝑐
[

(𝑐𝑡−𝑑)3

3𝑐
]𝑑

𝑐

𝑑+ℎ

𝑐
=

𝜇𝑜𝑘2𝑙𝑤ℎ3

12𝑐2  

𝑊 =
𝜖𝑜𝜇𝑜

2𝑘2𝑙𝑤ℎ3

12
 

Which agrees with (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10.1.2 Gauge Transformations 

Suppose there are two sets of potentials (𝑉, 𝐴) and (𝑉′, 𝐴′) which corresponds to 

the same electric and magnetic fields. Let’s say: 

𝐴′ = 𝐴 + 𝛼⃗   and   𝑉′ = 𝑉 + 𝛽 

Since the two 𝐴 ’s give the same 𝐵⃗⃗, so their curls must be equal: 

∇⃗⃗⃗ × 𝛼⃗ = 0 

We can therefore write 𝛼⃗ as gradient of a scalar potential: 

𝛼⃗ = ∇⃗⃗⃗𝜆 

The two potentials also give the same 𝐸⃗⃗, so [E⃗⃗ = −∇⃗⃗𝑉 −
𝜕A⃗⃗

𝜕𝑡
] 

∇⃗⃗⃗𝛽 +
𝜕α⃗⃗⃗

𝜕𝑡
= 0 

∇⃗⃗⃗ (𝛽 +
𝜕𝜆

𝜕𝑡
) = 0 

The term in parenthesis is independent of position but can depend on time, so we 

can write: 

𝛽 = −
𝜕𝜆

𝜕𝑡
+ 𝑘(𝑡) 

Or we can absorb 𝑘(𝑡) into 𝜆, defining a new 𝜆 by adding ∫ 𝑘(𝑡′)𝑑𝑡′𝑡

0
 to the old 

one. Hence: 

𝐴′ = 𝐴 + ∇⃗⃗⃗𝜆 

𝑉′ = 𝑉 −
𝜕𝜆

𝜕𝑡
 

Hence, for any old scalar function, we can add ∇⃗⃗⃗𝜆 to A⃗⃗⃗ provided we 

simultaneously subtract 
𝜕𝜆

𝜕𝑡
 from 𝑉. None of this will affect the physical quantities 

𝐸⃗⃗ and 𝐵⃗⃗. Such change in V and A are called gauge transformations. 

 



10.1.3 Coulomb Gauge and Lorentz Gauge 

The Coulomb Gauge: 

As in magnetostatics, in Coulomb’s gauge we pick: 

∇⃗⃗⃗. 𝐴 = 0 

Using this the scalar potential equation [∇2𝑉 +
𝜕

𝜕𝑡
(∇⃗⃗⃗. A⃗⃗⃗) = −

1

𝜖𝑜
𝜌] becomes: 

∇2𝑉 = −
1

𝜖𝑜
𝜌    

Which is the Poisson’s equation and we know the solution is: 

𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫

𝜌(𝑟′, 𝑡)

∆𝑟
𝑑𝜏′ 

But unlike electrostatics, 𝑉 itself is not enough to find the electric field 𝐸⃗⃗, we need 

to know 𝐴 as well because [E⃗⃗ = −∇⃗⃗𝑉 −
𝜕A⃗⃗

𝜕𝑡
]. 

The scalar potential in the Coulomb gauge is determined by the charge 

distribution right now. But electric field will change only after sufficient time has 

elapsed for the “news” to arrive. 

In Coulomb gauge scalar potential is easier to calculate but the vector potential is 

cumbersome. The differential equation for A⃗⃗⃗ in the Coulomb gauge is: 

∇2A⃗⃗⃗ − 𝜇𝑜𝜖𝑜

𝜕2A⃗⃗⃗

𝜕𝑡2
= −𝜇𝑜𝐽 + 𝜇𝑜𝜖𝑜∇ (

𝜕𝑉

𝜕𝑡
) 

Lorentz Gauge: 

In the Lorentz gauge we pick: 

∇⃗⃗⃗. A⃗⃗⃗ = −𝜇𝑜𝜖𝑜

𝜕𝑉

𝜕𝑡
 

This is designed to eliminate the middle term in equation(5) 

