
Chap12-Electrodynamics and Relativity 

12.1 The Special Theory of Relativity 

12.1.1 Einstein’s Postulates 

Classical mechanics obeys the principle of relativity, the same laws apply in any inertial 

reference frame. An inertial frame is the one that is at rest or moving with a constant velocity. 

In classical mechanics the principle of relativity was first given by Galileo. Does it apply in 

electrodynamics, the answer seems to be NO. because moving charges produce magnetic field 

but stationary charges don’t. If we have charge glued on a train and set in motion then for an 

observer on the ground it produces a magnetic field but not for the observer riding the same 

train. May of the electrodynamics equations make reference to the velocity of the charge. This 

means that electromagnetic theory presupposes the existence of a unique stationary reference 

frame, with respect to which all the velocities are measured. 

Suppose we mount a wire loop on a freight car 

and have the train pass between the poles of 

a giant magnet as shown in Fig.1 . As the loop 

rides through the magnetic field, a motional 

EMF is established: 

𝜀 = −
𝑑Φ

𝑑𝑡
 

This EMF is due to the magnetic force on the 

charges in the wire loop, which are moving 

along with the train. 

If someone on the train applies the laws of electrodynamics in that system, he will not predict 

any magnetic force because the loop is not moving. However, a giant magnet will fly by, the 

magnetic field in the freight car will change and a changing magnetic field induces an electric 

field, by Faraday’s law. The resulting electric field will generated an EMF in the loop: 

𝜀 = −
𝑑Φ

𝑑𝑡
 

Since Faraday’s law and the flux rule predicted the same EMF, observer on the train will get the 

right answer, even though their physical interpretation of the situation in completely wrong. Or 

Is It? 

Einstein could not believe this was a mere coincidence, he instead realized that electromagnetic 

phenomenon, like mechanical ones, obey the principle of relativity. 

Figure 1: 



In his view, the analysis of the observer on the train is as valid as the analysis of the observer on 

the ground. If their interpretations differ (one calling the process electric and the other 

magnetic), so be it; their actual predictions are in agreement. 

Einstein explained that observable phenomenon depended on the relative motion of the 

conductor and the magnet. According to his predecessors the equality of the two EMF’s was 

just a lucky coincidence, to them only one observer was right and the other was wrong. 

They thought of electric and magnetic fields as strains in an invisible jelly like medium called 

ETHER, which permeated all of the space. The speed of the charge was to be measured with 

respect to the stationary ether- only then would the laws of electrodynamics be valid. The train 

observer is wrong because that frame is moving with respect to the ether. 

Now among the results of classical electrodynamics is the prediction that electromagnetic 

waves travel through the vacuum at a speed: 

1

√𝜖𝑜𝜇𝑜

= 3.00 × 108 𝑚/𝑠 

relative to the ether. One should be able to detect the ether wind (as motorbike rider feels air 

wind). 

Michelson and Morley performed their famous experiment and determined the following: 

- The speed of light is exactly the same in all directions. 

This was difficult to explain because all other waves (water waves, sound waves, etc) travel at a 

prescribed speed relative to the propagating medium and if this medium is in motion with 

respect to the observer, the net speed is always greater “downstream” than “upstream”. 

Einstein took the results of Michelson Morely experiment at its face value and suggested that 

the speed of light is a universal constant, the same in all directions, regardless of the motion of 

the observer or the source. There is no ether wind because there is no ether. 

Einstein produced his two famous postulates: 

1. The principle of relativity: The law of physics apply in all inertial reference system. 

2. The universal speed of light: The speed of light in vacuum is the same for all inertial 

observers regardless of the motion of the source.  

The special theory of relativity is derived from these two postulates, the first elevates Galileo’s 

observation about classical mechanics to the status of a general law, applying to all of physics. It 

states that there is no absolute rest system. 

The second is considered as Einstein’s response to Michelson Morley experiment and it means 

that there is no ether. 



Consider a man walks 5 km/h down the corridor of a train that is moving at 60km/h, so the net 

speed of the person relative to the ground would be 65 km/h. The speed of person A with 

respect to ground C (𝑣𝐴𝐶) is equal to the sum of speed of the train B with respect to ground 

(𝑣𝐵𝐶) and speed of the person A with respect to train B (𝑣𝐴𝐵): 

𝑣𝐴𝐶 = 𝑣𝐴𝐵 + 𝑣𝐵𝐶    … (1) 

But if A is a light whether it comes from a flash light on the train, or from the lamp on the 

ground or from a star in the sky, according to Einstein, it will be same. 

𝑣𝐴𝐶 = 𝑣𝐴𝐵 = 𝑐   … (2) 

Equation (1) is called Galileo’s velocity addition rule, which is incompatible with the second 

postulate. According to Einstein’s velocity addition rule: 

𝑣𝐴𝐶 =
𝑣𝐴𝐵 + 𝑣𝐵𝐶

1 + (𝑣𝐴𝐵𝑣𝐵𝐶/𝑐2)
   … (3) 

For “ordinary” speeds (𝑣𝐴𝐵 ≪ 𝑐 , 𝑣𝐵𝐶 ≪ 𝑐), the denominator is so close to one that there is 

almost no difference in Galileo’s rule and Einstein’s rule. But if 𝑣𝐴𝐵 = 𝑐 , then according to 

Einstein’s formula: 

𝑣𝐴𝐶 =
𝑐 + 𝑣𝐵𝐶

1 + (𝑐 ∗ 𝑣𝐵𝐶/𝑐2)
= 𝑐 

Example 1:  

(a) What is the percent error introduced when you use Galileo’s rule, instead of Einstein’s, 

with 𝑣𝐴𝐵 = 5 𝑘𝑚/ℎ and 𝑣𝐵𝐶 = 60 𝑘𝑚/ℎ? 

(b) Suppose you could run at half the speed of light down the corridor of a train going three 

quarters the speed of light. What would your speed be relative to the ground? 

 

Solution: 

(a)  

𝑣𝐺 = 𝑣𝐴𝐵 + 𝑣𝐵𝐶 = 5 + 60 = 65 𝑘𝑚/ℎ 

𝑣𝐸 =
𝑣𝐴𝐵 + 𝑣𝐵𝐶

1 + (𝑣𝐴𝐵𝑣𝐵𝐶/𝑐2)
≈ 𝑣𝐺 (1 −

𝑣𝐴𝐵𝑣𝐵𝐶

𝑐2
) 

𝑣𝐺 − 𝑣𝐸

𝑣𝐺
=

𝑣𝐴𝐵𝑣𝐵𝐶

𝑐2
=

5 ∗ 60

(1.08 ∗ 109)2
= 2.57 ∗ 10−14% 

(b)  

𝑐 = 3 ∗ 108
𝑚

𝑠
= 3 ∗ 108 ∗ 10−3 ∗ 3600 = 1.08 ∗ 109 𝑘𝑚/ℎ 



𝑣𝐺 = 𝑣𝐴𝐵 + 𝑣𝐵𝐶 = 0.5𝑐 + 0.75𝑐 = 1.25𝑐 

 

𝑣𝐸 =
𝑣𝐴𝐵 + 𝑣𝐵𝐶

1 + (𝑣𝐴𝐵𝑣𝐵𝐶/𝑐2)
=

0.5𝑐 + 0.75𝑐

1 + (
0.5𝑐 ∗ 0.75𝑐

𝑐2 )
= 0.909𝑐 

Example 2: 

As the outlaws escape in their getaway car, which goes 
3

4
𝑐 , the police officer fires a bullet from 

the pursuit car, which only goes 
1

2
𝑐 . The muzzle velocity of the bullet (relative to the gun) is 

1

3
𝑐. 

Does the bullet reach its target (a) according to Galileo, (b) according to Einstein. 

