(a) For what range of
$$v$$
 is the function $f(x) = x^{2}$, in Hilbert space, on the interval (0,1)? Assume v is real but not recessorily positive.

(b) For the specific case
$$v = \frac{1}{2}$$
, is $f(x)$ in this Hölbert space? What about $xf(x)$? How about $\frac{d}{dx}(f(x))$?

(a) Want
$$f(x)$$
 such that $\int_{0}^{6} |f(x)|^{2} dx < \infty$

$$\Rightarrow \langle f|f \rangle = \int_{0}^{1} x^{2\nu} dx = \frac{1}{2\nu+1} x^{2\nu+1} \Big|_{0}^{1} = \frac{1}{2\nu+1} \left(\frac{1}{2\nu+1} - \frac{1}{2\nu+1} \right)$$

$$\Rightarrow 2\nu+1>0 \Rightarrow \nu>-\frac{1}{2}$$

$$\Rightarrow 2\nu+1>0 \Rightarrow \nu>-\frac{1}{2}$$

$$\Rightarrow 2\nu+1>0 \Rightarrow need to check it!$$

$$\Rightarrow \nabla = -\frac{1}{2} \rightarrow \langle f|f \rangle = \int_{0}^{1} x^{-1} dx = \ln x \Big|_{0}^{1} = \ln 1 - \ln 0 = +\infty \times \Rightarrow docs \text{ not converge}$$

$$\Rightarrow -v > -\frac{1}{2}$$
(b) $\int_{0}^{1} x^{\frac{1}{2}} dx = \frac{1}{2(\frac{1}{2})+1} \left(x^{\frac{1}{2}} + 1 - x^{\frac{1}{2}} + 1 \right) = \frac{1}{2} < \infty$

$$\Rightarrow f(x) \text{ for } v = \frac{1}{2} \text{ 7s in Hilbert Space.}$$

$$\int_{0}^{1} x \cdot x^{\frac{1}{2}} dx = \int_{0}^{1} x^{\frac{3}{2}} dx = \frac{1}{2(\frac{3}{2})+1} \left(1-0\right) = \frac{1}{4} \cos v$$

$$\Rightarrow$$
 $x f(x)$ for $v = \frac{1}{2}$ is in Hilbert space.

$$\int_{0}^{1} \frac{d}{dx} \left(x^{\frac{1}{2}}\right) dx = \int_{0}^{1} \frac{1}{2} x^{\frac{1}{2}} dx \text{ does not converge, as shown before}$$

$$\Rightarrow \frac{d}{dx}(f(x))$$
 for $v = \frac{1}{2}$ is NOT in Hilbert space.

(a) Suppose that f(x) and g(x) are two eigenfunctions of an operator \hat{Q} , with the same eigenvalue q. Show that any linear combination of f and g is itself an eigenfunction of \hat{Q} , with eigenvalue q.

(b) Check that $f(x) = e^{x}$ and $g(x) = e^{-x}$ are eigenfunctions of the operator d^{2}/dx^{2} , with the same eigenvalue. Construct two linear combinations of f and g that are orthogonal eigenfunctions on the interval (-1,1).

(a)
$$h(x) = af(x) + bg(x)$$

We want to prove $\hat{Q}h = qh$. $\hat{Q}f = qf$ $\hat{Q}g = qg$ $\hat{Q}h = \hat{Q}(af + bg) = a\hat{Q}f + b\hat{Q}g = aqf + bqg = q(af + bg) = gh$

(b)
$$\hat{Q} = \frac{d^2}{dx^2}$$
 $\rightarrow \hat{D}f = \frac{d^2}{dx^2}e^{x} = e^{x} = f \Rightarrow q = 1$ e same e'v

$$\rightarrow \hat{Q} g = \frac{d^2}{dx^2} e^{-x} = -\frac{d}{dx} e^{-x} = +e^{-x} = g \Rightarrow q = 1$$