(∇2A⃗⃗⃗ − 𝜇𝑜𝜖𝑜

𝜕2A⃗⃗⃗

𝜕𝑡2
) − ∇⃗⃗⃗ (∇⃗⃗⃗. A⃗⃗⃗ + 𝜇𝑜𝜖𝑜

𝜕𝑉

𝜕𝑡
) = −𝜇𝑜𝐽   

Which becomes: 



∇2A⃗⃗⃗ − 𝜇𝑜𝜖𝑜

𝜕2A⃗⃗⃗

𝜕𝑡2
= −𝜇𝑜𝐽   

The differential equation for V is: 

∇2𝑉 +
𝜕

𝜕𝑡
(∇⃗⃗⃗. A⃗⃗⃗) = ∇2𝑉 − 𝜇𝑜𝜖𝑜

𝜕2𝑉

𝜕𝑡2
= −

1

𝜖𝑜
𝜌    

Where  

∇2 − 𝜇𝑜𝜖𝑜
𝜕2

𝜕𝑡2 =⊡2    d’Alembertian 

⊡2 𝑉 = −
1

𝜖𝑜
𝜌 

⊡2 𝐴 = −𝜇𝑜𝐽 

This democratic treatment of both potentials is nice in the context of special 

relativity where d’Alembertian is the natural generalization of the Laplacian and 

equation (6) above is regarded as four-dimensional version of Poisson’s equation. 

In Lorentz gauge 𝑉 and 𝐴 satisfy the inhomogeneous wave equation with a 

source term (in place of zero) on the right. 

10.2 Continuous Distribution: 

10.2.1 Retarded Potential 

In the static case equation (6) [∇2𝑉 − 𝜇𝑜𝜖𝑜
𝜕2𝑉

𝜕𝑡2 𝑉 = −
1

𝜖𝑜
𝜌  and ∇2𝐴 − 𝜇𝑜𝜖𝑜

𝜕2𝐴⃗

𝜕𝑡2 = −𝜇𝑜𝐽] 

will be reduced to the following forms: 

∇2𝑉 = −
1

𝜖𝑜
𝜌   ;    ∇2𝐴 = −𝜇𝑜𝐽 

With the familiar solutions: 

𝑉(𝒓⃗⃗) =
1

4𝜋𝜖𝑜
∫

𝜌(𝑟′)

∆𝑟
𝑑𝜏′ 

𝐴(𝒓⃗⃗) =
𝜇𝑜

4𝜋
∫

𝐽(𝑟′)

∆𝑟
𝑑𝜏′ 

 

 

… (6) 

… (7) 



Where ∆𝑟 is the distance from the source point 𝑟′ to the field point 𝑟. The 

electromagnetic “news” travels at the speed of light. In the non-static case, 

therefore it is not the status of the source right now that matters but rather its 

condition at some earlier time tr (called the retarded time), when the “message” 

left. Since this message must travel a distance ∆𝑟 , the delay is ∆𝑟/𝑐. 

𝑡𝑟 = 𝑡 −
∆𝑟

𝑐
 

The natural generalization of equation (7) is: 

𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫

𝜌(𝑟′, 𝑡𝑟)

∆𝑟
𝑑𝜏′ 

𝐴(𝒓⃗⃗, 𝑡) =
𝜇𝑜

4𝜋
∫

𝐽(𝑟′, 𝑡𝑟)

∆𝑟
𝑑𝜏′ 

Here 𝜌(𝑟′, 𝑡𝑟) is the charge density that prevailed at point 𝑟′ at the retarded time 

𝑡𝑟. Because the integrals are evaluated at the retarded time, these are called 

retarded potentials.  

The most distant parts of the charge distribution have earlier retarded times than 

nearby ones. Like the light from the stars, what we see now left the stars at the 

retarded time corresponding to the star’s distance from the earth.  

And the retarded potentials reduced to equation (7) in the static case. 