 

(a) According to Galileo: 

𝑣𝐵𝐺 = 𝑣𝑚𝑢𝑧𝑧𝑙𝑒 + 𝑣𝑝𝑜𝑙𝑖𝑐𝑒 =
1

3
𝑐 +

1

2
𝑐 =

5

6
𝑐 =

10

12
𝑐 

The speed of outlaws’ car is 
3

4
𝑐 =

9

12
𝑐 

This means bullet reaches the target. 

(b) According to Einstein: 

𝑣𝐵𝐺 =
𝑣𝑚𝑢𝑧𝑧𝑙𝑒 + 𝑣𝑝𝑜𝑙𝑖𝑐𝑒

1 + (𝑣𝑚𝑢𝑧𝑧𝑙𝑒𝑣𝑝𝑜𝑙𝑖𝑐𝑒/𝑐2)
=

1
3 𝑐 +

1
2 𝑐

1 + (
1
6)

=
5

7
𝑐 =

20

28
𝑐 

The speed of outlaws’ car is 
3

4
𝑐 =

21

28
𝑐 

The bullet does not reach the target. 

 

 

 

 

 

 

 



 

12.1.2 The Geometry of Relativity 

(i) The relativity of Simultaneity 

Imagine a freight car, traveling at a constant speed along a smooth track. In the very center of 

the car there hangs a light bulb. When someone switches it ON, the light spreads out in all 

directions at speed c. An observer on the train will notice that light reaches the front and back 

end of the car simultaneously. 

 

However, an observer on the ground will notice that these two events are not simultaneous. 

According to him event (b) happened before event (a).  

And an observer passing by an express train would report that event (a) preceded event (b). 

Conclusion: 

The two events that are simultaneous in one inertial system are not, in general, simultaneous 

in another. 

(ii) Time Dilation 

Now let’s consider a light ray that leaves the bulb and strikes the floor of the car directly below. 

How long does it take for the light to make this trip? 

Well, from the point of view of the observer on the train, the answer is ∆𝑡̅ = ℎ/𝑐 if the height 

of the bulb from the floor is ℎ. 

When observed from the ground then the ray must travel more distance because the train itself 

is moving and the distance travelled by the light is 

√ℎ2 + (𝑣∆𝑡)2 : 

∆𝑡 =
√ℎ2 + (𝑣∆𝑡)2

𝑐
 

∆𝑡 =
ℎ

𝑐

1

√1 − 𝑣2/𝑐2
=

∆𝑡̅

√1 −
𝑣2

𝑐2

 

∆𝑡̅ = ∆𝑡√1 − 𝑣2 𝑐2⁄  



 

Hence the time elapsed between the same two events, for the two observers is different. The 

interval recorded on the train is shorter by a factor: 

𝛾 =
1

√1 − 𝑣2 𝑐2⁄
 

Conclusion: 

Moving clocks run slow 

This is called time dilation. Of all Einstein’s prediction, time dilation was experimentally 

confirmed. Most elementary particles are unstable, they disintegrate after a characteristic 

lifetime, for example, the lifetime of neutron is 15 minutes, of a muon is 2 × 10−6s and of a 

neutral pion is 9x10-17 s. These are lifetime at rest and when they are moving at speeds close to 

c then they last much longer, for their internal clocks are running slow, in accordance with 

Einstein’s time dilation. 

Example 3: 

A muon is travelling through the laboratory at three-fifths the speed of light. How long does it 

last? 

Solution: 

𝛾 =
1

√1 − 𝑣2 𝑐2⁄
=

5

4
 

So it lives longer (than rest) by a factor of 5/4: 

5

4
∗ (2 × 10−6) = 2.5 × 10−6𝑠 

Example 4: 

In a laboratory experiment a muon is observed to travel 800m before disintegrating. A graduate 

student looks up the lifetime of a muon (2 × 10−6 𝑠) and concludes its speed was: 

𝑣 =
800𝑚

2 × 10−6
= 4 × 108 𝑚/𝑠 

Which is greater than the speed of light. Where did the student made a mistake? 

Solution: 

Student failed to take the time dilation into account. The lifetime of muon when moving is: 



𝜏 = 𝛾𝜏̅ =
𝜏̅

√1 − 𝑣2 𝑐2⁄
=

2 × 10−6

√1 − 𝑣2/𝑐2
 

So the speed of muon is: 

𝑣 =
𝑠

𝜏
=

800 ∗ √1 − 𝑣2/𝑐2

2 × 10−6
 

𝑣2 = (
800

2 × 10−6
)
2

∗ (1 −
𝑣2

𝑐2
) = 1.6 ∗ 1017 −

1.6 ∗ 1017

9 ∗ 1016
𝑣2 = 1.6 ∗ 1017 − 1.77778𝑣2 

2.77778𝑣2 = 1.6 ∗ 1017 

𝑣 = √
1.6 ∗ 1017

2.77778
= 2.4 ∗ 108 𝑚/𝑠 

Which is less than the speed of light. 

(iii) Lorentz Contraction 

In the third experiment, if we have a lamp at one end of the moving car and mirror at the other 

end. How long will it take for the light to travel to the mirror and reflect back to the lamp. 

 

For an observer on the car: 

∆𝑡̅ = 2
∆𝑥̅

𝑐
 … (1) 

But for an observer on the ground, due to motion of the train, the time for the light signal to 

reach the front ∆𝑡1 is different than the return time ∆𝑡2: 

∆𝑡1 =
∆𝑥 + 𝑣∆𝑡1

𝑐
 

∆𝑡2 =
∆𝑥 − 𝑣∆𝑡2

𝑐
 

Solving for ∆𝑡1 and ∆𝑡2: 



∆𝑡1 =
∆𝑥

𝑐−𝑣
    and    ∆𝑡2 =

∆𝑥

𝑐+𝑣
 

The total time for the trip: 

∆𝑡 = ∆𝑡1 + ∆𝑡2 = 2
∆𝑥

𝑐

1

(1 − 𝑣2/𝑐2)
… (2)  

These same intervals are related by the time dilation formula, as: 

∆𝑡̅ = √1 − 𝑣2/𝑐2 ∆𝑡 

Using this in equation (1) and (2), we get: 

2
∆𝑥̅

𝑐
= √1 − 𝑣2/𝑐2  (2

∆𝑥

𝑐

1

(1 − 𝑣2/𝑐2)
) 

 

∆𝑥̅ =
1

√1 −
𝑣2

𝑐2

 ∆𝑥 

The length of the car is not the same when measured by an observer on the ground- it is 

shorter by a factor 𝛾 = 1/√1 − 𝑣2/𝑐2 

Conclusion: 

Moving objects are shortened 

This is called Lorentz contraction. 

A moving object is shortened only along the direction of motion. 

Dimensions perpendicular to the velocity are not contracted. 

 

Example 5: 

A sailboat is manufactured so that the mast leans at an angle 

𝜃̅ with respect to the deck. An observer standing on a dock 

sees the boat go by at speed v as shown in the figure. What 

angle does this observer say the mast makes? 

Solution: 

Let’s say the length of the mass is 𝑙.̅ To an observer on the 

boat, height of the mast is : 

𝑦̅ = 𝑙 ̅ sin 𝜃̅ 



Horizontal projection of the mast is: 

𝑥̅ = 𝑙 ̅ cos 𝜃̅ 

To observer on the dock, the height is unaffected because there is no relative velocity in that 

direction, but the horizontal length is contracted: 

𝑥 =
1

𝛾
(𝑙 ̅ cos 𝜃̅) 

𝑦 = 𝑙 ̅ sin 𝜃̅ 

The angle seen by the observer on the dock is: 

tan 𝜃 =
𝑦

𝑥
=

𝑙 ̅ sin 𝜃̅

1
𝛾 (𝑙 ̅ cos 𝜃̅)

= 𝛾 tan 𝜃̅ =
tan 𝜃̅

√1 −
𝑣2

𝑐2

 

 

12.1.3 The Lorentz Transformation 

Suppose an event happens in one inertial frame 𝑆 with coordinates (𝑥, 𝑦, 𝑧, 𝑡) and we would 

like to translate the same event in another inertial reference frame 𝑆̅ with coordinates 

(𝑥̅, 𝑦̅, 𝑧̅, 𝑡̅) . We need a “dictionary” for translating for the language of 𝑆 to the language of 𝑆̅. 

