
Chapter 11 – Radiation 

11.1 Dipole Radiation 

A charge at rest does not generate electromagnetic waves, nor does a steady current. Only 

accelerating charges and changing currents produce radiation. Once created, EM waves in 

vacuum propagate out to infinity, carrying energy with them, signature of radiation is this 

irreversible flow of energy away from the source. 

Assume the source is localized near the origin. A gigantic spherical shell, out at radius r, the 

total power passing out through this surface is the integral of the Poynting vector: 

𝑃(𝑟) = ∮𝑆. 𝑑𝑎⃗ =
1

𝜇𝑜
∮(𝐸⃗⃗ × 𝐵⃗⃗). 𝑑𝑎⃗ 

The power radiated is the limit of this quantity as 𝑟 goes to infinity: 

𝑃𝑟𝑎𝑑 = lim
r→∞

𝑃(𝑟) ⁡ 

This is the energy per unit time that is transported to infinity and never comes back. Now the 

area of the square is 4𝜋𝑟2 , so for radiation to occur, the Poynting vector must decrease no 

faster than 1/𝑟2 (if the Poynting vector were to decrease by 1/𝑟3, then P(r) would go by 1/𝑟 

and 𝑃𝑟𝑎𝑑 would go to zero). 

According to Coulomb’s law, electrostatic fields fall off like 1/𝑟2 (or even faster if the total 

charge is zero) and by Biot-Savart’s law the magnetic field also goes like 1/𝑟2, which will make 

Poynting vector 𝑆~1/𝑟4 for static configurations. Hence, static sources (and steady currents) 

do not radiate. 

But according to Jefimenko’s equations, the time dependent field include terms involving (𝜌̇ 

and 𝐽)̇ that go like 1/𝑟, it is these terms that are responsible for EM radiation. 

11.1.2 Electric Dipole Radiation  

Consider two tiny metal spheres separated by a distance d and connected by a fine wire. At 

time t the charge on the upper sphere is 𝑞(𝑡) and the charge on the lower sphere is −𝑞(𝑡). 

Suppose we drive the charge back and forth through the wire, from one end to the other end, 

at an angular frequency 𝜔: 

𝑞(𝑡) = 𝑞𝑜 cos(𝜔𝑡) 

The dipole moment of this dipole is: 

𝑝(𝑡) = 𝑝𝑜 cos(𝜔𝑡) 𝑧̂ 

Where 𝑝𝑜 = 𝑞𝑜𝑑 is the maximum dipole moment. 

The retarded potential is given as: 



𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
{
𝑞(𝑡𝑟)

∆𝑟+
+
−𝑞(𝑡𝑟)

∆𝑟−
} 

𝑉(𝒓⃗⃗, 𝑡) =
1

4𝜋𝜖𝑜
{
𝑞
𝑜
cos(𝜔(𝑡 − ∆𝑟+/𝑐)

∆𝑟+
−
𝑞
𝑜
cos(𝜔(𝑡 − ∆𝑟−/𝑐))

∆𝑟−
} 

And by the law of cosines:  ∆𝑟± = √𝑟2 ∓ 𝑟𝑑 cos 𝜃 + (𝑑 2⁄ )2⁡ 

For a perfect dipole, the separation between the charges should be extremely small: 

Approximation 1:  𝑑 ≪ 𝑟 

∆𝑟± ≅ 𝑟 (1 ∓
𝑑

𝑟
cos 𝜃)

1
2
= 𝑟 (1 ∓

𝑑

2𝑟
cos 𝜃) 

1

∆𝑟±
=
1

𝑟
(1 ±

𝑑

2𝑟
cos 𝜃) 

cos(𝜔(𝑡 − ∆𝑟+/𝑐) ≅ cos [𝜔(𝑡 − 𝑟 𝑐⁄ ) ±
𝜔𝑑

2𝑐
cos 𝜃] 

cos [𝜔(𝑡 − 𝑟 𝑐⁄ ) ±
𝜔𝑑

2𝑐
cos𝜃] ≅ cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] cos [

𝜔𝑑

2𝑐
cos 𝜃] ∓ sin[𝜔(𝑡 − 𝑟 𝑐⁄ )] sin [

𝜔𝑑

2𝑐
cos𝜃] 

