Chapter 10 — Potentials and Fields

10.1 The Potential Formulation

10.1.1 Scalar and Vector Potentials

In this chapter we will learn how the charge and current sources (p and f) generate electric and
magnetic fields. In other words, we see general solution to Maxwell’s equations:
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Given p(7,t) and f(?, t), the electric and magnetic fields can be determined using Coulomb’s
law and Biot-savart law in the static case. But we seek a general solution that will be good for
time-dependent configuration as well.

This can be achieved by representing fields in terms of potentials.
In electrostatics V X E = 0 and hence we can write E as the gradient of a scalar potential:
E=WV

But in electrodynamics this is not possible for E but the magnetic field B remains
divergenceless, so as in magnetostatics we can still write:

B=VxA ..(2)
We can write Maxwell’s equation (iii) as:
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The curl of (E + E) vanishes, so we can write this quantity as a gradient of a scalar:

E=-W-— ..(3)

When A will be constant then E = —VV like before.



Now using equation (3) into Maxwell’s equation (i), we get:
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In the static case, this equation will reduce to Poisson equation.

Now using equations (2) and (3) in Maxwell’s equation (iv), we get
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Equations (4) and (5) contain all the information in Maxwell’s equation.

Example 1:
Find the charge and current distribution that would give rise to the potentials:
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Where k is a constant and ¢ = 1/,/€, U,
Solution:

First, let’s determine the electric and magnetic fields using equations (2) and (3):

For x| < ct:
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Plus for x > 0 and minus for x < 0.
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We note that Maxwell’s equations are satisfied with p andfboth equal to zero.

We also note that B has discontinuity at x = 0, and this indicates the presence of surface

current K in the yz-plane, the boundary condition for the parallel component of the magnetic
field:
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Gives:
K=ktz

Evidently there is a uniform surface current in the z-direction over the plane at x = 0 which
starts up at t = 0 and increases with time.



Example 2:

For the configuration in the above example 1, consider a rectangular box of length /, width w,
and height h, situated a distance d above the yz plane.

(@) Find the energy in the box at time t; = d/c and
t,=(d+h)/c.

(b) Find the Poynting vector, and determine the
energy per unit time flowing into the box during
the interval t; < t < t,.

(c) Integrate the results in part (b) from t1 to t2 and

confirm the increase in energy (in part (a))
equals the net flux.

Solution:
1 1
(a) szf(60E2+EBZ)dT
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Att,=(d+h)/c,ct,=d+h

We found in example-1 that:
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For |x| >ct,S$=0

So the energy per unit time entering the box in this time interval is:

dw R k21w
g =f5.d&=“°4c (ct — d)?

Note that no energy flow out the top since §(d +h)=0
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Which agrees with (a).



10.1.2 Gauge Transformations

Suppose there are two sets of potentials (V, /T) and (V’,/T’) which corresponds to
the same electric and magnetic fields. Let’s say:

A=A+d@ and V' =V+8
Since the two A ’s give the same §, so their curls must be equal:
Vxd=0

We can therefore write & as gradient of a scalar potential:

—

a=VA

The two potentials also give the same E, o) [E = —VV — Z—I:
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The term in parenthesis is independent of position but can depend on time, so we
can write:

__0
B = - +k(®)

Or we can absorb k(t) into A, defining a new A by adding fot k(t")dt' to the old
one. Hence:

A=A +V2A
vy oA
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Hence, for any old scalar function, we can add Vito A provided we

. Byl . . .
simultaneously subtract > from V. None of this will affect the physical quantities

E and B. Such change in V and A are called gauge transformations.



10.1.3 Coulomb Gauge and Lorentz Gauge

The Coulomb Gauge:

As in magnetostatics, in Coulomb’s gauge we pick:
V.A=0

Using this the scalar potential equation [V2V +%(V. K) = —eip] becomes:

1
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Which is the Poisson’s equation and we know the solution is:

L1 (@
V(rt) = Ime, j A dt

But unlike electrostatics, V itself is not enough to find the electric field E, we need

to know /T as well because [E - _VV — a—A].

The scalar potential in the Coulomb gauge is determined by the charge
distribution right now. But electric field will change only after sufficient time has
elapsed for the “news” to arrive.