We may orient our axes as shown in the figure, so that 

𝑆̅ slides with speed 𝑣 along the x-axis of 𝑆. If we start 

the clock (𝑡 = 0) at the moment the origins (O and 𝑂̅) 

coincide. Then at time t, 𝑂̅ will be a distance 𝑣𝑡 from 

O, and hence: 

𝑥 = 𝑑 + 𝑣𝑡 … (1) 

Where d is the distance from 𝑂̅ to 𝐴̅ at time t (𝐴̅ is the 

point on the 𝑥̅ axis which is even with E when the 

event occurs.) 

Before Einstein, it was believed that 

𝑑 = 𝑥̅ … (2) 

And thus construct the “dictionary”: 

(i) 𝑥̅ = 𝑥 − 𝑣𝑡 

(ii) 𝑦̅ = 𝑦 

(iii) 𝑧̅ = 𝑧 

(iv) 𝑡̅ = 𝑡 

(3) 



These are now called Galilean transformations.  

In the context of special relativity, however we must expect (iv) to be replaced by a rule that 

incorporates dilation, the relativity of simultaneity and the non-synchronization of the moving 

clocks. Similarly, there will be a modification in (i) to account for the Lorentz contraction. As for 

(ii) and (iii), they remain unchanged because there is no change in length perpendicular to the 

direction of motion. 

Let’s examine how (i) breaks down? From equation (2), d is the distance from 𝑂̅ to 𝐴̅ as 

measured in S, whereas 𝑥̅ is the distance from 𝑂̅ to 𝐴̅ as measured in 𝑆̅. Because 𝑂̅ and 𝐴̅ are at 

rest in 𝑆̅, so 𝑥̅ is the “moving stick” which appears contracted to S: 

𝑑 =
1

𝛾
𝑥̅ 

𝑥̅ = 𝛾(𝑥 − 𝑣𝑡) … (4) 

We can make the same argument form the point of view of 𝑆̅. The figure below looks similar to 

the above figure, but in this case, it depicts the scene at time 𝑡̅, whereas the above figure 

showed the scene at time t.   

Suppose that 𝑆̅ also starts the clock when the origins 

coincide, then at time 𝑡̅, O will be a distance 𝑣𝑡̅ from 

𝑂̅, and therefore: 

𝑥̅ = 𝑑̅ − 𝑣𝑡̅ 

Where 𝑑̅ is the distance from O to A at time 𝑡̅ , and A 

is that point on the x-axis which is even with E when 

the event occurs. 

Classically 𝑥 = 𝑑̅ but according to relativity, since 𝑥 is 

the distance from O to A in S, whereas 𝑑̅ is the 

distance from O to A in 𝑆̅. Because O and A are at rest in S , x is the “moving stick” with respect 

to 𝑆̅. Hence 

𝑑̅ =
1

𝛾
𝑥 

𝑥 = 𝛾(𝑥̅ + 𝑣𝑡̅) … (5) 

Using 𝑥̅ from equation (4) and substitute in equation (5), we get: 

𝑡̅ = 𝛾 (𝑡 −
𝑣

𝑐2
𝑥) 

So we get the following transformation: 



(i) 𝑥̅ = 𝛾(𝑥 − 𝑣𝑡) 

(ii) 𝑦̅ = 𝑦 

(iii) 𝑧̅ = 𝑧 

(iv) 𝑡̅ = 𝛾 (𝑡 −
𝑣

𝑐2 𝑥) 

These are the Lorentz transformations, with which Einstein replaced the Galilean ones. The 

reverse dictionary which takes 𝑆̅ back to S, is as follows: 

(i) 𝑥 = 𝛾(𝑥̅ + 𝑣𝑡̅) 

(ii) 𝑦 = 𝑦̅ 

(iii) 𝑧 = 𝑧̅ 

(iv) 𝑡 = 𝛾 (𝑡̅ +
𝑣

𝑐2 𝑥̅) 

Einstein’s velocity addition rule: 

Suppose a particle moves a distance 𝑑𝑥 (in S) in a time 𝑑𝑡. Its velocity is then: 

𝑢 =
𝑑𝑥

𝑑𝑡
 

In 𝑆̅, meanwhile, it moved a distance: 

𝑑𝑥̅ = 𝛾(𝑑𝑥 − 𝑣𝑑𝑡) 

And  

𝑑𝑡̅ = 𝛾 (𝑑𝑡 −
𝑣

𝑐2
𝑑𝑥) 

Hence the velocity in 𝑆̅ is: 

𝑢̅ =
𝑑𝑥̅

𝑑𝑡̅
=

𝛾(𝑑𝑥 − 𝑣𝑑𝑡)

𝛾 (𝑑𝑡 −
𝑣
𝑐2 𝑑𝑥)

=
(
𝑑𝑥
𝑑𝑡

− 𝑣)

1 −
𝑣
𝑐2

𝑑𝑥
𝑑𝑡

 
=

𝑢 − 𝑣

1 − 𝑢𝑣/𝑐2
 

This is Einstein’s velocity addition rule. If we let A be the particle, B be 𝑆 and C by 𝑆̅ :  

then = 𝑣𝐴𝐵  , 𝑢̅ = 𝑣𝐴𝐶  and 𝑣 = 𝑣𝐶𝐵 = −𝑣𝐵𝐶  

𝑢̅ = 𝑣𝐴𝐶 =
𝑣𝐴𝐵 + 𝑣𝐵𝐶

1 + (𝑣𝐴𝐵𝑣𝐵𝐶/𝑐2)
 

 

 

 

 

(6) 

(7) 



12.1.4 The structure of Spacetime 

(i) Four Vectors 

The Lorentz transformation take on a simpler appearance when expressed in terms of the 

quantities: 

𝑥0 ≡ 𝑐𝑡   ,   𝛽 = 𝑣/𝑐 

Using 𝑥0 (instead of t) and using 𝛽 (instead of v) amount to changing the unit of time from the 

second to the meter- 1 meter of 𝑥0 corresponds to the time it takes for the light to travel 1 

meter (in vacuum). Similarly, we can number the x, y, and z coordinates as: 

𝑥1 = 𝑥  , 𝑥2 = 𝑦   ,    𝑥3 = 𝑧 

Then the Lorentz transformation is: 

(i) 𝑥̅0 = 𝛾(𝑥0 − 𝛽𝑥1) 

(ii) 𝑥̅1 = 𝛾(𝑥1 − 𝛽𝑥0) 

(iii) 𝑥̅2 = 𝑥2 

(iv) 𝑥̅3 = 𝑥3 

Or in matrix form: 

 

Or 

𝑥̅𝜇 = ∑(Λ𝜈
𝜇
)𝑥𝜈

3

𝜈=0

 

Where Λ is the Lorentz transformation matrix (the superscript μ labels the row and the 

subscript 𝜈 labels the column). An advantage of writing in this abstract manner is that we can 

handle in the same format a more general transformation where relative motion is not along a 

common 𝑥 𝑥̅ axis; the matrix Λ will be more complicated but the structure is the same. 

We can define a 4-vector as any set of four components that transform in the same manner as 

(𝑥0, 𝑥1, 𝑥2, 𝑥3) under Lorentz transformations: 

  

(8) 



𝑎̅𝜇 = ∑(Λ𝜈
𝜇
)𝑎𝜈

3

𝜈=0

 

For the particular case of the transformation along x-axis: 

𝑎̅0 = 𝛾(𝑎0 − 𝛽𝑎1) 

𝑎̅1 = 𝛾(𝑎1 − 𝛽𝑎0) 

𝑎̅2 = 𝑎2 

𝑎̅3 = 𝑎3 

This is a 4-vector analog to a dot product (𝑨.𝑩 = 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧), but it is not just the 

sum of the products of the like components, rather the zeroth component have a minus sign: 

−𝑎0𝑏0 + 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 

This is the four dimensional scalar product, and it has the same value in all inertial frames. 