In the perfect dipole limit, we have the approximation: 

Approximation 2:  𝑑 ≪
𝑐

𝜔
= 𝜆/2𝜋 

Under these conditions: 

cos(𝜔(𝑡 − ∆𝑟+/𝑐) ≅ cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] ∓
𝜔𝑑

2𝑐
cos 𝜃 sin[𝜔(𝑡 − 𝑟 𝑐⁄ )] 

Hence the potential of an oscillating dipole is: 

𝑉(𝑟, 𝜃, 𝑡) =
𝑝𝑜 cos 𝜃

4𝜋𝜖𝑜𝑟
{−

𝜔

𝑐
sin(𝜔(𝑡 − 𝑟 𝑐⁄ )) +

1

𝑟
cos(𝜔(𝑡 − 𝑟 𝑐⁄ ))} 

In the static limit 𝜔 = 0, we get potential of a stationary dipole:  

𝑉 =
𝑝𝑜 cos 𝜃

4𝜋𝜖𝑜𝑟
2

 

We are interested in the fields that survive at large distances from the source, in the so-called 

radiation zone. 

Approximation 3:  𝑟 ≫
𝑐

𝜔
 or 𝑟 ≫ 𝜆 



In this region, potential reduces to: 

𝑉(𝑟, 𝜃, 𝑡) = −
𝑝𝑜𝜔

4𝜋𝜖𝑜𝑐
(
cos 𝜃

𝑟
) sin(𝜔(𝑡 − 𝑟 𝑐⁄ )) 

Meanwhile the vector potential is determined by the current flowing in the wire: 

𝐼(𝑡) =
𝑑𝑞

𝑑𝑡
𝑧̂ = −𝑞𝑜𝜔 sin(𝜔𝑡) 𝑧̂ 

Retarded vector potential is defined as: 

𝐴(𝒓⃗⃗, 𝑡) =
𝜇𝑜
4𝜋

∫
𝐽(𝑟′, 𝑡𝑟)

∆𝑟
𝑑𝜏′ =

𝜇𝑜
4𝜋

∫
−𝑞𝑜𝜔 sin[𝜔(𝑡 − Δ𝑟/𝑐)] 𝑧̂

Δ𝑟

𝑑/2

−𝑑/2

𝑑𝑧 

Since the integration itself introduces a factor of d, we can replace the integrant by its value at 

the center. 

𝐴(𝑟, 𝜃, 𝑡) = −
𝜇𝑜𝑝𝑜𝜔

4𝜋𝑟
sin[𝜔(𝑡 − 𝑟/𝑐)] 𝑧̂ 

Once we know the potentials, we can easily find the fields. 

∇⃗⃗⃗𝑉 =
𝜕𝑉

𝜕𝑟
𝑟̂ +

1

𝑟

𝜕𝑉

𝜕𝜃
𝜃 

 

Using approximation 3, we can drop the first and last term: 

∇⃗⃗⃗𝑉 ≅
𝑝𝑜𝜔

2

4𝜋𝜖𝑜𝑐2
(
cos 𝜃

𝑟
) cos[𝜔(𝑡 − 𝑟/𝑐)] 𝑟̂ 

Similarly,  

𝜕𝐴

𝜕𝑡
= −

𝜇𝑜𝑝𝑜𝜔
2

4𝜋𝑟
cos[𝜔(𝑡 − 𝑟/𝑐)] (cos𝜃 𝑟̂ − sin𝜃 𝜃̂) 

Hence 

𝐸⃗⃗ = ∇⃗⃗⃗𝑉 −
𝜕𝐴

𝜕𝑡
= −

𝜇𝑜𝑝𝑜𝜔
2

4𝜋
(
sin𝜃
𝑟

) cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] 𝜃̂…(1) 