By the way, the same argument can not be applied to the fields: 

𝐸(𝒓⃗⃗, 𝑡) ≠
1

4𝜋𝜖𝑜
∫

𝜌(𝑟′, 𝑡𝑟)

∆𝑟2
(∆𝑟̂)𝑑𝜏′ 

𝐵⃗⃗(𝒓⃗⃗, 𝑡) ≠
𝜇𝑜

4𝜋
∫

𝐽(𝑟′, 𝑡𝑟) × ∆𝑟̂

∆𝑟2
𝑑𝜏′ 

To prove if the retarded potentials are in fact correct we need to see if they 

satisfy the inhomogeneous wave equation. 

∇2𝑉 = 𝜇𝑜𝜖𝑜

𝜕2𝑉

𝜕𝑡2
−

1

𝜖𝑜
𝜌 

Lets’ calculate the left-hand side of the inhomogeneous equation, 



∇⃗⃗⃗𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫ [(∇⃗⃗⃗𝜌)

1

∆𝑟
+ 𝜌∇⃗⃗⃗ (

1

∆𝑟
) ] 𝑑𝜏′ 

∇⃗⃗⃗𝜌 = 𝜌̇∇⃗⃗⃗𝑡𝑟 = −
1

𝑐
𝜌̇∇⃗⃗⃗(∆𝑟) 

∇⃗⃗⃗(∆𝑟) = ∆𝑟̂   and  ∇⃗⃗⃗ (
1

∆𝑟
) = −

∆𝑟̂

(∆𝑟)2
 

∇⃗⃗⃗𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫ [−

𝜌̇

𝑐

∆𝑟̂

∆𝑟
− 𝜌

∆𝑟̂

(∆𝑟)2
 ] 𝑑𝜏′ 

Now taking the divergence of the above equation, we get: 

∇2𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫ [−

1

𝑐
(∇⃗⃗⃗𝜌̇.

∆𝑟̂

∆𝑟
+ 𝜌̇∇⃗⃗⃗.

∆𝑟̂

∆𝑟
) − (∇⃗⃗⃗𝜌.

∆𝑟̂

(∆𝑟)2
+ 𝜌∇⃗⃗⃗.

∆𝑟̂

(∆𝑟)2
) ] 𝑑𝜏′ 

∇2𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫ [−

1

𝑐
(∇⃗⃗⃗𝜌̇.

∆𝑟̂

∆𝑟
+ 𝜌̇∇⃗⃗⃗.

∆𝑟̂

∆𝑟
) − (−

1

𝑐

𝜌̇

(∆𝑟)2
+ 𝜌∇⃗⃗⃗.

∆𝑟̂

(∆𝑟)2
) ] 𝑑𝜏′ 

∇⃗⃗⃗𝜌̇ = −
1

𝑐
𝜌̈∇⃗⃗⃗(∆𝑟) = −

1

𝑐
𝜌̈∆𝑟̂ 

∇⃗⃗⃗. (
∆𝑟̂

∆𝑟
) =

1

(∆𝑟)2
 

∇⃗⃗⃗. (
∆𝑟̂

(∆𝑟)2
) = 4𝜋𝛿3(∆𝑟) 

∇2𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫ [

1

𝑐2

𝜌̈

∆𝑟
−

1

𝑐

𝜌̇

(∆𝑟)2
+

1

𝑐

𝜌̇

(∆𝑟)2
− 𝜌4𝜋𝛿3(∆𝑟)] 𝑑𝜏′ 

∇2𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫ [

1

𝑐2

𝜌̈

∆𝑟
− 𝜌4𝜋𝛿3(∆𝑟)] 𝑑𝜏′ =

1

𝑐2

𝜕2𝑉

𝜕𝑡2
−

1

𝜖𝑜
𝜌(𝑟, 𝑡) 

This satisfies the inhomogeneous wave equation. 

This proof applied equally well to the advanced potentials. 

𝑉𝑎(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫

𝜌(𝑟′, 𝑡𝑎)

∆𝑟
𝑑𝜏′ 



𝐴𝑎(𝒓⃗⃗, 𝑡) =
𝜇𝑜

4𝜋
∫

𝐽(𝑟′, 𝑡𝑎)

∆𝑟
𝑑𝜏′ 

Where 𝑡𝑎 = 𝑡 +
∆𝑟

𝑐
 

Although the advanced potentials are entirely consistent with the Maxwell’s 

equations, they violate the principle of Causality. They suggest that potential 

now depend on the charge and current distribution in the future. Here the effect 

precedes the cause, therefore the advanced potentials have no physical 

significance. 