−𝑎̅0𝑏̅0 + 𝑎̅1𝑏1 + 𝑎̅2𝑏̅2 + 𝑎̅3𝑏̅3 = −𝑎0𝑏0 + 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 

Just as the ordinary dot product is invariant under rotation, this combination is invariant under 

Lorentz transformation. 

We can introduce a covariant vector 𝑎𝜇, which differs from the contravariant 𝑎𝜇 only in the 

sign of the zeroth component. 

𝑎𝜇 = (𝑎0, 𝑎2, 𝑎2, 𝑎3) ≡ (−𝑎0, 𝑎1, 𝑎2, 𝑎3) 

Upper indices designate contravariant vectors and lower indices are for covariant vectors. 

Raising or lowering the temporal index costs a minus sign (𝑎0 = −𝑎0), but raising or lower 

spatial indices does not change anything (𝑎1 = 𝑎1, 𝑎2 = 𝑎2, 𝑎3 = 𝑎3). 

The scalar products can be written with the summation symbol: 

∑ 𝑎𝜇𝑏𝜇

3

𝜇=0

 

Or more compactly: 

𝑎𝜇𝑏𝜇 

Summation is implied when the Greek index is repeated in a product-once as a covariant index 

and once as contravariant. This is called Einstein summation convention. 

𝑎𝜇𝑏𝜇 = 𝑎𝜇𝑏𝜇 = −𝑎0𝑏0 + 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 

 



(ii) The invariant interval 

Suppose event A occurs at (𝑥𝐴
0 , 𝑥𝐴

1 , 𝑥𝐴
2 , 𝑥𝐴

3) and event B occurs at (𝑥𝐵
0  , 𝑥𝐵

1  , 𝑥𝐵
2  , 𝑥𝐵

3). The 

difference, 

∆𝑥𝜇 = 𝑥𝐴
𝜇

− 𝑥𝐵
𝜇

 

is the displacement 4-vector. The scalar product of ∆𝑥𝜇 with itself is a quantity of special 

importance; we call it the interval between two events: 

𝐼 = −(∆𝑥0)2 + (∆𝑥1)2 + (∆𝑥2)2 + (∆𝑥3)2 = −𝑐2𝑡2 + 𝑑2 

Where t is the difference between the two events and d is their spatial separation. When you 

transform to a moving system, the time between A and B is altered (𝑡̅ ≠ 𝑡) and so is the spatial 

separation (𝑑̅ ≠ 𝑑) but the interval 𝐼 remains the same. 

𝑑̅ = 𝛾(𝑑 − 𝑣𝑡) 

𝑡̅ = 𝛾 (𝑡 −
𝑣

𝑐2
𝑑) 

𝐼 ̅ = −𝑐2𝑡̅2 + 𝑑̅2 = −𝑐2𝛾2 [𝑡2 +
𝑣2

𝑐4
𝑑2 − 2𝑡

𝑣

𝑐2
𝑑] + 𝛾2[𝑑2 + 𝑣2𝑡2 − 2𝑑𝑣𝑡] 

𝐼 ̅ = −𝑐2𝛾2𝑡2 −
𝛾2𝑣2

𝑐2
𝑑2 + 2𝑡𝑣𝛾2𝑑 + 𝛾2𝑑2 + 𝛾2𝑣2𝑡2 − 2𝑑𝑣𝑡𝛾2

= 𝛾2(𝑣2 − 𝑐2)𝑡2 − 𝛾2 (
𝑣2

𝑐2
− 1)𝑑2

=
𝑐2

(𝑐2 − 𝑣2)
(𝑣2 − 𝑐2)𝑡2 −

𝑐2

(𝑐2 − 𝑣2)
 (𝑣2 − 𝑐2)

𝑑2

𝑐2
 

𝐼 ̅ = −𝑐2𝑡2 + 𝑑2 = 𝐼 

Depending on the two events in question, the interval can be positive, negative or zero: 

1. If 𝐼 < 0 we call the interval timelike, for this is the sign we get when the two events 

occur at the same place (𝑑 = 0) and are separated only temporally. 

2. If 𝐼 > 0 we call the interval spacelike, for this is the sign we get when the two events 

occur at the same time (𝑡 = 0) and are separated only spatially. 

3. If 𝐼 = 0 we call the interval lightlike, for this is the relation that holds when the two 

events are connected by a signal travelling at the speed of light. 

If the interval between the events is timelike, there exists an inertial system (accessible by 

Lorentz transformation) where they occur at the same point. On the other hand, if the interval 

is spacelike, there exists a system in which the two events occur at the same time. 

 



(iii) Space-time diagrams 

To represent the motion of a particle, a space-time graph is drawn. In relativity, time is drawn 

along the vertical axis and position is drawn along the horizontal line. A vertical line represents 

a particle at rest. A line with slope of 45° represent a particle moving with the speed of light 

and particle with intermediate speed is represented with the slope 
𝑐

𝑣
=

1

𝛽
 . We call such plots 

Minkowski diagrams. The trajectory of a 

particle in Minkowski diagram is called a  

world line. Since no particle can move 

faster than the speed of light, so world 

line cannot have slope less than 1.  

Our motion is restricted to the wedge-

shaped region bounded by the two 45° 

degree lines. This is the locus of all points 

accessible to us. At any moment the 

forward edge is the “future” and the 

backward edge is the “past”. 

In this drawing y and z-axes are ignored, if y-axis is included coming out of the page then it will 

represent a cone and if we include z-axis as well then it will become a hypercone. 

The slope of the line connecting two events on the 

space-time diagram tells us whether the invariant 

interval between them is timelike (slope greater than 

1) , spacelike (slope less than 1) or lightlike (slope=1)  

If the invariant interval between two events is 

timelike, their ordering is absolute;  

if the interval is spacelike, their ordering depends on 

the inertial system from which they are observed. 

Physics is based on the notion of causality, if it were 

possible to reverse the order of two events, then we 

could never say “A caused B” since a rival observer 

would retort that B preceded A. 

Conclusion: The invariant interval between causally related events is always timelike, and 

their temporal ordering is the same for all inertial observers. 

 

 

 



12.2 Relativistic Mechanics 

As one progresses along his world line, his watch runs slow, while the clock on the wall ticks off 

an interval dt, his watch only advances 𝑑𝜏: 

𝑑𝜏 = √1 − 𝑢2/𝑐2 𝑑𝑡 

Where 𝑢 will be used as the velocity of the person (or particle) and 𝑣 will be used for the 

relative velocity of two inertial systems. The time 𝝉 associated with the moving objects is called 

proper time. 

Proper time is invariant whereas “ordinary” time t depends on the particular reference frame.  

If you are in a plane which is moving with velocity 
4

5
𝑐, then velocity means with respect to the 

ground, so 

𝑢 =
𝑑𝑙

𝑑𝑡
 

Where 𝑑𝑙 and 𝑑𝑡 are to be measured by the ground observer. However, the velocity measured 

by the observer on the plane is: 

𝜂 =
𝑑𝑙

𝑑𝜏
 

This hybrid quantity-distance measured on the ground but time measured in the plane frame is 

called proper velocity where we will call 𝑢 the ordinary velocity. 

The two velocities are related by the equation: 

𝜂 =
𝑑𝑙

𝑑𝜏
=

𝑑𝑙

√1 − 𝑢2/𝑐2 𝑑𝑡
=

𝑢

√1 − 𝑢2/𝑐2
 

Proper velocity has an enormous advantage over ordinary velocity when transforming from 

one inertial system to another because 𝜏 is invariant in any inertial system. In fact 𝜂 is the 

spatial part of a 4-vector: 

𝜂𝜇 =
𝑑𝑥𝜇

𝑑𝜏
 

Whose zeroth component is: 

𝜂0 =
𝑑𝑥0

𝑑𝜏
= 𝑐

𝑑𝑡

𝑑𝜏
=

𝑐

√1 − 𝑢2/𝑐2
 

When we go from system 𝑆 to system 𝑆̅ , moving at speed 𝑣 along the common 𝑥 𝑥̅ axis, 

𝜂̅0 = 𝛾(𝜂0 − 𝛽𝜂1) 



𝜂̅1 = 𝛾(𝜂1 − 𝛽𝜂0) 

𝜂̅2 = 𝜂2 

𝜂̅3 = 𝜂3 

Or more generally, 

𝜂̅𝜇 = Λ𝜈
𝜇
 𝜂𝜈 

Where 𝜂𝜈 is called the proper velocity 4-vector , or simply the 4-velocity. 

