Chapter 11 — Radiation

11.1 Dipole Radiation

A charge at rest does not generate electromagnetic waves, nor does a steady current. Only
accelerating charges and changing currents produce radiation. Once created, EM waves in
vacuum propagate out to infinity, carrying energy with them, signature of radiation is this
irreversible flow of energy away from the source.

Assume the source is localized near the origin. A gigantic spherical shell, out at radius r, the
total power passing out through this surface is the integral of the Poynting vector:
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P(r) = ygS.da = —yg(E X B).da
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The power radiated is the limit of this quantity as r goes to infinity:
Prqq = lim P(r)
r—-o0o

This is the energy per unit time that is transported to infinity and never comes back. Now the
area of the square is 4r? , so for radiation to occur, the Poynting vector must decrease no
faster than 1 /72 (if the Poynting vector were to decrease by 1/73, then P(r) would go by 1/r
and P,.,4 would go to zero).

According to Coulomb’s law, electrostatic fields fall off like 1/72 (or even faster if the total
charge is zero) and by Biot-Savart’s law the magnetic field also goes like 1/72, which will make
Poynting vector S~1/r* for static configurations. Hence, static sources (and steady currents)
do not radiate.

But according to Jefimenko’s equations, the time dependent field include terms involving (p
and J) that go like 1/7, it is these terms that are responsible for EM radiation.

11.1.2 Electric Dipole Radiation

Consider two tiny metal spheres separated by a distance d and connected by a fine wire. At
time t the charge on the upper sphere is q(t) and the charge on the lower sphere is —q(t).
Suppose we drive the charge back and forth through the wire, from one end to the other end,
at an angular frequency w:

q(t) = q, cos(wt) ¢ o,
The dipole moment of this dipole is: "“’T-q//r
p(t) = p, cos(wt) Z 0 Ay
Where p, = q,d is the maximum dipole moment. d y
The retarded potential is given as:
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And by the law of cosines:  Ary = \/r2 + rd cos 6 + (d/2)?

For a perfect dipole, the separation between the charges should be extremely small:
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In the perfect dipole limit, we have the approximation:
Approximation 2: d < 5 =A/2n
Under these conditions:
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Hence the potential of an oscillating dipole is:
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V(r,6,0) = ~Lsin(w(t —r/c) + %cos(w(t -r/0)}
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In the static limit w = 0, we get potential of a stationary dipole:
D, COos 6
 4me,r2

We are interested in the fields that survive at large distances from the source, in the so-called
radiation zone.

Approximation 3: 1 > ior r>A



In this region, potential reduces to:
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Meanwhile the vector potential is determined by the current flowing in the wire:
d
I(t) = d—Zﬁ = —q,wsin(wt) Z

Retarded vector potential is defined as:

wo (J@t) . to [Y? —qowsin[w(t — Ar/c)] 2
— | ————drt dz

A’_),t = = —
@0 41 Ar 4 J_g/2 Ar

Since the integration itself introduces a factor of d, we can replace the integrant by its value at
the center.
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Once we know the potentials, we can easily find the fields.
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Using approximation 3, we can drop the first and last term:
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Meanwhile
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The second term can be eliminated by approximation 3, so

_ H,p,w”sinb
41c

B=VxA= cos[w(t —1/0)] P ...(2)

Equations (1) and (2) represent monochromatic waves of frequency w travelling in the radial

direction at the speed of light. E and B are in phase and perpendicular to each other and
perpendicular to the direction of the direction of propagation of the wave. And the ratio of

. . . E
their amplitudes is B—" = c.
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These are actually spherical waves, not plane waves, and their amplitudes decrease like 1/r as
they progress. But for larger r, they are approximately plane over small regions.

The energy radiated by an oscillating electric dipole is determined by the Poynting vector:
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The intensity is obtained by taking the time average over a complete cycle:

. 2 .
) = Ho pow? sin @ Al Uop2w® sin? 0 .
2c\ 4T T 32m2c r2

Note that there is no radiation in the direction of the dipole where sin 8 = 0, the intensity
profile takes the shape of the donut, with its maximum at the equatorial plane as shown in the
figure below.

The total power radiated is found by integrating
(§) over a sphere of radius r:
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The power radiated is independent of the radius of the sphere, due to conservation of energy.
Example:

The sharp frequency dependence of the power formula is what accounts for the blueness of the
sky. Sunlight passing through the atmosphere stimulates atoms to oscillate as tiny dipoles.



Sunlight covers a broad range of frequencies but the energy absorbed and radiated by the
atmospheric dipoles is strongest at the higher frequencies because of the w* factor in the
radiated energy.