Example 3: 

An infinite straight wire carries the current: 

𝐼(𝑡) = {
0  𝑓𝑜𝑟 𝑡 ≤ 0
𝐼𝑜 𝑓𝑜𝑟 𝑡 > 0

 

A constant current 𝐼𝑜 is turned ON abruptly at 𝑡 = 0. Find the resulting electric 

and magnetic fields. 

Solution: 

Assuming that wire is electrically neutral, 

meaning there is no extra charge accumulation 

on the wire, hence 𝑉 = 0. 

If we consider the wire to be oriented along z-

axis and the retarded potential at point P 

would be:  

𝐴(𝑠, 𝑡) =
𝜇𝑜

4𝜋
∫

𝐼(𝑡𝑟)

∆𝑟
𝑑𝑧

+∞

−∞

𝑧̂ 

For 𝑡 < 𝑠/𝑐 the “news” has not yet arrived at P and so the vector potential is 

zero.  

For 𝑡 > 𝑠/𝑐 only the segment:  

|𝑧| ≤ √(𝑐𝑡)2 − 𝑠2 contributes and outside this range 𝑡𝑟 = 𝑡 −
∆𝑟

𝑐
 is negative, so 

𝐼(𝑡𝑟) = 0. 



𝐴(𝑠, 𝑡) =
𝜇𝑜

4𝜋
2 ∫

𝐼𝑜

√𝑠2 + 𝑧2
𝑑𝑧

√(𝑐𝑡)2−𝑠2

0

𝑧̂ 

𝐴(𝑠, 𝑡) =
𝜇𝑜𝐼𝑜

2𝜋
ln (√𝑠2 + 𝑧2 + 𝑧)|

0

√(𝑐𝑡)2−𝑠2

𝑧̂ =
𝜇𝑜𝐼𝑜

2𝜋
ln (

𝑐𝑡 + √(𝑐𝑡)2 − 𝑠2

𝑠
) 𝑧̂ 

The electric field is: 

𝐸⃗⃗(𝑠, 𝑡) = −
𝜕𝐴

𝜕𝑡
= −

𝜇𝑜𝐼𝑜𝑐

2𝜋√(𝑐𝑡)2 − 𝑠2
𝑧̂ 

𝐵⃗⃗(𝑠, 𝑡) = ∇⃗⃗⃗ × 𝐴 = −
𝜕𝐴𝑧

𝜕𝑠
𝜙̂ =

𝜇𝑜𝐼𝑜

2𝜋𝑠

𝑐𝑡

√(𝑐𝑡)2 − 𝑠2
𝜙̂ 

After a very long time, 𝑡 → ∞, we get electric and magnetic fields in the static 

case:  

𝐸⃗⃗ = 0   and   𝐵⃗⃗ =
𝜇𝑜𝐼𝑜

2𝜋𝑠
𝜙̂ 

 

 

 

 

 

 

 

 

 

 

 

 

 



10.2.2 Jefemenko’s Equation 

The retarded potentials are given as: 

𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫

𝜌(𝑟′,𝑡𝑟)

∆𝑟
𝑑𝜏′  ;   𝐴(𝒓⃗⃗, 𝑡) =

𝜇𝑜

4𝜋
∫

𝐽(𝑟′,𝑡𝑟)

∆𝑟
𝑑𝜏′ 

Electric and magnetic fields can be determined using: 

𝐸⃗⃗ = −∇⃗⃗⃗𝑉 −
𝜕𝐴⃗

𝜕𝑡
  and 𝐵⃗⃗ = ∇⃗⃗⃗ × 𝐴 

We have to be careful because the integrand of potentials depend on r through 

∆𝑟⃗⃗⃗⃗⃗ = 𝑟 − 𝑟′ and 𝑡𝑟 = 𝑡 − ∆𝑟/𝑐. 