Meanwhile  

∇⃗⃗⃗ × A⃗⃗⃗ =
1

𝑟
[
𝜕

𝜕𝑟
(𝑟𝐴𝜃) −

𝜕𝐴𝑟
𝜕𝜃

] 𝜙̂ 



∇⃗⃗⃗ × A⃗⃗⃗ = −
𝜇𝑜𝑝𝑜𝜔

4𝜋𝑟
{
𝜔
𝑐
sin𝜃cos [𝜔 (𝑡 −

𝑟
𝑐
)]+

sin𝜃
𝑟

sin [𝜔 (𝑡 −
𝑟
𝑐
)]} 𝜙̂ 

The second term can be eliminated by approximation 3, so 

𝐵⃗⃗ = ∇⃗⃗⃗ × A⃗⃗⃗ = −
𝜇𝑜𝑝𝑜𝜔

2

4𝜋𝑐
sin𝜃
𝑟

cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] 𝜙̂…(2) 

Equations (1) and (2) represent monochromatic waves of frequency 𝜔 travelling in the radial 

direction at the speed of light. 𝐸⃗⃗ and 𝐵⃗⃗ are in phase and perpendicular to each other and 

perpendicular to the direction of the direction of propagation of the wave. And the ratio of 

their amplitudes is 
𝐸𝑜

𝐵𝑜
= 𝑐.  

These are actually spherical waves, not plane waves, and their amplitudes decrease like 1/𝑟 as 

they progress. But for larger r, they are approximately plane over small regions. 

The energy radiated by an oscillating electric dipole is determined by the Poynting vector: 

𝑆 =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) =

𝜇𝑜
𝑐
[
𝑝𝑜𝜔

2

4𝜋
(
sin 𝜃

𝑟
) cos[𝜔(𝑡 − 𝑟 𝑐⁄ )]]

2

𝑟̂ 

The intensity is obtained by taking the time average over a complete cycle: 

〈𝑆〉 =
𝜇𝑜
2𝑐

(
𝑝𝑜𝜔

2

4𝜋

sin 𝜃

𝑟
)

2

𝑟̂ = (
𝜇𝑜𝑝𝑜

2𝜔4

32𝜋2𝑐
)
sin2 𝜃

𝑟2
𝑟̂ 

Note that there is no radiation in the direction of the dipole where sin 𝜃 = 0, the intensity 

profile takes the shape of the donut, with its maximum at the equatorial plane as shown in the 

figure below. 

The total power radiated is found by integrating 

〈𝑆〉 over a sphere of radius r: 

〈𝑃〉 = ∫〈𝑆〉. 𝑑𝑎⃗ 

〈𝑃〉 = (
𝜇𝑜𝑝𝑜

2𝜔4

32𝜋2𝑐
)∫ ∫

sin2 𝜃

𝑟2
⁡𝑟2 sin 𝜃 ⁡𝑑𝜃⁡𝑑𝜙

𝜋

0

2𝜋

0
  

〈𝑃〉 =
𝜇𝑜𝑝𝑜

2𝜔4

12𝜋𝑐
 

The power radiated is independent of the radius of the sphere, due to conservation of energy. 

Example: 

The sharp frequency dependence of the power formula is what accounts for the blueness of the 

sky. Sunlight passing through the atmosphere stimulates atoms to oscillate as tiny dipoles. 



Sunlight covers a broad range of frequencies but the energy absorbed and radiated by the 

atmospheric dipoles is strongest at the higher frequencies because of the 𝜔4 factor in the 

radiated energy. 

Since EM waves are transverse so dipoles oscillate in a plane orthogonal to the sun’s rays. The 

redness of sunset is the other side of the same coin: sunlight coming in at a tangent to the 

earth’s surface must pass through a much longer stretch of atmosphere than sunlight coming 

from overhead. Accordingly, much of the blue has been removed by scattering what’s left is 

red. 