Try $h_1(x) = f + g = e^x + e^{-x}$, $h_2(x) = f - g = e^x - e^{-x}$ One they orthogonal? $h_1(-x) = e^{-x} + e^x = h_1(x) \rightarrow \text{even}$

$$h_2(-x) = e^{-x} - e^x = -h_2(x) \to odd$$

3.13 Show that
$$\langle x \rangle = \int \Phi^* \left(i\hbar \frac{\partial}{\partial \rho} \right) \Phi d\rho$$

Hint: Notice that $x e^{i\rho x/\hbar} = -i\hbar \frac{\partial}{\partial \rho} e^{i\rho x/\hbar}$, and use Eqn 2.147. In momentum space, then, the position operator is $i\hbar \frac{\partial}{\partial \rho}$. Mure generally,

$$\left\langle \mathbb{Q}(x,\rho,t) \right\rangle = \begin{cases} \int \Psi^* \hat{Q}(x,-i\hbar \frac{\partial}{\partial x},t) \Psi dx, & \text{in position space;} \\ \int \Phi^* \hat{Q}(i\hbar \frac{\partial}{\partial \rho},\rho,t) \Psi d\rho, & \text{in momentum space.} \end{cases}$$

Un principle, you can do all calculations on momentum space just as nell (though not always as easily) as in position space.

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dk \longrightarrow \exp(2.147)$$

$$S(x) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{ikx} dk \rightarrow eqn \ 2.147$$

$$Zet's use \ \mathcal{F} \cdot \mathcal{F}. \ \text{instead}: \ \underline{\Psi}(x,t) = \frac{1}{2\pi h} \int_{-\infty}^{\infty} e^{ipx/h} \, \underline{\Phi}(p,t) \, dp$$

$$\langle x \rangle = \langle \underline{\Psi} | \hat{x} \, \underline{\Psi} \rangle = \frac{1}{2\pi h} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{e^{-ipx/h}} \underline{\Phi}^{*} dp \right) x \left(\int_{-\infty}^{e^{ipx/h}} \underline{\Phi} dp \right) dx$$

$$= \frac{1}{2\pi h} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{e^{-ipx/h}} \underline{\Phi}^{*} dp \right) \left(\int_{-\infty}^{-ih} \frac{\partial}{\partial p} (e^{ipx/h}) \, \underline{\Phi} dp \right)$$

$$\frac{2\pi \hbar \sqrt{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(e^{ipx/\hbar}\right)} \Phi dp = -i\hbar e^{ipx/\hbar} \Phi \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{ipx/\hbar}{\partial p} \Phi dp}$$

$$= \frac{1}{2\pi \hbar} \iiint e^{-ipx/\hbar} \Phi^*(\bar{p},t) i\hbar e^{ipx/\hbar} \frac{\partial}{\partial p} \Phi(p,t) dx d\bar{p}dp}$$

$$\int e^{-i\bar{p}x/\hbar} e^{ipx/\hbar} dx = \int e^{i(p-\bar{p})x/\hbar} dx = 2\pi \hbar \delta(p-\bar{p})$$

$$= \iint \tilde{\Phi}^{*}(\bar{\rho},t) i t \frac{\partial}{\partial \rho} \tilde{\Phi}(\rho,t) \delta(\bar{\rho}-\rho) d\bar{\rho} d\rho$$

$$= \int \tilde{\Phi}^{*}(\rho,t) i t \frac{\partial}{\partial \rho} \tilde{\Phi}(\rho,t) d\rho$$

$$= \int \tilde{\Phi}^{*}(i t \frac{\partial}{\partial \rho}) \tilde{\Phi}(\rho,t) d\rho$$

3.15 Prove the famons "(your name)" uncertainty principle," relating the uncertainty in position (A=x) to the uncertainty in energy
$$(8 = p^2/2m + V)$$
:

$$\hat{\alpha}_{x}\hat{\alpha}_{y} \ge \frac{f_{y}}{2m} |\langle \rho \rangle|$$
For stationary states, this doesn't fell you much — why not?

$$[\hat{A}, \hat{B}] = [\hat{x}, \hat{H}] = [\hat{x}, \frac{\hat{p}^2}{2m} + V]$$

$$= [\hat{x}, \frac{\hat{p}^2}{2m}] + [\hat{x}, V]$$

$$[A, B] = [x, H] - [x, \frac{1}{2m} + V]$$

$$= [\hat{x}, \frac{\hat{p}^2}{2m}] + (\hat{x}, V)$$

$$= \frac{1}{2m} [\hat{x}, \hat{p}^2] \rightarrow (\hat{x} \hat{p}^2 - \hat{p}^2 \hat{x})$$