By contrast, the transformation rule for ordinary velocities is extremely cumbersome 

𝑢̅𝑥 =
𝑑𝑥̅

𝑑𝑡̅
=

𝑢𝑥 − 𝑣

(1 − 𝑣𝑢𝑥/𝑐2)
 

𝑢̅𝑦 =
𝑑𝑦̅

𝑑𝑡̅
=

𝑢𝑦

𝛾(1 − 𝑣𝑢𝑥/𝑐2)
 

𝑢̅𝑧 =
𝑑𝑥̅

𝑑𝑡̅
=

𝑢𝑧

𝛾(1 − 𝑣𝑢𝑥/𝑐2)
 

For ordinary velocity we need to transform both the numerator 𝑑𝑙 and the denominator 𝑑𝑡. 

Whereas for proper velocity we only need to transform the numerator 𝑑𝑙. 

 

Example 6: 

A car is travelling along the 45° line in S as shown in the figure below, at ordinary speed 

(2/√5)𝑐. 

(a) Find the components 𝑢𝑥 and 𝑢𝑦 of the ordinary 

velocity. 

(b) Find the components 𝜂𝑥 and 𝜂𝑦 of the proper 

velocity. 

(c) Find the zeroth component of the 4-velocity, 𝜂0 

System 𝑆̅ is moving in the x-direction with (ordinary) 

speed (√2/5)𝑐 relative to 𝑆. By using the appropriate transformation laws,  

(d) Find the (ordinary) velocity components 𝑢̅𝑥 and 𝑢̅𝑦 in 𝑆̅. 

(e) Find the proper velocity components 𝜂̅𝑥 and 𝜂̅𝑦 in 𝑆̅. 

(f) As a consistency check, verify that: 

𝜂̅ =
𝑢̅

√1 − 𝑢̅2/𝑐2
 



Solution: 

a)                                                  𝑢𝑥 = 𝑢𝑦 = 𝑢 cos 45° =
1

√2

2

√5
𝑐 = √

2

5
 𝑐 

b)  

1

√1 −
𝑢2

𝑐2

=
1

√1 −
4
5

= √5 

𝜂𝜇 =
𝑑𝑥𝜇

𝑑𝜏
  𝜂𝑥 =

𝑑𝑥

𝑑𝜏
=

𝑑𝑥

√1−
𝑢2

𝑐2  𝑑𝑡

=
𝑢𝑥

√1−
𝑢2

𝑐2

=
(√2/5) 𝑐

√1−
4𝑐2

5
 ∗

1

𝑐2

= √2𝑐 = 𝜂𝑦 

c)  

𝜂0 =
𝑑𝑥0

𝑑𝜏
= 𝑐

𝑑𝑡

𝑑𝜏
=

𝑐

√1 − 𝑢2/𝑐2
=

𝑐

√1 −
4
5

= √5 𝑐 

d)  

𝑢̅𝑥 =
𝑑𝑥̅

𝑑𝑡̅
=

𝑢𝑥 − 𝑣

(1 −
𝑣𝑢𝑥

𝑐2 )
=

√2
5

𝑐 − √2
5

 𝑐

(1 −
2
5
)

= 0 

𝑢̅𝑦 =
𝑑𝑦̅

𝑑𝑡̅
=

𝑢𝑦

𝛾(1 − 𝑣𝑢𝑥/𝑐2)
= √1 − 𝑢2/𝑐2

√2
5

𝑐

(1 −
2
5
)

= √1 −
2

5

√2
5

𝑐

(1 −
2
5
)

= √
2

3
𝑐 

e)  

𝜂̅𝑥 = 𝛾(𝜂𝑥 − 𝛽𝜂0) = √1 −
2

5
 (√2 −

𝑣

𝑐

𝑐

√1 − 𝑢2/𝑐2
) = √

3

5
 

(

 √2𝑐 − √
2

5
 𝑐 ∗

1

√1 −
4
5)

 = 0 = 𝜂𝑥 

𝜂̅𝑦 = 𝜂𝑦 = √2 𝑐 

f)  

𝜂̅ =
1

√1 − 𝑢̅2/𝑐2
𝑢̅ =

1

√1 −
2
3

𝑢̅ = √3 𝑢̅ 

𝜂̅𝑥 = √3 𝑢̅𝑥 = 0 



𝜂̅𝑦 = √3 𝑢̅𝑦 = √3 ∗ √
2

3
𝑐 = √2𝑐 

Which are same values as we found in part (e) 

 

 

12.2.2 Relativistic Energy and Momentum 

Momentum is mass times velocity but what velocity we should use, ordinary velocity or proper 

velocity. The answer is we need to use proper velocity because law of conservation of 

momentum would be inconsistent with the principle of relativity if we use ordinary velocity. 

Hence 

𝑝⃗ = 𝑚𝜂⃗ =
𝑚𝑢⃗⃗

√1 − 𝑢2/𝑐2
 

This is the relativistic momentum and this is spatial part of a 4-vector. 

𝑝𝜇 = 𝑚𝜂𝜇  

And the temporal component is: 

𝑝0 = 𝑚𝜂0 =
𝑚𝑐

√1 − 𝑢2/𝑐2
 

Einstein called: 

𝑚𝑟𝑒𝑙 =
𝑚

√1 − 𝑢2/𝑐2
 

The relativistic mass (so that 𝑝0 = 𝑚𝑟𝑒𝑙𝑐 and 𝑝⃗ = 𝑚𝑟𝑒𝑙 𝑢⃗⃗ and m itself is called the rest mass) 

But now we just use energy terminology instead: 

𝐸 = 𝑝0𝑐 =
𝑚𝑐2

√1 − 𝑢2/𝑐2
 

𝑝0 = 𝐸/𝑐 

Notice that relativistic energy is non-zero even if the particle is not moving, it is called rest 

energy. 

𝐸𝑟𝑒𝑠𝑡 = 𝑚𝑐2 

And the remainder which is attributed to motion, is called kinetic energy. 



𝐸𝑘𝑖𝑛 = 𝐸 − 𝑚𝑐2 = 𝑚𝑐2 (
1

√1 − 𝑢2/𝑐2
− 1) 

In the non-relativistic regime (𝑢 ≪ 𝑐), the square root can be expanded in powers of 𝑢2/𝑐2 

giving: 

  

𝐸𝑘𝑖𝑛 = 𝑚𝑐2 (1 +
1

2

𝑢2

𝑐2
+

3

8

𝑢4

𝑐4
+ ⋯− 1) =

1

2
𝑚𝑢2 +

3

8

𝑚𝑢4

𝑐2
+ ⋯ 

The leading term reproduces the classical formula. 

In every closed system, the total relativistic energy and momentum are conserved. 

(Rest mass is not conserved because of its conversion to energy) 

We have to understand the distinction between the invariant quantity (same value in all inertial 

frames) and conserved quantity (same value before and after a process). For example, mass is 

invariant but not conserved, energy is conserved but not invariant, velocity is neither conserved 

nor invariant. 

The scalar product of 𝑝𝜇 with itself gives: 

𝑝𝜇𝑝𝜇 = −(𝑝0)2 + (𝑝⃗. 𝑝⃗) = −𝑚2𝑐2 

In terms of the relativistic energy: 

𝐸2 − 𝑝2𝑐2 = 𝑚2𝑐4 

This result is useful because we can calculate E if we know p and vice versa. 