11.1.3 Magnetic Dipole Radiation 

Suppose we have a wire loop of radius b, carrying an alternating current: 

𝐼(𝑡) = 𝐼𝑜 cos(𝜔𝑡) 

This is a model for an oscillating magnetic dipole, with magnetic moment: 

𝑚⃗⃗⃗(𝑡) = 𝜋𝑏2𝐼(𝑡)𝑧̂ = 𝜋𝑏2𝐼𝑜 cos(𝜔𝑡) 𝑧̂ 

Where 𝑚𝑜 = 𝜋𝑏2𝐼𝑜 is the maximum value of the 

magnetic dipole moment. The loop is uncharged so the 

scalar potential is zero. 

The retarded vector potential is: 

𝐴(𝑟, 𝑡) =
𝜇𝑜
4𝜋

∫
𝐼𝑜 cos[𝜔(𝑡 − Δ𝑟 𝑐⁄ )]

Δ𝑟
𝑑𝑙′ 

For a point 𝑟 directly above the x-axis, 𝐴 must aim in the 

y-direction, since the x-components from symmetrically 

placed points on either side of the x-axis will cancel.  

𝐴(𝑟, 𝑡) =
𝜇𝑜𝐼𝑜𝑏

4𝜋
𝑦̂∫

cos[𝜔(𝑡 − Δ𝑟 𝑐⁄ )]

Δ𝑟
cos𝜙′ 𝑑𝜙′ 

Where  

Δ𝑟 = √𝑟2 + 𝑏2 − 2𝑟𝑏 cos𝜓 

Where 𝜓 is the angle between the vectors 𝑟 and 𝑏⃗⃗: 

𝑟 = 𝑟 sin 𝜃 𝑥̂ + 𝑟 cos 𝜃 𝑧̂  and  𝑏⃗⃗ = 𝑏 cos𝜙′ 𝑥̂ + 𝑏 sin𝜙′ 𝑦̂ 

𝑟𝑏 cos𝜓 = 𝑟. 𝑏⃗⃗ = 𝑟𝑏 sin 𝜃 cos𝜙′⁡ 

Δ𝑟 = √𝑟2 + 𝑏2 − 2𝑟𝑏 sin 𝜃 cos𝜙′ 

For a perfect dipole we would like the loop to be small: 



Approximation 1: 𝑏 ≪ 𝑟 

Δ𝑟 ≅ 𝑟 (1 −
𝑏

𝑟
sin 𝜃 cos𝜙′) 

1

Δ𝑟
≅
1

𝑟
(1 +

𝑏

𝑟
sin 𝜃 cos𝜙′) 

cos[𝜔(𝑡 − Δ𝑟 𝑐⁄ )] ≅ cos [𝜔(𝑡 − 𝑟 𝑐⁄ )+
𝜔𝑏
𝑐

sin 𝜃 cos𝜙′] 

= cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] cos [
𝜔𝑏
𝑐

sin 𝜃 cos𝜙′] − sin[𝜔(𝑡 − 𝑟 𝑐⁄ )] sin [
𝜔𝑏
𝑐

sin 𝜃 cos𝜙′] 

We will also assume that the size of the dipole is small compared to the wavelength radiated: 

Approxiomation 2: 𝑏 ≪
𝑐

𝜔
 

In that case,  

cos[𝜔(𝑡 − Δ𝑟 𝑐⁄ )] ≅ cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] −
𝜔𝑏
𝑐

sin 𝜃 cos𝜙′ sin[𝜔(𝑡 − 𝑟 𝑐⁄ )] 

So 

𝐴(𝑟, 𝑡) =
𝜇𝑜𝐼𝑜𝑏

4𝜋
𝑦̂∫

cos[𝜔(𝑡 − Δ𝑟 𝑐⁄ )]

Δ𝑟
cos𝜙′ 𝑑𝜙′ 

𝐴(𝑟, 𝑡) =
𝜇𝑜𝐼𝑜𝑏

4𝜋𝑟
𝑦̂ ∫ [cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] −

𝜔𝑏

𝑐
sin 𝜃 cos𝜙′ sin[𝜔(𝑡 − 𝑟 𝑐⁄ )]] (1 +

𝑏

𝑟
sin 𝜃 cos𝜙′) cos𝜙′ 𝑑𝜙′ 

The first term integrates to zero because: 