We have calculated ∇⃗⃗⃗𝑉:   

∇⃗⃗⃗𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫ [−

𝜌̇

𝑐

∆𝑟̂

∆𝑟
− 𝜌

∆𝑟̂

(∆𝑟)2
 ] 𝑑𝜏′ 

𝜕𝐴

𝜕𝑡
=

𝜇𝑜

4𝜋
∫

𝜕𝐽/𝜕𝑡

∆𝑟
𝑑𝜏′ =

𝜇𝑜

4𝜋
∫

𝑱̇

∆𝑟
𝑑𝜏′ 

Hence: 

𝐸⃗⃗ = −∇⃗⃗⃗𝑉 −
𝜕𝐴

𝜕𝑡
= −

1

4𝜋𝜖𝑜
∫ [−

𝜌̇

𝑐

∆𝑟̂

∆𝑟
− 𝜌

∆𝑟̂

(∆𝑟)2
 ] 𝑑𝜏′ −

𝜇𝑜

4𝜋
∫

𝑱̇

∆𝑟
𝑑𝜏′ 

𝐸⃗⃗ =
1

4𝜋𝜖𝑜
∫ [

𝜌̇

𝑐

∆𝑟̂

∆𝑟
+ 𝜌

∆𝑟̂

(∆𝑟)2
−

𝑱̇

𝑐2∆𝑟
] 𝑑𝜏′ 

𝐵⃗⃗ = ∇⃗⃗⃗ × 𝐴 =
𝜇𝑜

4𝜋
∫ [

∇⃗⃗⃗ × 𝐽

∆𝑟
+ 𝐽 × ∇⃗⃗⃗ (

1

∆𝑟
) ] 𝑑𝜏′ 

(∇⃗⃗⃗ × 𝐽)
𝑥

=
𝜕𝐽𝑧

𝜕𝑦
−

𝜕𝐽𝑦

𝜕𝑧
= 𝐽𝑧̇

𝜕𝑡𝑟

𝜕𝑦
− 𝐽𝑦̇

𝜕𝑡𝑟

𝜕𝑧
= −

1

𝑐
𝐽𝑧̇

𝜕(∆𝑟)

𝜕𝑦
+

1

𝑐
𝐽𝑦̇

𝜕(∆𝑟)

𝜕𝑧
 

(∇⃗⃗⃗ × 𝐽)
𝑥

=
1

𝑐
[𝑱̇ × (∇⃗⃗⃗𝑟)]

𝑥
 

∇⃗⃗⃗ × 𝐽 =
1

𝑐
𝑱̇ × ∇⃗⃗⃗𝑟   and    ∇⃗⃗⃗(1/∆𝑟) = −∆𝑟̂/(∆𝑟)2 

Hence   𝐵⃗⃗ =
𝜇𝑜

4𝜋
∫ [

𝑱̇(𝑟′,𝑡𝑟)

𝑐∆𝑟
+

𝑱⃗(𝑟′,𝑡𝑟)

(∆𝑟)2  ] × ∆𝑟̂ 𝑑𝜏′ 



This is the time dependent generalization of Biot-Savart law to which it 

reduces in the static case. 

These equations for 𝐸⃗⃗(𝑟, 𝑡) and 𝐵⃗⃗(𝑟, 𝑡) are called Jefimenko’s equations. But it is 

easier to calcualte retarded potentials than calcualting retarded field. 

10.3 Point Charges 

10.3.1 Liénard-Wiechert Potentials 

Lets calculate the retarded potential due to a point charge that is moving on a 

specific trajectory. 

Let W(t) be the position of charge q at time t, 

The retarded time is determined as: 

𝑡𝑟 = 𝑡 −
|𝑟 − 𝑤⃗⃗⃗(𝑡𝑟)|

𝑐
 

Here |𝑟 − 𝑤⃗⃗⃗(𝑡𝑟)| is the distance the “news” 

must travel and (𝑡 − 𝑡𝑟) is the time it takes 

to make the trip. Where 𝑤(𝑡𝑟) is the 

retarded position of the charge and ∆𝑟 is 

the vector from the retarded position to 

the field point  𝑟. 

∆𝑟 = 𝑟 − 𝑤⃗⃗⃗(𝑡𝑟) 

 

It is important to note that at most one point on the trajectory is in 

“communication” with 𝑟 at any particular time t.  