 

Example 7:   

Consider that in an inertial frame S, a particle A (mass 𝑚𝐴 , velocity 𝑢⃗⃗𝐴) hits particle B (mass 𝑚𝐵 

, velocity 𝑢⃗⃗𝐵) and they are moving in the opposite direction 𝑢⃗⃗𝐴 = −𝑢⃗⃗𝐵. Suppose it is a 

completely inelastic collision where the two particles stick after the collision and come to rest. 

(a) Prove that using incorrect definition of momentum 𝑝⃗ = 𝑚𝑢⃗⃗ but with correct Einstein 

velocity addition rule, momentum is conserved in S but not conserved in 𝑆̅ which is 

another inertial from moving with velocity 𝑣⃗ with respect to S. 

(b) Now use the correct definition of momentum 𝑝⃗ = 𝑚𝜂⃗ and see if the momentum is 

conserved in both S and 𝑆̅. What must you assume about relativistic energy? 

Solution: 

(a)  



𝑚𝐴𝑢𝐴 + 𝑚𝐵𝑢𝐵 = 𝑚𝐶𝑢𝐶 + 𝑚𝐷𝑢𝐷 

According to Einstein’s velocity addition rule: 

𝑢𝑖 =
𝑢̅𝑖 + 𝑣

1 + (𝑢̅𝑖𝑣/𝑐2)
 

𝑚𝐴

𝑢̅𝐴 + 𝑣

1 + (𝑢̅𝐴𝑣/𝑐2)
+ 𝑚𝐵

𝑢̅𝐵 + 𝑣

1 + (𝑢̅𝐵𝑣/𝑐2)
= 𝑚𝐶

𝑢̅𝐶 + 𝑣

1 + (𝑢̅𝐶𝑣/𝑐2)
+ 𝑚𝐷

𝑢̅𝐷 + 𝑣

1 + (𝑢̅𝐷𝑣/𝑐2)
 

Now suppose all the masses are equal and 𝑢𝐴 = −𝑢𝐵 = 𝑣 and 𝑢𝐶 = 𝑢𝐷 = 0 . This is a 

completely inelastic collision in S and momentum is conserved. 

But according to Einstein’s velocity addition rule: 

𝑢̅𝑖 =
𝑣 − 𝑢𝑖

𝑢𝑖𝑣
𝑐2 − 1

 

𝑢̅𝐴 = 0 and 𝑢̅𝐵 = −
2𝑣

(1+𝑣2/𝑐2)
  ,   𝑢̅𝐶 = 𝑢̅𝐷 = −𝑣 

So in frame 𝑆̅ , the momentum before and after the collision is: 

𝑚𝑢̅𝐴 + 𝑚𝑢̅𝐵 = 𝑚𝑢̅𝐶 + 𝑚𝑢̅𝐷 

0 −
2𝑣

(1 +
𝑣2

𝑐2)
= −2𝑣 

Which is not conserved. 

(b) Now using the correct definition of relativisitic momentum and use proper velocity: 

𝑚𝐴𝜂𝐴 + 𝑚𝐵𝜂𝐵 = 𝑚𝐶𝜂𝐶 + 𝑚𝐷𝜂𝐷 

Where according to Lorentz transformation: 

𝜂𝑖 = 𝛾(𝜂̅𝑖 + 𝛽𝜂̅𝑖
0) 

Hence in 𝑆̅ frame: 

𝑚𝐴𝛾(𝜂̅𝐴 + 𝛽𝜂̅𝐴
0) + 𝑚𝐵𝛾(𝜂̅𝐵 + 𝛽𝜂̅𝐵

0) = 𝑚𝐶𝛾(𝜂̅𝐶 + 𝛽𝜂̅𝐶
0) + 𝑚𝐷𝛾(𝜂̅𝐷 + 𝛽𝜂̅𝐷

0 ) 

𝑚𝐴𝜂̅𝐴 + 𝑚𝐵𝜂̅𝐵 + 𝛽(𝑚𝐴𝜂̅𝐴
0 + 𝑚𝐵𝜂̅𝐵

0) = 𝑚𝐶𝜂̅𝐶 + 𝑚𝐷𝜂̅𝐷 + 𝛽(𝑚𝐶𝜂̅𝐶
0 + 𝑚𝐷𝜂̅𝐷

0 ) 

But 𝑚𝑖𝜂̅𝑖
0 = 𝐸𝑖/𝑐 so if energy is conserved, then 

𝑚𝐴𝜂̅𝐴 + 𝑚𝐵𝜂̅𝐵 = 𝑚𝐶𝜂̅𝐶 + 𝑚𝐷𝜂̅𝐷 

Momentum is conserved as well in 𝑆̅. 

 



12.2.3 Relativistic Kinematics 

 

Example 8: 

Two lumps of clay, each of (rest) mass m, collide head-on at 
3

5
𝑐 as depicted in the figure below. 

They stick together after the collision. What is the mass (M) of the composite lump? 

 

Solution: 

In this case conservation of momentum is simple, zero before and zero after. The energy of 

each lump prior to the collision is: 

𝑚𝑐2

√1 − (
3
5
)
2

 

=
5

4
𝑚𝑐2 

The energy of the composite lump after the collision is 𝑀𝑐2 because it is at rest. 

𝑀𝑐2 =
5

4
𝑚𝑐2 +

5

4
𝑚𝑐2 =

5

2
𝑚𝑐2 

𝑀 =
5

2
𝑚 

 Note that mass after the collision is greater than before the collision, mass is not conserved 

because kinetic energy was converted into rest energy, hence the mass increased. 

In classical mechanics we cannot think about massless particle with energy and momentum 

because they will be zero. But in relativity we can have a massless particle with energy and 

momentum if it is moving with a speed of light then both denominator and numerator of the 

momentum would be zero leaving it indeterminate. 

𝑝⃗ =
𝑚𝑢⃗⃗

√1 − 𝑢2/𝑐2
 

So a massless particle can have energy and momentum as long as it is moving with the speed 

of light. One example is photons that are massless and move with the speed of light but carry 

energy and momentum. Although relativity does not tell us why different photons have 



different energy when they have the same mass (zero) and same speed (c). This we know from 

quantum mechanics, where Plank found that energy of a photon is dependent on its frequency: 

𝐸 = ℎ𝜈 where ℎ is plank’s constant. [A blue photon is more energetic than a red photon]  

 

 

Example 09: Compton Scattering: A photon of energy 𝐸𝑜 “bounces” off an electron, initially at 

rest. Find the energy E of the outgoing photon, as a function of the scattering angle 𝜃. 

Solution: 

Conservation of momentum in the vertical direction gives: 

𝑝𝑒 sin 𝜙 = 𝑝𝑝 sin 𝜃 

Since 𝑝𝑝 =
𝐸

𝑐
 

sin𝜙 =
𝐸

𝑝𝑒𝑐
sin 𝜃 

Conservation of momentum in the 

horizontal direction gives: 

𝐸𝑜

𝑐
= 𝑝𝑝 cos 𝜃 + 𝑝𝑒 cos𝜙 

=
𝐸

𝑐
cos 𝜃 + 𝑝𝑒√1 − (

𝐸

𝑝𝑒𝑐
sin 𝜃)

2

 

𝑝𝑒
2𝑐2 = (𝐸𝑜 − 𝐸 cos 𝜃)2 + 𝐸2 sin2 𝜃 = 𝐸𝑜

2 − 2𝐸𝑜𝐸 cos 𝜃 + 𝐸2 

Finally, conservation of energy says that: 

𝐸𝑜 + 𝑚𝑐2 = 𝐸 + 𝐸𝑒 = 𝐸 + √𝑚2𝑐4 + 𝑝𝑒
2𝑐2 = 𝐸 + √𝑚2𝑐4 + 𝐸𝑜

2 − 2𝐸𝑜𝐸 cos 𝜃 + 𝐸2 

𝐸 =
1

(1 − cos 𝜃)
𝑚𝑐2 + (

1
𝐸𝑜

)
 

If we express it interms of photon wavelength: 

𝐸 = ℎ𝜈 =
ℎ𝑐

𝜆
 

𝜆 = 𝜆𝑜 +
ℎ

𝑚𝑐
(1 − cos 𝜃) 



The quantity (ℎ/𝑚𝑐) is called the Compton wavelength of the electron. 