∫ cos𝜙′ 𝑑𝜙′
2𝜋

0

= 0 

The second term involves the integral of cosine squared: 

∫ cos2 𝜙′ 𝑑𝜙′
2𝜋

0

= 𝜋 

Using the cosine integrals and noting that in general 𝐴 points in the 𝜙̂ direction, we get: 

𝐴(𝑟, 𝜃, 𝑡) =
𝜇𝑜𝑚𝑜

4𝜋
(
sin 𝜃

𝑟
) {
1

𝑟
cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] −

𝜔

𝑐
sin[𝜔(𝑡 − 𝑟 𝑐⁄ )]} 𝜙̂ 

In the static limit 𝜔 = 0 and we recover the formula for potential of a magnetic dipole: 

𝐴(𝑟, 𝜃) =
𝜇𝑜
4𝜋

𝑚𝑜 sin 𝜃

𝑟2
𝜙̂ 



And in the radiation zone: 

Approximation 3:  𝑟 ≫
𝑐

𝜔
 

The first term in 𝐴 is negligible, so: 

𝐴(𝑟, 𝜃, 𝑡) = −
𝜇𝑜𝑚𝑜𝜔

4𝜋
(
sin 𝜃

𝑟
) sin[𝜔(𝑡 − 𝑟 𝑐⁄ )] 𝜙̂ 

We can get the electric field at large r: 

𝐸⃗⃗ = −
𝜕𝐴

𝜕𝑡
=
𝜇𝑜𝑚𝑜𝜔

2

4𝜋𝑐
(
sin 𝜃

𝑟
) cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] 𝜙̂ 

𝐵⃗⃗ = ∇⃗⃗⃗ × 𝐴 =
𝜇𝑜𝑚𝑜𝜔

2

4𝜋𝑐2
(
sin 𝜃

𝑟
) cos[𝜔(𝑡 − 𝑟 𝑐⁄ )] 𝜃 

The field are in phase, mutually perpendicular and transverse to the direction of propagation 

(𝑟̂), and the ratio of their amplitudes is 𝐸𝑜 𝐵𝑜⁄ = 𝑐, all which is as expected for EM waves. 

The energy flux for magnetic dipole radiation is: 

𝑆 =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) =

𝜇𝑜
𝑐
{
𝑚𝑜𝜔

2

4𝜋𝑐
(
sin 𝜃

𝑟
) cos[𝜔(𝑡 − 𝑟 𝑐⁄ )]}

2

𝑟̂ 

And the intensity is: 

〈𝑆〉 =
𝜇𝑜𝑚𝑜

2𝜔4

32𝜋2𝑐3
sin2 𝜃

𝑟2
𝑟̂ 

And the total radiated power is: 

〈𝑃〉 =
𝜇𝑜𝑚𝑜

2𝜔4

12𝜋𝑐3
 

Magnetic dipole has the intensity profile as the shape of a donut and the power radiated goes 

like 𝜔4. 

For configurations with comparable dimensions, the power radiated by electrical dipole is much 

greater than the power radiated by magnetic dipole: 

𝑃𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
= (

𝑚𝑜

𝑝𝑜𝑐
)
2

⁡ 

Where 𝑚𝑜 = 𝜋𝑏2𝐼𝑜 and 𝑝𝑜 = 𝑞𝑜𝑑. The amplitude of current in the electrical case was 𝐼𝑜 = 𝑞𝑜𝜔 

Now setting 𝑑 = 𝜋𝑏, for the sake of comparison: 

 



𝑃𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝑃𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
= (

𝜔𝑏

𝑐
)
2

 

And 
𝜔𝑏

𝑐
 is exactly the quantity that we assumed was very small (approximation 2) and here it is 

squared. So we should expect electric dipole radiation to dominate. 

 

11.1.4 Radiation from an arbitrary source 

Assume there is a charge configuration localized within some finite volume near the origin. 

