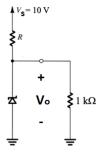

King Fahd University of Petroleum & Minerals Physics Department PHYS 308 (Term 211)

Final Exam (02 hours, 25/25) Sunday, January 02, 2022

Clearly circle only the correct answer. Unclear or multiple answers will be considered as wrong.

Problem 1. (2.5/25)

For the following circuit, assuming a constant 0.7~V drop model, determine the value of the diode current when $V_A = 10~V$?



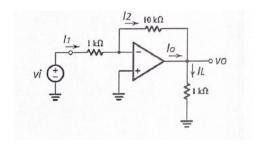
- a) 8.6 mA
- b) 9.3 mA
- c) 0.7 mA
- d) 5 mA
- e) 0 mA

Problem 2. (2.5/25)

The following circuit shows a voltage regulator with a zener diode ($V_{Z0} = 5V$ and $rz = 50 \Omega$), a resistor R of 500 Ω , and a load resistor R_L of $1k\Omega$.

Find the variation in output voltage V_0 if the source voltage V_S varies by ± 500 mV.

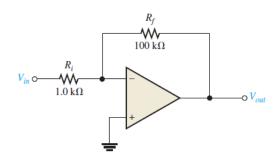
- a) $\pm 12.6 \text{ mV}$
- b) $\pm 23.4 \text{ mV}$
- c) $\pm 43.5 \text{ mV}$
- d) $\pm 14.3 \text{ mV}$
- e) $\pm 10.7 \text{ mV}$


Problem 3. (2.5/25)

In a full-wave bridge rectifier circuit with filter, the ripple voltage Vr is equal to:

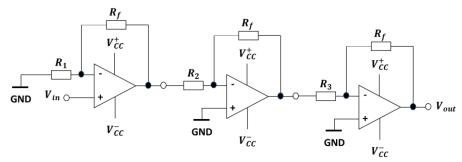
- a) $V_r = (V_S V_D)/(fRC)$ b) $V_r = (V_S 2V_D)/(2fRC)$
- c) $V_r = V_S/(fRC)$
- d) $V_r = (V_S V_D)/(2fRC)$ e) $V_r = (V_S 2V_D)/(fRC)$

Problem 4. (2.5/25)


For the following circuit, assuming the op-amp is ideal, determine the current I_1 when $V_1 = 2 V$.

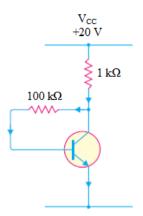
- a) 0.2 mA
- b) 1.0 mA
- c) 2.2 mA
- d) 0 mA
- e) 2.0 mA

Problem 5. (2.5/25)


The op-amp has the following parameters: $A_{OL} = 50,000$; $Z_{in} = 4 \text{ M}\Omega$; and $Z_{out} = 50 \Omega$. Find the value of the output impedance.

- a) $380 \text{ m}\Omega$
- b) $620 \text{ m}\Omega$
- c) $160 \text{ m}\Omega$
- d) $720 \text{ m}\Omega$
- e) 980 mΩ

Problem 6. (2.5/25)


The resistor values are R_f = 470 kΩ; R_1 = 4.3 kΩ; R_2 = 33 kΩ and R_3 = 33 kΩ. Find the output voltage for an input of 80 μV .

- a) 2.4 V
- b) 5.6 V
- c) 3.3 V
- d) 1.3 V
- e) 1.8 V

Problem 7. (2.5/25)

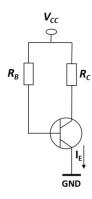
Determine the voltage V_{CE} in the circuit below. Take $\beta = 100$.

- a) 10.4 V
- b) 12.8 V
- c) 9.50 V
- d) 8.20 V
- e) 11.3 V

Problem 8. (2.5/25)

To ensure active mode operation in a NPN BJT transistor, which of the following conditions is true?

- a) $V_C < V_E$
- $\begin{array}{ll} b) & V_B < V_E \\ c) & V_C > (V_B 0.4 \ V) \end{array}$
- d) $V_C < (V_E + 0.3 V)$
- e) $V_C > (V_E 0.7 \text{ V})$


Problem 9. (2.5/25)

Which of the following statements is **NOT TRUE**?

- a) Common emitter amplifier can be used as a voltage amplifier
- b) Common collector amplifier has very high output resistance
- c) Adding a resistor in the emitter of common emitter amplifier will reduce the gain
- d) Coupling capacitors are used to keep the DC bias point unchanged when connecting the load and the source

Problem 10. (2.5/25)

In the circuit shown below, $V_{CC} = 5$ V, $\beta = 80$, $R_C = 1$ k Ω and $I_C = 2.5$ mA, the value of R_B is

- a) $137.6 \text{ k}\Omega$
- b) $160.5 \text{ k}\Omega$
- c) $100 \text{ k}\Omega$
- d) $10 \text{ k}\Omega$
- e) $5 k\Omega$