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1 Probability Distributions

We have three distributions, one for classical particles (Maxwell-Boltzmann) and two for undistinguishable

particles (Fermi-Dirac for fermions and Bose-Einstein for bosons). Their equations are the following:

P (E) =
1

eβ(E−Ef ) + 1
Fermi–Dirac Dist. (1)

P (E) =
1

eβ(E−µ) − 1
Bose–Einstein Dist. (2)

P (E) =
1

eβ(E−µ)
Maxwell–Boltzmann Dist. (3)

Where β =
1

kBT
(4)

Now I will plot these distributions for different temperatures:
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Figure 1: Fermi–Dirac Dist. when Ef = 7eV . For fermions
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Figure 2: Bose–Einstein Dist. when µ = 7eV . For bosons
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Figure 3: Maxwell–Boltzmann Dist. when µ = 7eV . For bosons

2 Remarks

Fermions are subject to Fermi–Dirac statistics. We can observe that no state will be occupied by any more

than 1 fermion. This is because fermions obey Pauli’s Exclusion Principle which states that no two fermions

can occupy the same quantum state. However, since bosons do not obey Pauli’s Exclusion Principle, they

can occupy the same state as we can see in the above plot and they are subject to Bose–Einstein statistics.

Moreover, when fermions are at temperatures higher than 0K, some fermions will leak and have some

probability to occupy states after the Fermi level. However, at the Fermi level, fermions will always have a

probability of 1
2 regardless of temperature.
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3 Examples

Ex1: Consider a metal with one conduction electron per atom, for example, Gold with a density of

19.3g/cm3. Calculate kF , EF , TF , λF Fermi wavenumber, energy, temperature, and Wavelength, respec-

tively, along with the average spacing rS . Then compare at room temperature T = 300K the ratios λF /rS

and T/TF and explain their physical meaning.

First we need to find the electronic density n, from it we can extract kF and rS directly

n =
19.3�g

cm3
× �

��mol

196.96657�g
× (# of Cond. Ele. = 1)×NA = 5.9× 1022electron/cm3 = 5.9× 1028electron/m3

kF = (3π2n)1/3 = (3π2 × 5.9× 1028)1/3 = 1.2× 1010m−1

rS =

(
3

4πn

)1/3

=

(
3

4π5.9× 1028

)1/3

= 1.59× 10−10m = 1.59Å

From kF we can directly get EF :

EF =
ℏ2k2F
2me

= 8.8× 10−19J ≈ 5.5eV

λF =
2π

kF
= 5.24× 10−10m = 5.24Å

TF =
EF

kB
= 6.38× 104K

Now let’s calculate the ratios λF /rS and T/TF :

λF /rS = 3.3 T/TF = 4.7× 10−3

Since λF /rS > 1, we have to treat the electrons as indistinguishable particles because their wavefunctions

will overlap. kBT is the range of variation of the Fermi-Dirac Distribution. The ratio T/TF is the ratio of

thermal energy to fermi energy kBT/EF which is very low

Ex2: Redo Ex.1 but for a metal with two conduction electrons, e.g., Iron with a density of 7.86g/cm3:

n =
7.86�g

100−3m3
× �

��mol

55.845�g
× (# of Cond. Ele. = 2)×NA = 1.7× 1029electron/m3

kF = (3π2n)1/3 = (3π2 × 1.7× 1029)1/3 = 1.7× 1010m−1

rS =

(
3

4πn

)1/3

=

(
3

4π1.7× 1029

)1/3

= 1.12× 10−10m = 1.12Å

EF =
ℏ2k2F
2me

= 1.78× 10−18J ≈ 11.2eV

λF =
2π

kF
= 3.67× 10−10m = 3.37Å

TF =
EF

kB
= 13.0× 104K

λF /rS = 3.00 T/TF = 2.3× 10−3
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