Since EM waves are transverse so dipoles oscillate in a plane orthogonal to the sun’s rays. The
redness of sunset is the other side of the same coin: sunlight coming in at a tangent to the
earth’s surface must pass through a much longer stretch of atmosphere than sunlight coming
from overhead. Accordingly, much of the blue has been removed by scattering what’s left is
red.

11.1.3 Magnetic Dipole Radiation

Suppose we have a wire loop of radius b, carrying an alternating current:
I1(t) =1, cos(wt)

This is a model for an oscillating magnetic dipole, with magnetic moment:

m(t) = nb?I(t)2 = nb?I, cos(wt) Z
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Where m, = wb?1, is the maximum value of the
magnetic dipole moment. The loop is uncharged so the
scalar potential is zero.

The retarded vector potential is:

o o Mo [locoslw(t—Ar/0)]
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For a point 7 directly above the x-axis, A must aim in the
y-direction, since the x-components from symmetrically
placed points on either side of the x-axis will cancel.
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Where

Ar = /12 + b2 — 2rb cos Y
Where i is the angle between the vectors #* and b:
?=rsinOf+rcos62 and b =bcos¢’ 2+ bsing' P

rbcosy = 7.b = rbsin 6 cos ¢’

Ar = \/r2 + b2 — 2rb sin @ cos ¢’

For a perfect dipole we would like the loop to be small:
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We will also assume that the size of the dipole is small compared to the wavelength radiated:
Approxiomation 2: b < %

In that case,
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The first term integrates to zero because:
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The second term involves the integral of cosine squared:
2
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Using the cosine integrals and noting that in general A points in the q,’3 direction, we get:

A(r,0,t) = Koo <sin 9) {% cos[w(t —7r/c)] — %sin[w(t - r/c)]} ®
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In the static limit w = 0 and we recover the formula for potential of a magnetic dipole:
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And in the radiation zone:

Approximation 3: r > &
The first term in 4 is negligible, so:

A(r,6,t) =
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We can get the electric field at large r:
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The field are in phase, mutually perpendicular and transverse to the direction of propagation
(7), and the ratio of their amplitudes is E, /B, = c, all which is as expected for EM waves.

The energy flux for magnetic dipole radiation is:
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And the intensity is:
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And the total radiated power is:
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Magnetic dipole has the intensity profile as the shape of a donut and the power radiated goes
like w*.

For configurations with comparable dimensions, the power radiated by electrical dipole is much
greater than the power radiated by magnetic dipole:
Pmagnetic _ (&)2
PoC€

Pelectric

Where m, = wb?l, and p, = q,d. The amplitude of current in the electrical case was I, = q,w

Now setting d = mb, for the sake of comparison:
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And wT is exactly the quantity that we assumed was very small (approximation 2) and here it is

squared. So we should expect electric dipole radiation to dominate.

11.1.4 Radiation from an arbitrary source
Assume there is a charge configuration localized within some finite volume near the origin.

The retarded scalar potential is:
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We assume that the field point r is far away
compared to the dimension of the source:

Approximation 1: ' < r
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Expanding p as Taylor series in t about the retarded time at the origin:
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The next terms in the series can be dropped, provided:
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Approximation 2: 1’ <

For an oscillating system, each of these ratios is i , and we recover the old approximation 2.

The result of approximation 1 and 2 is to keep only the first-order terms in r'. Hence:
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The first integral is simply the total charge Q at time t,. Because, charge is conserved, however,
Qis independent of time. The other two integrals represent the electric dipole moment at time
t,- Thus

V(rt) =
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In the static case the first two terms are the monopole and dipole contributions to the
multipole expansion for V, the third term, however, would not be present.

The vector potential will be:
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To first order in 7' it suffices to replace Ar by r in the integrand:
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As we proved in chapter 5, the integral offis the time derivative of the dipole moment.
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To find the electric and magnetic fields in the radiation zones, i.e. at large distances from the
source, we keep terms only that go like 1/7:

Approximation 3: discard 1/72 terms in E and B:

For instance, the Coulomb field, E= ﬁ%f” coming from the first term in equation (1) does
o

not contribute to the electromagnetic radiation. In fact the radiation comes entirely from the
terms in which we differentiate the argument t,,.
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Similarly,
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If we use spherical coordinates, with the z-axis in the direction of p(t,), then
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Note that E and B are mutually perpendicular to each other and perpendicular to the direction
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of propagation. Also the ratio B—" = ¢, as always for radiation fields.
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The Poynting vector is:
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And the total radiated power is
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