Let’s assume there are two such points with retarded times 𝑡1 and 𝑡2 

∆𝑟1 = 𝑐(𝑡 − 𝑡1)    and   ∆𝑟2 = 𝑐(𝑡 − 𝑡2) 

∆𝑟1 − ∆𝑟2 = 𝑐(𝑡2 − 𝑡1) 

So the average velocity of the particle in the direction of 𝑟 would have to be c (the 

velocity of light) and it might have velocity in the other directions as well, and we 



know that particle does not move with the velocity of light and hence it suggests 

that only one retarded point contributes to the potentials at any given moment.  

𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫

𝜌(𝑟′, 𝑡𝑟)

∆𝑟
𝑑𝜏′ ≠

1

4𝜋𝜖𝑜

𝑞

∆𝑟
  

For a point source ∆𝑟 comes out of the integral but ∫ 𝜌(𝑟′, 𝑡𝑟)𝑑𝜏′ ≠ 𝑞. 

For the static case the total charge is achieved by integrating 𝜌 over the entire 

charge distribution at one instant. 

But for the moving charge we need to evaluate 𝜌 at different times for different 

parts of the configuration. If the source is moving this gives us the distorted 

picture of the total charge. 

In Maxwell’s electrodynamics, a point charge must be regarded as the limit of an 

extended charge, when the size goes to zero. And for an extended particle, no 

matter how small: 

∫ 𝜌(𝑟′, 𝑡𝑟)𝑑𝜏′ =
𝑞

1 − ∆𝑟̂.
𝑣⃗
𝑐

 

This is a purely geometrical effect. For example, a train coming towards observer 

appears longer than a static train and similarly train moving away from the 

observer appears shorter than its static length. Because the light received by the 

observer from the end of the train left earlier than the light from the front of the 

train. 

 

In the interval it takes light from the end of the train to travel extra distance 𝐿′, 

the train itself moves a distance 𝐿′ − 𝐿: 

𝐿′

𝑐
=

𝐿′−𝐿

𝑣
     or     𝐿′ =

𝐿

1−𝑣/𝑐
 



So approaching train appear longer by a factor of (1 − 𝑣 𝑐⁄ )−1. And when a train 

is moving away from an observer it appears shorter by a factor of (1 + 𝑣 𝑐⁄ )−1. 

And if the train’s velocity makes an angle 𝜃 with the line of sight of the observer, 

the extra distance light travels from the end of the train is 𝐿′ cos 𝜃, In the time 

(
𝐿′ cos 𝜃

𝑐
) the train moves a distance of (𝐿′ − 𝐿): 

𝐿′ cos 𝜃

𝑐
=

𝐿′ − 𝐿

𝑣
 

𝐿′ =
𝐿

1 − 𝑣 cos 𝜃 𝑐⁄  
 

This effect does not distort the 

dimensions perpendicular to the 

motion. And the apparent volume of 

the train 𝜏′ then is related to the 

actual volume of the train 𝜏 : 

𝜏′ =
𝜏

1 − ∆𝑟̂. 𝑣⃗/𝑐 
 

Where ∆𝑟̂ is the unit vector from the train to the observer. 

Using this understanding, we can write the electric potential of a moving point 

charge as follows: 

𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
∫

𝜌(𝑟′, 𝑡𝑟)

∆𝑟
𝑑𝜏′ =

1

4𝜋𝜖𝑜

𝑞

∆𝑟(1 − ∆𝑟̂. 𝑣⃗/𝑐)
 

𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜

𝑞𝑐

(∆𝑟𝑐 − ∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗)
 

Where 𝑣⃗ is the velocity of the charge at the retarded time, and ∆𝑟⃗⃗⃗⃗⃗ is the vector 

from the retarded position to the field point 𝑟. 