Operate
$$[\hat{x}, \hat{\rho}^2]$$
 on a function $f(x)$ with $\hat{\rho}^2 = -\hbar^2 \frac{\partial^2}{\partial x^2}$:
$$[\hat{x}, \hat{\rho}^2] f(x) = (\hat{x}\hat{\rho}^2 - \hat{\rho}^2\hat{x}) f(x)$$

$$= -h^{2}x \frac{d^{2}f}{dx^{2}} + h^{2}\frac{d^{2}}{dx^{2}}(xf)$$

$$= -h^{2}x \frac{d^{2}f}{dx^{2}} + h^{2}\frac{d}{dx}(f + x \frac{df}{dx})$$

$$= -2 \frac{d^{2}f}{dx^{2}} + 2 \frac{df}{dx}(f + x \frac{df}{dx})$$

$$= -\frac{\hbar^2 x \frac{d^2 f}{dx^2} + \hbar^2 \frac{d f}{dx} + \hbar^2 \frac{d^2 f}{dx^2}}{2m \left[\hat{x}, \hat{\rho}^2\right] = \frac{\hbar^2}{m} \frac{\partial}{\partial x}$$

$$C_{\chi}^{2} \sigma_{H}^{2} \ge \left(\frac{1}{2i} \left\langle \frac{t_{1}^{2}}{m} \frac{\partial}{\partial x} \right\rangle \right)^{2} = \left(\frac{t_{1}}{2m} \left\langle \frac{t_{1}}{i} \frac{\partial}{\partial x} \right\rangle \right)^{2}$$

$$\Rightarrow C_{\chi} \sigma_{H} \ge \frac{t_{1}}{2m} |\langle p \rangle| \qquad \Rightarrow e^{-it_{1}} \frac{\partial}{\partial x} = \hat{p}$$

3.20 Test the energy - time uncertainty principle for the new function in Prublem 2.5 and the absentable x by calculating
$$\sigma_{\rm H}$$
, $\sigma_{\rm X}$, and $d\langle x \rangle/dt$ exactly.

The wave function in P2.5:
$$\Psi(x,t) = \frac{1}{|a|} \left[\sin\left(\frac{\pi x}{a}\right) e^{-i\omega t} + \sin\left(\frac{2\pi x}{a}\right) e^{-i4\omega t} \right], 0 \le x \le a$$

thum HW2

$$= \frac{1}{|a|} \Psi e^{-i\omega t} + \frac{1}{|a|} \Psi e^{-i4\omega t}$$

$$= \frac{1}{|a|} \Psi e^{-i\omega t} + \frac{1}{|a|} \Psi e^{-i4\omega t}$$
we were mixture

$$\Rightarrow P(E_1) = P(E_2) = \left| \frac{1}{|a|} \right|^2 = \frac{1}{2}$$

We want to show that $\Delta E \Delta t \ge \frac{\hbar}{2}$

$$\Delta E = Q_1 \qquad \qquad Q_2 = \int \langle H^2 \rangle - \langle H \rangle^2$$

$$\Delta E = \sigma_{H} \qquad , \qquad \sigma_{H} = \int_{0}^{\sqrt{H^{2}}} -\langle H \rangle^{2}$$

$$\Delta t = \frac{\sigma_{x}}{\left| \frac{d\langle x \rangle}{dt} \right|_{0}^{2}} \qquad , \qquad \sigma_{x} = \int_{0}^{\sqrt{x^{2}}} -\langle x \rangle^{2}$$

$$(1) (H) = \sum_{n=1}^{2} |c_{n}|^{2} E_{n} = P(E_{1}) E_{1} + P(E_{2}) E_{2} = \frac{1}{2} \hbar \omega + 2 \hbar \omega$$

$$= \frac{5}{2} \hbar \omega = \frac{5\pi^{2} \hbar^{2}}{4ma^{2}}$$

$$2 (H^{2}) = \sum_{n=1}^{2} |c_{n}|^{2} E_{n}^{2} = \frac{1}{2} (E_{1}^{2} + E_{2}^{2}) = \frac{1}{2} (t_{1}^{2} \omega^{2} + 16t_{1}^{2} \omega^{2})$$

$$= \frac{17}{2} t_{1}^{2} \omega^{2} = \frac{17 \pi^{4} t_{1}^{4}}{8 m^{2} a^{4}}$$