The retarded scalar potential is: 

𝑉(𝑟, 𝑡) =
1

4𝜋𝜖𝑜
∫
𝜌(𝑟′, 𝑡 − ∆𝑟/𝑐⁡)

∆𝑟
𝑑𝜏′ 

Where  

∆𝑟 = √𝑟2 + 𝑟′2 − 2𝑟. 𝑟′ 

We assume that the field point 𝑟 is far away 

compared to the dimension of the source: 

Approximation 1:  𝑟′ ≪ 𝑟 

Hence  

∆𝑟 ≅ 𝑟 (1 −⁡
𝑟. 𝑟′

𝑟2
) 

1

∆𝑟
≅
1

𝑟
(1 +⁡

𝑟. 𝑟′

𝑟2
) 

𝜌(𝑟′, 𝑡 − ∆𝑟/𝑐) ≅ 𝜌 (𝑟′, 𝑡 −
𝑟⁡

𝑐
+
𝑟̂. 𝑟′

𝑐
) 

Expanding 𝜌 as a Taylor series in t about the retarded time at the origin: 

𝑡𝑜 = 𝑡 −
𝑟

𝑐
 

𝜌(𝑟′, 𝑡 − ∆𝑟/𝑐) ≅ 𝜌(𝑟′, 𝑡𝑜) +⁡ 𝜌̇(𝑟′, 𝑡𝑜) (
𝑟̂. 𝑟′

𝑐
) +⋯ 

Expanding 𝜌 as Taylor series in t about the retarded time at the origin: 

𝑡𝑜 = 𝑡 −
𝑟

𝑐
⁡… (1) 



𝜌 (𝑟′, 𝑡 −
𝑟

𝑐
) ≅ 𝜌(𝑟′, 𝑡𝑜) + 𝜌̇(𝑟′, 𝑡𝑜) (

𝑟̂. 𝑟′

𝑐
) +⋯ 

The next terms in the series can be dropped, provided: 

Approximation 2:     𝑟′ ≪
𝑐

|𝜌̈−𝜌̇|
 , 

𝑐

|𝜌⃛−𝜌̇|1/2
 , 

𝑐

|𝜌
….
−𝜌̇|1/3

⁡ , … 

For an oscillating system, each of these ratios is 
𝑐

𝜔
 , and we recover the old approximation 2. 

The result of approximation 1 and 2 is to keep only the first-order terms in 𝑟′. Hence: 

𝑉(𝑟, 𝑡) ≅
1

4𝜋𝜖𝑜𝑟
[∫𝜌(𝑟′, 𝑡𝑜)𝑑𝜏

′ +
𝑟̂

𝑟
.∫ 𝑟′𝜌(𝑟′, 𝑡𝑜)𝑑𝜏

′ +
𝑟̂

𝑐
.
𝑑

𝑑𝑡
∫𝑟′𝜌(𝑟′, 𝑡𝑜)𝑑𝜏

′] 

The first integral is simply the total charge Q at time 𝑡𝑜. Because, charge is conserved, however, 

Q is independent of time. The other two integrals represent the electric dipole moment at time 

𝑡𝑜. Thus 

𝑉(𝑟, 𝑡) ≅
1

4𝜋𝜖𝑜
[
𝑄

𝑟
+
𝑟̂. 𝒑⃗⃗⃗(𝑡𝑜)

𝑟2
+
𝑟̂. 𝒑̇(𝑡𝑜)⁡

𝑟𝑐
]… (2) 

In the static case the first two terms are the monopole and dipole contributions to the 

multipole expansion for V, the third term, however, would not be present. 

The vector potential will be: 

𝐴(𝑟, 𝑡) =
𝜇𝑜
4𝜋

∫
𝐽(𝑟′, 𝑡 − ∆𝑟/𝑐⁡)

∆𝑟
⁡𝑑𝜏′ 

To first order in 𝑟′ it suffices to replace ∆𝑟 by 𝑟 in the integrand: 

𝐴(𝑟, 𝑡) =
𝜇𝑜
4𝜋𝑟

∫ 𝐽(𝑟′, 𝑡𝑜⁡)⁡𝑑𝜏
′ 

As we proved in chapter 5, the integral of 𝐽 is the time derivative of the dipole moment. 