In Coulomb gauge scalar potential is easier to calculate but the vector potential is
cumbersome. The differential equation for A in the Coulomb gauge is:
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Lorentz Gauge:

In the Lorentz gauge we pick:
V.A = —MOEOE
This is designed to eliminate the middle term in equation(5)
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The differential equation for V is:
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Where
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This democratic treatment of both potentials is nice in the context of special
relativity where d’Alembertian is the natural generalization of the Laplacian and
equation (6) above is regarded as four-dimensional version of Poisson’s equation.

In Lorentz gauge V and A satisfy the inhomogeneous wave equation with a
source term (in place of zero) on the right.

10.2 Continuous Distribution:
10.2.1 Retarded Potential

2 N 27 >
In the static case equation (6) [V2V — uonZT‘Z’V = —Eip and V24 — ,uoeong = —u,/]

will be reduced to the following forms:
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With the familiar solutions:
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Where Ar is the distance from the source point 7’ to the field point 7. The
electromagnetic “news” travels at the speed of light. In the non-static case,
therefore it is not the status of the source right now that matters but rather its
condition at some earlier time t, (called the retarded time), when the “message”
left. Since this message must travel a distance Ar, the delay is Ar/c.

Ar
tr=t—7

The natural generalization of equation (7) is:

— 1 p(F,' tr) ;
Vo = 47‘[60J Ar dt
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Here p(#', t,.) is the charge density that prevailed at point 7’ at the retarded time
t,-. Because the integrals are evaluated at the retarded time, these are called

retarded potentials.

The most distant parts of the charge distribution have earlier retarded times than
nearby ones. Like the light from the stars, what we see now left the stars at the
retarded time corresponding to the star’s distance from the earth.

And the retarded potentials reduced to equation (7) in the static case.

By the way, the same argument can not be applied to the fields:
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To prove if the retarded potentials are in fact correct we need to see if they
satisfy the inhomogeneous wave equation.
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Lets’ calculate the left-hand side of the inhomogeneous equation,
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Now taking the divergence of the above equation, we get:
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This satisfies the inhomogeneous wave equation.

This proof applied equally well to the advanced potentials.
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Although the advanced potentials are entirely consistent with the Maxwell’s
equations, they violate the principle of Causality. They suggest that potential
now depend on the charge and current distribution in the future. Here the effect
precedes the cause, therefore the advanced potentials have no physical
significance.

Example 3:

An infinite straight wire carries the current:

(0 fort<0
I(t)_{lofort>0

A constant current I, is turned ON abruptly at ¢ = 0. Find the resulting electric
and magnetic fields.

Solution:

Assuming that wire is electrically neutral, l
meaning there is no extra charge accumulation !
on the wire, hence IV = 0. d>

If we consider the wire to be oriented along z- -
axis and the retarded potential at point P s e p
would be:

Ho f I
= dz 2
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For t < s/c the “news” has not yet arrived at P and so the vector potential is
zero.

Fort > s/c only the segment:

. . . Ar .
|z| < +/(ct)? — s? contributes and outside this range t, =t — % is negative, so
I(t,) = 0.
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The electric field is:
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After a very long time, t = oo, we get electric and magnetic fields in the static
case:

B(s,t) =VxA=—




10.2.2 Jefemenko’s Equation

The retarded potentials are given as:

- 1 GED o JG' tr) ,
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Electric and magnetic fields can be determined using:

-

E)z—ﬁV—Z—? andB=Vx A

We have to be careful because the integrand of potentials depend on r through
Ar =#—7#"andt, =t — Ar/c.

We have calculated VV:
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Hence:
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This is the time dependent generalization of Biot-Savart law to which it
reduces in the static case.

These equations for E(#,t) and B(7, t) are called Jefimenko’s equations. But it is
easier to calcualte retarded potentials than calcualting retarded field.

10.3 Point Charges
10.3.1 Liénard-Wiechert Potentials

Lets calculate the retarded potential due to a point charge that is moving on a
specific trajectory.

Let W(t) be the position of charge q at time t,

The retarded time is determined as:

7 — w(t)l
ty =t ——— 1
¢ Retarded
Here |# — W(t,)| is the distance the “news” Posm"n\ Particle
trajectory

must travel and (t — t,.) is the time it takes
to make the trip. Where w(t,) is the
retarded position of the charge and A7 is
the vector from the retarded position to
the field point 7.

A = 7 — W(t,) / ]

It is important to note that at most one point on the trajectory is in
“communication” with 7 at any particular time t.