 

12.2.4 Relativistic Dynamics 

Newton’s second law is valid in the relativistic mechanics as long as the momentum is 

considered relativistic momentum, 

𝐹⃗ =
𝑑𝑝⃗

𝑑𝑡
 

Example 10: 

Motion under a constant force: A particle of mass m is subject to a constant force F. If it starts 

from rest at the origin, at time t=0, find its position (x) as a function of time. 

Solution: 

𝑑𝑝

𝑑𝑡
= 𝐹 → 𝑝 = 𝐹𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

But since 𝑝 = 𝑜 at 𝑡 = 0, the constant must be zero, and hence: 

𝑝 =
𝑚𝑢

√1 −
𝑢2

𝑐2

= 𝐹𝑡 

Solving for u, we obtain: 

𝑢 =
(𝐹/𝑚)𝑡

√1 + (
𝐹𝑡
𝑚𝑐)

2
 

The numerator is the classical answer if (
𝐹

𝑚
) 𝑡 ≪ 𝑐. But the relativistic denominator ensures 

that 𝑢 never exceeds  ; in fact as 𝑡 → ∞ , 𝑢 → 𝑐. 

To complete the problem we must integrate again: 

𝑥(𝑡) =
𝐹

𝑚
∫

𝑡′

√1 + (
𝐹𝑡′

𝑚𝑐)
2
𝑑𝑡′

𝑡

0

=
𝑚𝑐2

𝐹
√1 + (

𝐹𝑡

𝑚𝑐
)

2

|

𝑜

𝑡

=
𝑚𝑐2

𝐹
[√1 + (

𝐹𝑡

𝑚𝑐
)
2

− 1] 

In place of a classical parabola, 𝑥 = (𝐹/2𝑚)𝑡2 ,the graph is hyperbola; for this reason motion 

under a constant force is often called hyperbolic motion. It occurs for example, when a charged 

particle is placed in a uniform electric field. 

Work done by the field is the line integral of the force: 



𝑊 = ∫𝐹⃗. 𝑑𝑙 

The work-energy theorem holds relativistically as well: 

𝑊 = ∫
𝑑𝑝⃗

𝑑𝑡
. 𝑑𝑙 = ∫

𝑑𝑝⃗

𝑑𝑡
.
𝑑𝑙

𝑑𝑡
𝑑𝑡 = ∫

𝑑𝑝⃗

𝑑𝑡
. 𝑢⃗⃗ 𝑑𝑡 

𝑑𝑝⃗

𝑑𝑡
. 𝑢⃗⃗ =

𝑑

𝑑𝑡

(

 
𝑚𝑢⃗⃗

√1 −
𝑢2

𝑐2)

 =
𝑑𝐸

𝑑𝑡
 

𝑊 = ∫
𝑑𝐸

𝑑𝑡
𝑑𝑡 = 𝐸𝑓𝑖𝑛𝑎𝑙 − 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

Since the rest energy is constant so 𝑊 = 𝐾𝑓𝑖𝑛𝑎𝑙 − 𝐾𝑖𝑛𝑖𝑡𝑖𝑎𝑙  

Newton’s third law does not extend to relativistic domain. If the two objects are separated in 

space, the third law is incompatible with the relativity of simultaneity. For suppose the force of 

A onto object B at some instant t is 𝐹(𝑡) , and the force of B on A at the same instant is −𝐹(𝑡); 

then the third law applies in this frame. But a moving observer will report that these equal and 

opposite forces did not occur at the same time, so in his frame the third law is violated. 

 Since 𝐹⃗ is the derivative of momentum with respect to ordinary time, it shares the ugly 

behavior of “ordinary” velocity when you go from one inertial system to another: both the 

numerator and denominator must be transformed. Thus 

𝐹̅𝑦 =
𝑑𝑝̅𝑦

𝑑𝑡̅
=

𝑑𝑝𝑦

𝛾𝑑𝑡 −
𝛾𝛽
𝑐 𝑑𝑥

=
𝑑𝑝𝑦/𝑑𝑡

𝛾 (1 −
𝛽
𝑐

𝑑𝑥
𝑑𝑡

)
=

𝐹𝑦

𝛾 (1 −
𝛽
𝑐 𝑢𝑥)

 

Similarly for the z-component: 

𝐹̅𝑧 =
𝐹𝑧

𝛾 (1 −
𝛽
𝑐 𝑢𝑥)

 

The x-component will be: 

𝐹̅𝑥 =
𝑑𝑝̅𝑥

𝑑𝑡̅
=

𝛾𝑑𝑝𝑥 − 𝛾𝛽𝑑𝑝0

𝛾𝑑𝑡 −
𝛾𝛽
𝑐 𝑑𝑥

=

𝑑𝑝𝑥

𝑑𝑡
− 𝛽

𝑑𝑝0

𝑑𝑡

1 −
𝛽
𝑐

𝑑𝑥
𝑑𝑡

=
𝐹𝑥 −

𝛽
𝑐 (

𝑑𝐸
𝑑𝑡

)

1 −
𝛽
𝑐 𝑢𝑥

 

Where  

𝑑𝐸

𝑑𝑡
=

𝑑𝑝⃗

𝑑𝑡
. 𝑢⃗⃗ = 𝐹⃗. 𝑢⃗⃗ 



𝐹̅𝑥 =
𝐹𝑥 −

𝛽
𝑐 (𝐹⃗. 𝑢⃗⃗)

1 −
𝛽
𝑐 𝑢𝑥

 

If the particle is (instantaneously) at rest in S, so that 𝑢⃗⃗ = 0, then 

𝐹̅⊥ =
1

𝛾
𝐹⊥ 

𝐹̅∥ = 𝐹∥ 

The component of 𝐹⃗ parallel to the motion of 𝑆̅ is unchanged, whereas the components 

perpendicular are divided by 𝛾. 

We could avoid this ugly transformation by introducing a “proper” force, analogous to proper 

velocity, which would be the derivative of momentum with respect to proper time.  

𝐾𝜇 ≡
𝑑𝑝𝜇

𝑑𝜏
 

This is called the Minkowski force; it is plainly a 4-vector, since 𝑝𝜇 is a 4-vector and proper time 

is invariant. The spatial component of 𝐾𝜇 are related to the “ordinary” force by: 

𝐾⃗⃗⃗ = (
𝑑𝑡

𝑑𝜏
)
𝑑𝑝⃗

𝑑𝑡
=

1

√1 −
𝑢2

𝑐2

𝐹⃗ 

While the zeroth component, 

𝐾0 ≡
𝑑𝑝0

𝑑𝜏
=

1

𝑐

𝑑𝐸

𝑑𝜏
   where    𝑝0 = 𝐸/𝑐 

It is the (proper) rate at which the energy of the particle increases or the (proper) power 

delivered to the particle. 

Relativistic dynamics can be formulated in terms of the ordinary force or in terms of the 

Minkowski force. 

 

Example 11: 

Hidden Momentum: As a model for a magnetic dipole m, consider a rectangular loop of wire 

carrying a steady current. Picture the current as a stream of noninteracting positive charges 

that move freely within the wire. When a uniform electric field 𝐸⃗⃗ is applied as shown in the 

figure below, the charges accelerate in the left segment and decelerate in the right one. Find 

the total momentum of all the charges in the loop. 



 Solution: 

Momenta of the left and right segments cancel, so we need only consider the top and the 

bottom segments. Suppose there are N+ charges in the top segment going at speed u+ to the 

right and N- charges in the lower segment going at (slower) speed u- to the left. 