𝐴(𝑟, 𝑡) ≅
𝜇𝑜
4𝜋

𝒑̇(𝑡𝑜)

𝑟
 

To find the electric and magnetic fields in the radiation zones, i.e. at large distances from the 

source, we keep terms only that go like 1/𝑟: 

Approximation 3: discard 1/𝑟2 terms in 𝐸⃗⃗ and 𝐵⃗⃗: 

For instance, the Coulomb field, 𝐸⃗⃗ =
1

4𝜋𝜖𝑜

𝑄

𝑟2
𝑟̂ coming from the first term in equation (1) does 

not contribute to the electromagnetic radiation. In fact the radiation comes entirely from the 

terms in which we differentiate the argument 𝑡𝑜. 



∇⃗⃗⃗𝑡𝑜 = ∇⃗⃗⃗(𝑡 − 𝑟/𝑐⁡) = −
1

𝑐
∇⃗⃗⃗𝑟 = −

1

𝑐
𝑟̂ 

Hence 

∇⃗⃗⃗𝑉 ≅ ∇⃗⃗⃗ [
1

4𝜋𝜖𝑜
⁡
𝑟̂. 𝒑̇(𝑡𝑜)⁡

𝑟𝑐
] ≅

1

4𝜋𝜖𝑜
[
𝑟̂. 𝒑̈(𝑡𝑜)⁡

𝑟𝑐
] ∇⃗⃗⃗𝑡𝑜 = −

1

4𝜋𝜖𝑜
⁡
[𝑟̂. 𝒑̈(𝑡𝑜)]⁡

𝑟
𝑟̂ 

Similarly, 

∇⃗⃗⃗ × 𝐴 =
𝜇𝑜
4𝜋𝑟

[∇⃗⃗⃗ × 𝒑̇(𝑡𝑜)] =
𝜇𝑜
4𝜋𝑟

[∇⃗⃗⃗𝑡𝑜 × 𝒑̈(𝑡𝑜)] = −
𝜇𝑜
4𝜋𝑟

[𝑟̂ × 𝒑̈(𝑡𝑜)] 

𝜕𝐴

𝜕𝑡
≅
𝜇𝑜
4𝜋

𝒑̈(𝑡𝑜)

𝑟
 

 

𝐸⃗⃗(𝑟, 𝑡) =
𝜇𝑜
4𝜋𝑟

[(𝑟̂. 𝒑̈)𝑟̂ − 𝒑̈] =
𝜇𝑜
4𝜋𝑟

[𝑟̂ × (𝑟̂ × 𝒑̈(𝑡𝑜))] 

𝐵⃗⃗(𝑟, 𝑡) = −
𝜇𝑜
4𝜋𝑟

[𝑟̂ × 𝒑̈(𝑡𝑜)] 

If we use spherical coordinates, with the z-axis in the direction of 𝒑̈(𝑡𝑜), then 

𝐸⃗⃗(𝑟, 𝜃, 𝑡) =
𝜇𝑜𝒑̈(𝑡𝑜)

4𝜋
(
sin 𝜃

𝑟
) 𝜃 

𝐵⃗⃗(𝑟, 𝜃, 𝑡) =
𝜇𝑜𝒑̈(𝑡𝑜)

4𝜋𝑐
(
sin 𝜃

𝑟
) 𝜙̂ 

Note that 𝐸⃗⃗ and 𝐵⃗⃗ are mutually perpendicular to each other and perpendicular to the direction 

of propagation. Also the ratio 
𝐸𝑜

𝐵𝑜
= 𝑐, as always for radiation fields. 

The Poynting vector is: 

𝑆 =
1

𝜇𝑜
(𝐸⃗⃗ × 𝐵⃗⃗) =

𝜇𝑜
16𝜋2𝑐

[𝒑̈(𝑡𝑜)]
2 (

sin2 𝜃

𝑟2
) 𝑟̂ ⁡… (5) 

And the total radiated power is: 

𝑃 ≅ ∫𝑆. 𝑑𝑎⃗ =
𝜇𝑜𝒑̈

𝟐

6𝜋𝑐
⁡… (6) 

(4) 