Since the current density of a rigid body is 𝜌𝑣⃗, so we can write the vector 

potential as: 

𝐴(𝒓⃗⃗, 𝑡) =
𝜇𝑜

4𝜋
∫

𝐽(𝑟′, 𝑡𝑟)

∆𝑟
𝑑𝜏′ =

𝜇𝑜

4𝜋

𝑣⃗

∆𝑟
∫ 𝜌(𝑟′, 𝑡𝑟)𝑑𝜏′ 



𝐴(𝒓⃗⃗, 𝑡) =
𝜇𝑜

4𝜋

𝑞𝑐𝑣⃗

(∆𝑟𝑐 − ∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗)
=

𝑣⃗

𝑐2
𝑉(𝑟, 𝑡) 

10.3.2 The Fields of a Moving Point Charge 

Scalar and vector potentials due to a moving charge are given as: 

𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜

𝑞𝑐

(∆𝑟𝑐−∆𝑟⃗⃗ ⃗⃗⃗.𝑣⃗⃗)
  and  𝐴(𝒓⃗⃗, 𝑡) =

𝑣⃗⃗

𝑐2
𝑉(𝑟, 𝑡) 

Electric and magnetic fields can be found as: 

𝐸⃗⃗ = −∇⃗⃗⃗𝑉 −
𝜕𝐴⃗

𝜕𝑡
    and     𝐵⃗⃗ = ∇⃗⃗⃗ × 𝐴 

Note that:  ∆𝑟⃗⃗⃗⃗⃗ = 𝑟 − 𝑤⃗⃗⃗(𝑡𝑟)  and 𝑣⃗ = 𝑤̇(𝑡𝑟)  , both are evaluated at the retarded 

time and 𝑡𝑟  defined by the equation: |𝑟 − 𝑤⃗⃗⃗(𝑡𝑟)| = 𝑐(𝑡 − 𝑡𝑟) is iteself a function 

of 𝑟 and t.  

∇⃗⃗⃗𝑉 =
𝑞𝑐

4𝜋𝜖𝑜

−1

(∆𝑟𝑐 − ∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗)
2 ∇⃗⃗⃗(∆𝑟𝑐 − ∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗) 

Since ∆𝑟⃗⃗⃗⃗⃗ = 𝑐(𝑡 − 𝑡𝑟)  so  ∇⃗⃗⃗(∆𝑟) = −𝑐∇⃗⃗⃗𝑡𝑟  

As for the second term, product rule is: 

∇⃗⃗⃗(∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗) = (∆𝑟⃗⃗⃗⃗⃗. ∇⃗⃗⃗)𝑣⃗ + (𝑣⃗. ∇⃗⃗⃗)∆𝑟⃗⃗⃗⃗⃗ + ∆𝑟⃗⃗⃗⃗⃗ × (∇⃗⃗⃗ × 𝑣⃗) + 𝑣⃗ × (∇⃗⃗⃗ × ∆𝑟⃗⃗⃗⃗⃗) 

(∆𝑟⃗⃗⃗⃗⃗. ∇⃗⃗⃗)𝑣⃗ = (∆𝑟𝑥

𝜕

𝜕𝑥
+ ∆𝑟𝑦

𝜕

𝜕𝑦
+ ∆𝑟𝑧

𝜕

𝜕𝑧
) 𝑣⃗(𝑡𝑟) 

= ∆𝑟𝑥

𝑑𝑣⃗

𝑑𝑡𝑟

𝜕𝑡𝑟

𝜕𝑥
+ ∆𝑟𝑦

𝑑𝑣⃗

𝑑𝑡𝑟

𝜕𝑡𝑟

𝜕𝑦
+ ∆𝑟𝑧

𝑑𝑣⃗

𝑑𝑡𝑟

𝜕𝑡𝑟

𝜕𝑧
 

(∆𝒓⃗⃗ ⃗⃗ ⃗. 𝛁⃗⃗⃗)𝒗⃗⃗⃗ = 𝒂⃗⃗⃗(∆𝒓⃗⃗ ⃗⃗ ⃗. 𝛁⃗⃗⃗𝒕𝒓) 

Where 𝑎⃗ = 𝑑𝑣⃗/𝑑𝑡𝑟 is the acceleration of the charge particle at the retarded time. 