3
$$\langle x \rangle = \langle \Psi | \hat{\chi} \Psi \rangle = a \left(\frac{1}{2} - \frac{16}{9\pi^2} \cos(3\omega t) \right)$$

$$\rangle = \langle \Psi | \hat{\chi}^2 \Psi \rangle = \int_{-\infty}^{\infty} \Psi^* \chi^2 \Psi dx$$

 $I_1: \int_{A}^{a} \frac{1}{2} x^2 \left(1 - \cos \frac{2\pi x}{a}\right) dx = \frac{1}{2} \left(\frac{a^3}{3} - \frac{a^3}{2\pi^2}\right)$

 I_3 : $\int_{\frac{1}{2}}^{a} \chi^2 \left(1 - \cos \frac{4\pi x}{a}\right) dx = \frac{1}{2} \left(\frac{a^3}{3} - \frac{a^3}{8\pi^2}\right)$

 $\frac{d\langle x\rangle}{dt} = + \frac{160}{3\pi^2} \omega \sin 3\omega t = \frac{8\pi}{3ma} \sin \frac{3\pi^2 \pi}{2ma^2} t$

 $\omega = \frac{\pi^2 k}{2ms^2}$

 I_2 : $2\cos(3\omega t)$ $\int_{-\pi}^{4} x^2 \sin(\frac{\pi x}{a}) \sin(\frac{2\pi x}{a}) dx = -\frac{16a^3}{9\pi^2} \cos(3\omega t)$

 $=\frac{1}{a}\int_{0}^{\sqrt{2}}\left(\sin^{2}\left(\frac{\pi x}{a}\right)+\sin\left(\frac{\pi x}{a}\right)\sin\left(\frac{z\pi x}{a}\right)e^{-i3\omega t}+\sin\left(\frac{\pi x}{a}\right)\sin\left(\frac{z\pi x}{a}\right)e^{i3\omega t}+\sin^{2}\left(\frac{z\pi x}{a}\right)\right)dx$

 $\chi^{2} = \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{2\pi x}{a}\right) \left(e^{-i3\omega t} + e^{i3\omega t}\right)$ $= 2 \sin\left(\frac{\pi x}{a}\right) \sin\left(\frac{2\pi x}{a}\right) \cos\left(3\omega t\right)$

(4) $(x^2) = \frac{1}{a}(I_1 + I_2 + I_3) = \frac{a^2}{6} - \frac{a^2}{4\pi^2} - \frac{16a^2}{9\pi^2}\cos(3\omega t) + \frac{a^2}{6} - \frac{a^2}{16\pi^2}$

 $= a^{2} \left(\frac{1}{3} - \frac{5}{16\pi^{2}} - \frac{16}{9\pi^{2}} \cos 3\omega t \right)$

 $= a^2 \left(\frac{1}{3} - \frac{5}{16\pi^2} - \frac{16}{9\pi^2} \cos \frac{3\pi^2 \pi}{2ma^2} t \right)$

$$\langle \chi^2 \rangle = \langle \Psi | \hat{\chi}^2 \Psi \rangle = \int_{-\infty}^{\infty} \Psi^2 \chi^2 \Psi d\chi$$

$$= \int_{-\infty}^{\alpha} \frac{1}{2\pi x} \left(\frac{1}{2\pi x} + \frac{1}{2\pi x} \right) + \frac{1}{2\pi x} \frac{1}{2\pi x} \frac{1}{2\pi x}$$

$$= \int_{0}^{a} x^{2} \left[\int_{a}^{+i\omega t} \sin\left(\frac{\pi x}{a}\right) + \int_{a}^{-i\omega t} e^{+i4\omega t} \sin\left(\frac{2\pi x}{a}\right) \right] \left[\int_{a}^{-i\omega t} e^{-i\omega t} \sin\left(\frac{\pi x}{a}\right) + \int_{a}^{-i4\omega t} e^{-i4\omega t} \sin\left(\frac{2\pi x}{a}\right) \right] dx$$

$$\langle x^2 \rangle = \langle \Psi | \hat{x}^2 \Psi \rangle = \int \Psi^* x^2 \Psi dx$$