Present

g~ position

Let’s assume there are two such points with retarded times t; and t,
Af)l = C(t - tl) and Af')z = C(t - tz)
AFl - AFZ == C(tz - tl)

So the average velocity of the particle in the direction of 7 would have to be c (the
velocity of light) and it might have velocity in the other directions as well, and we



know that particle does not move with the velocity of light and hence it suggests
that only one retarded point contributes to the potentials at any given moment.

1 Tt 1
f Pt v q
4te,, Ar 4me, Ar

V(7 t) =

For a point source Ar comes out of the integral but fp(?’, t.)dt' #q.

For the static case the total charge is achieved by integrating p over the entire
charge distribution at one instant.

But for the moving charge we need to evaluate p at different times for different
parts of the configuration. If the source is moving this gives us the distorted
picture of the total charge.

In Maxwell’s electrodynamics, a point charge must be regarded as the limit of an
extended charge, when the size goes to zero. And for an extended particle, no
matter how small:

f p(#,t,)dt’ = —

—_—

1—Ar.
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This is a purely geometrical effect. For example, a train coming towards observer
appears longer than a static train and similarly train moving away from the
observer appears shorter than its static length. Because the light received by the
observer from the end of the train left earlier than the light from the front of the
train.

-
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In the interval it takes light from the end of the train to travel extra distance L',
the train itself moves a distance L' — L:

L
= or L' =
v 1-v/c




So approaching train appear longer by a factor of (1 — v/c)~*. And when a train
is moving away from an observer it appears shorter by a factor of (1 + v/c) 1.
And if the train’s velocity makes an angle 8 with the line of sight of the observer,

the extra distance light travels from the end of the train is L' cos 8, In the time
(L’ cos 6

) the train moves a distance of (L' — L):

L’cosH_L’—L

c v |
L = L
"~ 1—vcos8/c

This effect does not distort the /1o
dimensions perpendicular to the ’ observer
motion. And the apparent volume of
the train 7’ then is related to the
actual volume of the train 7 :

_ T
" 1-Ar.9/c

!

Where Ar is the unit vector from the train to the observer.

Using this understanding, we can write the electric potential of a moving point
charge as follows:

1 't 1
VG ) = jp( P 4o 1__
4rre, Ar 4me, Ar(1— Ar.B/c)
C
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Where ¥ is the velocity of the charge at the retarded time, and Ar is the vector
from the retarded position to the field point 7.

Since the current density of a rigid body is p7, so we can write the vector
potential as:

L e (Tt o ¥ J
A(r,t) = — dt’' = —— ' t.)dt’




10.3.2 The Fields of a Moving Point Charge

Scalar and vector potentials due to a moving charge are given as:

1 qc
4me, (Arc—Ar.v)

V@ ©) = and A7 t) = C%V(F, t)

Electric and magnetic fields can be found as:

Note that: Ar = # — wW(t,) and ¥ = Ww(t,) , both are evaluated at the retarded
time and t, defined by the equation: |7 — w(t,.)| = c(t — t,.) is iteself a function
of 7 and t.

qc

Ame, (Arc — Ar. 17)

Since Ar = c(t—t,) so V(Ar) = —cv)tr

vV = > V(Arc — Ar, 13’)

As for the second term, product rule is:

V(a7.5) = (B.7)5 + (5.9)8F + B x ( x B) +  x (¥ x B7)

I 0 0 a\ .
(Ar.V)¥ = (Arx 75 T A oyt Ar, E) V(t,)
4 dv dt, LA dv dt, N dv dt,
g ox T Svdr oy o de, 0z

(&7 %)% = a(ar. v,)
Where a = dv/dt, is the acceleration of the charge particle at the retarded time.
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dt, 9z  dt, ox)’

(d%ag. m@aq>A (dwaq. m&aq>A+<d@aq. dv, dt,
= — l

dt, 0y  dt, 0z

VX ¥ =—dxVt,
And VXAr=VX7—VxXWw
Vx7#=0
And VXW=—VxVt,
So VX Ar =V X Vt,

V(Ar.9) = d(Ar.Vt,) + 7 — Ar x (@ x Vt,) + ¥ x (V x Vt,.)