The current is the same in all segments (𝐼 = 𝜆𝑢) else charge would be piling up somewhere. 

𝐼 =
𝑄𝑁+

𝑙
𝑢+ =

𝑄𝑁−

𝑙
𝑢− 

𝑁±𝑢± =
𝐼𝑙

𝑄
 

Where Q is the charge of each particle and 𝑙 is 

the length of the rectangle. Classically total 

momentum is: 

𝑝𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 𝑀𝑁+𝑢+ − 𝑀𝑁−𝑢− = 𝑀
𝐼𝑙

𝑄
− 𝑀

𝐼𝑙

𝑄
= 0 

As one would expect because the loop as a whole is not moving. But relativisitically: 

𝑝⃗ = 𝛾𝑀𝑢⃗⃗ 

And we get: 

𝑝 = 𝛾+𝑀𝑁+𝑢+ − 𝛾−𝑀𝑁−𝑢− =
𝑀𝐼𝑙

𝑄
(𝛾+ − 𝛾−) 

Which is not zero, because the particle in the upper segment are moving faster. In fact the gain 

in energy (𝛾𝑀𝑐2) as a particle goes up the left segment, is equal to the work done by the 

electric force, 𝑄𝐸𝑤 where 𝑤 is the height of the loop, so 

𝛾+ − 𝛾− =
𝑄𝐸𝑤

𝑀𝑐2
 

𝑝 =
𝑀𝐼𝑙

𝑄
(𝛾+ − 𝛾−) =

𝑀𝐼𝑙

𝑄
 
𝑄𝐸𝑤

𝑀𝑐2
=

𝐼𝑙𝐸𝑤

𝑐2
 

Where 𝐼𝑙𝑤 is the dipole moment of the loop, as vectors 𝑚⃗⃗⃗ points into the page and 𝑝⃗ is to the 

right, so 

𝑝⃗ =
1

𝑐2
(𝑚⃗⃗⃗ × 𝐸⃗⃗) 



Thus a magnetic dipole in an electric field carries linear momentum, even though it is not 

moving! This so called hidden momentum is strictly relativistic, and purely mechanical; it 

precisely cancels the electromagnetic momentum stored in the fields. 

 

12.3 Relativistic Electrodynamics 

12.3.1 Magnetism as a Relativistic Phenomenon 

Unlike Newtonian mechanics, classical electrodynamics is already consistent with special 

relativity. Maxwell’s equations and the Lorentz force law can be applied legitimately in an 

inertial system. Of course, what one observer interprets as an electrical process another may 

regards as magnetic, but the actual particle motions they predict will be identical. 

So in a way, if we used electrostatics and relativity, we can calculate the magnetic force 

between a current-carrying wire and a moving charge without even invoking the laws of 

magnetism. 

Suppose there is a string of positive charges moving along to the right at speed 𝑣 and lets 

assume that charges are close enough that they form a continuous line charge 𝜆. Superimposed 

on this positive string is a negative one – 𝜆 proceeding to the left at the same speed 𝑣. So the 

net current is to the right: 

𝐼 = 2𝜆𝑣 

 

And distance 𝑠 away from the line of charges there lies a charge q travelling to the right at 

speed 𝑢 < 𝑣. 

Since the two line charges cancel each other so there is no electrical force on charge q in this 

system 𝑆. 

Lets assume there is another fram 𝑆̅, which moves to the right with speed 𝑢. In this reference 

frame q is at rest. By the Eisntein’s velocity addition rule, the velocities of the positive and 

negative lines are now: 



𝑣+ =
𝑣−𝑢

1−𝑣𝑢/𝑐2    and    𝑣− =
𝑣+𝑢

1+𝑣𝑢/𝑐2 

Because 𝑣− is greater than 𝑣+, the Lorentz contraction of the spacing between the negative 

charges will be more severe than between the positive charges, in this frame, therefore, the 

wire carries a net negative charge, in fact: 

𝜆+ = 𝛾+𝜆𝑜    and      𝜆− = −𝛾−𝜆𝑜 

Where  

𝛾+ =
1

√1−𝑣+
2/𝑐2

      and       𝛾− =
1

√1−𝑣−
2/𝑐2

 

And 𝜆𝑜 is the charge density of the positive line in its own rest system and this is not the same 

as 𝜆, of course – in 𝑆 they are already moving at speed 𝑣, so 

𝜆 = 𝛾𝜆𝑜 

Where  

𝛾 =
1

√1 − 𝑣2/𝑐2
 

𝛾+ =
1

√1 − 𝑣+
2/𝑐2

=
1

√1 − (
𝑣 − 𝑢

1 −
𝑣𝑢
𝑐2

)

2

1
𝑐2

=
1

√1 − 𝑐2 (
𝑣 − 𝑢

𝑐2 − 𝑣𝑢
)
2
 

𝛾+ =
𝑐2 − 𝑣𝑢

√(𝑐2 − 𝑣𝑢)2 − 𝑐2(𝑣 − 𝑢)2
=

𝑐2 − 𝑣𝑢

√(𝑐2 − 𝑣2)(𝑐2 − 𝑢2)
= 𝛾

1 − 𝑢𝑣/𝑐2

√1 − 𝑢2/𝑐2
 

Similarly 

𝛾− = 𝛾
1 + 𝑢𝑣/𝑐2

√1 − 𝑢2/𝑐2
 

Evidently, then, the net line charge in 𝑆̅ is: 

𝜆𝑡𝑜𝑡𝑎𝑙 = 𝜆+ + 𝜆− = 𝜆𝑜(𝛾+ − 𝛾−) =
𝜆

𝛾
(𝛾

1 − 𝑢𝑣/𝑐2

√1 − 𝑢2/𝑐2
− 𝛾

1 + 𝑢𝑣/𝑐2

√1 − 𝑢2/𝑐2
) = −

2𝜆𝑢𝑣

𝑐2√1 − 𝑢2/𝑐2
 

Conclusion: As a result of unequal Lorentz contraction of the positive and negative lines, a 

current-carrying wire that is electrically neutral in one inertial system will be charged in 

another. 

Now a line charge 𝜆𝑡𝑜𝑡𝑎𝑙  sets up an electric field: 



𝐸 =
𝜆𝑡𝑜𝑡

2𝜋𝜖𝑜𝑠
 

So, there is an electric force on q in 𝑆̅, which is: 

𝐹̅ = 𝑞𝐸 = −
𝜆𝑣

𝜋𝜖𝑜𝑐2𝑠

𝑞𝑢

√1 − 𝑢2/𝑐2
 

But is there is a force on q in 𝑆̅ then there must be a force in S as well, in fact we can calculate 

using the transformation rules for the forces. Since q is at rest in 𝑆̅ and 𝐹̅ is perpendicular to 𝑢, 

the force in S is given by: 

𝐹̅⊥ =
1

𝛾
𝐹⊥ 

𝐹 = √1 − 𝑢2/𝑐2 𝐹̅ = √1 − 𝑢2/𝑐2 ∗

[
 
 
 

−
𝜆𝑣

𝜋𝜖𝑜𝑐2𝑠

𝑞𝑢

√1 −
𝑢2

𝑐2]
 
 
 

= −
𝜆𝑣

𝜋𝜖𝑜𝑐2

𝑞𝑢

𝑠
 

Using 𝑐2 = (𝜖𝑜𝜇𝑜)
−1 and 𝜆𝑣 = 𝐼 

𝐹 = −𝑞𝑢 (
𝜇𝑜𝐼

2𝜋𝑠
) 

The term in parenthesis is the magnetic field produced by a long straight wire and the force on 

charge q moving with speed 𝑢 is the Lorentz force in 𝑆. 

The charge is attracted towards the wire by a force that is purely electrical in 𝑆̅ (where the wire 

is charged and q is at rest) but distinctly nonelectrical (in fact magnetic) in S (where the wire is 

neutral and charge is moving with speed 𝑢). 

 

12.3.2 How the Field Transform 

 

 

 

 

 

 

 