$$G_{H} = \int \langle H^{2} \rangle - \langle H \rangle = \int \frac{1 + \pi^{4} h^{4}}{8m^{2} a^{4}} - \frac{25\pi^{4} h^{4}}{16m^{2} a^{4}} = \frac{3\pi^{2} h^{2}}{4ma^{2}}$$

$$= \int \langle \chi^{2} \rangle - \langle \chi \rangle^{2}$$

$$= \int a^{2} \left(\frac{1}{3} - \frac{5}{16\pi^{2}} - \frac{16}{9\pi^{2}} \cos 3\omega t\right) - a^{2} \left(\frac{1}{4} - \frac{16}{9\pi^{2}} \cos 3\omega t\right) + \frac{1}{3} \cos 3\omega t$$

$$= \int a^{2} \left(\frac{1}{3} - \frac{5}{16\pi^{2}} - \frac{16}{9\pi^{2}} \cos 3\omega t \right) - a^{2} \left(\frac{1}{4} - \frac{16}{4\pi^{2}} \cos 3\omega t + \frac{256}{81\pi^{4}} \cos^{2} 3\omega t \right)$$

$$= a \int \frac{1}{12} - \frac{5}{16\pi^{2}} - \frac{256}{81\pi^{4}} \cos^{2} 3\omega t = \frac{a}{2} \int \frac{1}{3} - \frac{5}{4\pi^{2}} - \frac{1024}{81\pi^{4}} \cos 3\omega t$$

$$Q_{H}Q_{\chi} = \frac{3\pi^{2}h^{2}}{4ma^{\chi}} \cdot \frac{\alpha}{2} \int \frac{1}{3} - \frac{5}{4\pi^{2}} - \frac{\omega_{24}}{81\pi^{4}} \cos^{2}3\omega t$$

$$\frac{\sigma_{H}\sigma_{x}}{\left|\frac{d(x)}{dt}\right|} = \frac{3\pi^{2}h^{2}}{8ma} \cdot \frac{\sqrt{3} - \sqrt{4\pi^{2} - \frac{1024}{8m^{4}}} \cos^{2}3\omega t}{\frac{16h^{2}}{9m^{2}a^{2}} \sin^{2}3\omega t} = \Delta E \Delta t$$

$$= \frac{3\pi^{2}h^{2}}{8ma} \cdot \frac{3ma}{4h} \cdot \frac{3ma}{52} \cdot \frac{9\pi^{2}h}{52} \cdot \frac{\sqrt{3} - \sqrt{4\pi^{2} - \frac{1024}{8lm^{4}}} \cos^{2}3\omega t}{\frac{3n^{2}3\omega t}{8m^{4}} \cdot \frac{3m^{2}}{8m^{4}} \cdot \frac{3ma}{5n^{2}3\omega t}}$$

Check if this is
$$\geqslant \frac{h}{2}$$
? just multiply both sides by $\left|\frac{d(x)}{dt}\right|$

$$\sigma_{H} \sigma_{R} \geqslant \frac{h}{2} \left|\frac{d(x)}{dt}\right|^{2}$$

$$\Rightarrow \left(\frac{3\pi^{2}h^{2}}{8ma}\right)^{2} \left(\frac{1}{3} - \frac{5}{4\pi^{2}} - \frac{6024}{81\pi^{4}}\cos^{2}3\omega t\right) \ge \frac{h^{2}}{4} \left(\frac{8h}{3ma}\right)^{2} \sin^{2}3\omega t$$

$$\Rightarrow \left(\frac{3\alpha}{4}h\omega\right)^{2} \left(\frac{1}{3} - \frac{5}{4\pi^{2}} - \frac{6024}{81\pi^{4}}\cos^{2}3\omega t\right) \ge \left(\frac{86\alpha}{3\pi^{2}}h\omega\right)^{2} \sin^{2}3\omega t$$

$$\frac{1}{3} - \frac{5}{4\pi^2} - \frac{1024}{81\pi^4} \cos^2 3\omega t \ge \left(\frac{32}{9\pi^2}\right)^2 \sin^2 3\omega t$$

$$\frac{1}{3} - \frac{5}{4\pi^2} \ge \left(\frac{32}{9\pi^2}\right)^2 \left(\cos^2 3\omega t + \sin^2 3\omega t\right)$$

$$0.2066819 \ge 0.1297823$$

The uncertainty principle is verified.