V(Ar.%) = b + (Ar.d — v?)Vt,

So our equation for gradient V, becomes:

- qc
VW = —
ame, (Arc — Ar. 13)

qc -1

me, (Arc — Ar, 17)2

5 V(Arc — Ar. 17)

W = [v+ (c? — v? + Ar.d)Vt,]

Where V)tr =V (t — %) = — %V(Ar)

— — - [— — 1 - — —>
—cVt, = V(Ar) = W Ar.Ar = ——=V/(Ar. Ar)
2V Ar. Ar

= %[(4- Va4 a2 x (V x2)].
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vV =
dmey (e —a-v)3

dt, 0x dt, dy

[(fw—a-v)v—(cz—v2+a-a)a].
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5 = P — [(/zc —2-V)(—v+2a/c)

'3
+
c

—v2+4-a)v].

Combining these results, and introducing the vector

U=Cc2—V,
I find
Er, = — " [(2—1®)u+2x (uxa)l
4ep (2 - )3
Meanwhile,

VxA= le x (Vv) = lz[V(V x ¥) —vx (VV)].
c c

We have already calculated V x v (Eq. 10.55) and V'V (Eq. 10.62). Putting these together.

1
VxA=—-—9_
c4mey (u-2)3

2 X [(c2 — v2)v +#-av+(2-uwal.

The quantity in brackets is strikingly similar to the one in Eq. 10.65, which can be written.
using the BAC-CAB rule, as [(c? = v®)u+ (2-a)u— (2-u)a]; the main difference is that we
have v’s instead of u’s in the first two terms. In fact, since it’s all crossed into 2 anyway, we
can with impunity change these v’s into —u’s; the extra term proportional to 2 disappears
in the cross product. It follows that

L.
B(r,t) = -2 x E(r, 1).
C

Evidently the magnetic field of a point charge is always perpendicular to the electric field,
and to the vector from the retarded point.

The first term in E (the one involving (¢ — v?)u) falls off as the inverse square of the
distance from the particle. If the velocity and acceleration are both zero, this term alone
survives and reduces to the old electrostatic result
1 q

deg 2




For this reason, the first term in E is sometimes called the generalized Coulomb field.
(Because it does not depend on the acceleration, it is also known as the velocity field.) The
second term (the one involving 2 X (u x a)) falls off as the inverse first power of 2 and is
therefore dominant at large distances. As we shall see in Chapter 11, it is this term that is
responsible for electromagnetic radiation; accordingly, it is called the radiation field—or.
since it is proportional to a, the acceleration field. The same terminology applies to the
magnetic field.

Example 10.4

Calculate the electric and magnetic fields of a point charge moving with constant velocity.

Solution: Putting a = 0 in Eq. 10.65,

_q (cz—vz)ft
B amey (A -u)’

In this case, using w = vz,
M= —2¥v=c(r —vty) — c(t —t;)v = c(r — Vt).

In Ex. 10.3 we found that

ac—a-v:a-u=\/(czt—r-v)2+(cz—v2)(r2—0212).

In Prob. 10.14, you showed that this radical could be written as

Rc\/ 1 —vZsin?6/c2,
where
R=r—wvt

is the vector from the present location of the particle to r, and @ is the angle between R and v
(Fig. 10.9). Thus

q 1— vz/c2 3

Er,t)= .
o (1 — 2 sin? 0/02)3/2 R?

(10.68)

Notice that E points along the line from the present position of the particle. This is an
extraordinary coincidence, since the “message” came from the retarded position. Because of
the sin? @ in the denominator, the field of a fast-moving charge is flattened out like a pancake in
the direction perpendicular to the motion (Fig. 10.10). In the forward and backward directions
E is reduced by a factor (1 — v / ?) relative to the field of a charge at rest; in the perpendicular

direction it is enfianced by a factor 1/4/1 — v?2 /CZ_



As for B, we have

.~ T —vt r—vt I — 1)V R v
1= r=( V)+( i‘) :—+_s
2 2 3 ¢

and therefore

1 . 1
B=-(2xE)= _2(V x E). (10.69)
c c

Lines of B circle around the charge, as shown in Fig, 10.11.

\ B




The fields of a point charge moving at constant velocity (Egs. 10.68 and 10.69) were first
obtained by Oliver Heaviside in 1888.13 When v? < ¢? they reduce to

q ~
— R; B(r.t
4mey R? x5

_Ho 9
4w R2

E(, 1) = (v x R). (10.70)

The first is essentially Coulomb’s law, and the latter is the “Biot-Savart law for a point charge™
I warned you about in Chapter 5 (Eq. 5.40).