(𝒗⃗⃗⃗. 𝛁⃗⃗⃗)∆𝒓⃗⃗ ⃗⃗ ⃗ = (𝑣𝑥

𝜕

𝜕𝑥
+ 𝑣𝑦

𝜕

𝜕𝑦
+ 𝑣𝑧

𝜕

𝜕𝑧
) (𝑥𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂) = 𝑣𝑥 𝑖̂ + 𝑣𝑦𝑗̂ + 𝑣𝑧𝑘̂ = 𝒗⃗⃗⃗ 

∇⃗⃗⃗ × 𝑣⃗ = (
𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑧
) 𝑖̂ + (

𝜕𝑣𝑥

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑥
) 𝑗̂ + (

𝜕𝑣𝑦

𝜕𝑥
−

𝜕𝑣𝑥

𝜕𝑦
) 𝑘̂ 



= (
𝑑𝑣𝑧

𝑑𝑡𝑟

𝜕𝑡𝑟

𝜕𝑦
−

𝑑𝑣𝑦

𝑑𝑡𝑟

𝜕𝑡𝑟

𝜕𝑧
) 𝑖̂ + (

𝑑𝑣𝑥

𝑑𝑡𝑟

𝜕𝑡𝑟

𝜕𝑧
−

𝑑𝑣𝑧

𝑑𝑡𝑟

𝜕𝑡𝑟

𝜕𝑥
) 𝑗̂ + (

𝑑𝑣𝑦

𝑑𝑡𝑟

𝜕𝑡𝑟

𝜕𝑥
−

𝑑𝑣𝑥

𝑑𝑡𝑟

𝜕𝑡𝑟

𝜕𝑦
) 𝑘̂ 

∇⃗⃗⃗ × 𝑣⃗ = −𝑎⃗ × ∇⃗⃗⃗𝑡𝑟 

And     ∇⃗⃗⃗ × ∆𝑟⃗⃗⃗⃗⃗ = ∇⃗⃗⃗ × 𝑟 − ∇⃗⃗⃗ × 𝑤⃗⃗⃗ 

∇⃗⃗⃗ × 𝑟 = 0 

And      ∇⃗⃗⃗ × 𝑤⃗⃗⃗ = −v⃗⃗ × ∇⃗⃗⃗𝑡𝑟  

So     ∇⃗⃗⃗ × ∆𝑟⃗⃗⃗⃗⃗ = v⃗⃗ × ∇⃗⃗⃗𝑡𝑟  

∇⃗⃗⃗(∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗) = 𝑎⃗(∆𝑟⃗⃗⃗⃗⃗. ∇⃗⃗⃗𝑡𝑟) + 𝑣⃗ − ∆𝑟⃗⃗⃗⃗⃗ × (𝑎⃗ × ∇⃗⃗⃗𝑡𝑟) + 𝑣⃗ × (v⃗⃗ × ∇⃗⃗⃗𝑡𝑟) 

∇⃗⃗⃗(∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗) = 𝑣⃗ + (∆𝑟⃗⃗⃗⃗⃗. 𝑎⃗ − 𝑣2)∇⃗⃗⃗𝑡𝑟 

So our equation for gradient V, becomes: 

∇⃗⃗⃗𝑉 =
𝑞𝑐

4𝜋𝜖𝑜

−1

(∆𝑟𝑐 − ∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗)
2 ∇⃗⃗⃗(∆𝑟𝑐 − ∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗) 

∇⃗⃗⃗𝑉 =
𝑞𝑐

4𝜋𝜖𝑜

−1

(∆𝑟𝑐 − ∆𝑟⃗⃗⃗⃗⃗. 𝑣⃗)
2 [𝑣 + (𝑐2 − 𝑣2 + ∆𝑟⃗⃗⃗⃗⃗. 𝑎⃗)∇⃗⃗⃗𝑡𝑟] 

Where ∇⃗⃗⃗𝑡𝑟 = ∇⃗⃗⃗ (𝑡 −
∆𝑟

𝑐
) = −

1

𝑐
∇⃗⃗⃗(∆𝑟) 

−𝑐∇⃗⃗⃗𝑡𝑟 = ∇⃗⃗⃗(∆𝑟) = ∇⃗⃗⃗√∆𝑟⃗⃗⃗⃗⃗. ∆𝑟⃗⃗⃗⃗⃗ =
1

2√∆𝑟⃗⃗⃗⃗⃗. ∆𝑟⃗⃗⃗⃗⃗
∇⃗⃗⃗(∆𝑟⃗⃗⃗⃗⃗. ∆𝑟⃗⃗⃗⃗⃗) 

 

. 

. 

 

 



 

 

 

 

 

 



 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 


