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Why Dirac Notation? The Language of Quantum Computing

Think of it as Quantum Programming Syntax

• Ket |ψ⟩: Column vector (quantum state) - like a variable holding quantum data

• Bra ⟨ψ|: Row vector (conjugate transpose) - for computing probabilities

• Bracket ⟨ϕ|ψ⟩: Inner product - returns complex number (amplitude)

• Why use it? Cleaner than matrices: ⟨0|H|0⟩ vs
(
1 0

)
1√
2

(
1 1
1 −1

)(
1
0

)

Notation Basics

Core Concepts

State Representation:

Ket: |ψ⟩ = α|0⟩+ β|1⟩ =
(
α
β

)
Bra: ⟨ψ| = α∗⟨0|+ β∗⟨1| = (α∗ β∗)

Normalization: |α|2 + |β|2 = 1

Computational Basis:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)

Key Operations:

• Gate application: U |ψ⟩ applies unitary U to state |ψ⟩
• Sequential gates: U2U1|ψ⟩ applies U1 first, then U2

• Measurement probability: P (i) = |⟨i|ψ⟩|2

• Overlap: ⟨ϕ|ψ⟩ gives amplitude

• Normalization: ⟨ψ|ψ⟩ = 1

Tensor Products - Building Multi-Qubit Systems

Combining Qubits

Notation: |ψ⟩ ⊗ |ϕ⟩ = |ψϕ⟩ = |ψ⟩|ϕ⟩
2-Qubit Basis States:

Dirac Vector

|00⟩ = |0⟩ ⊗ |0⟩ (1, 0, 0, 0)T

|01⟩ = |0⟩ ⊗ |1⟩ (0, 1, 0, 0)T

|10⟩ = |1⟩ ⊗ |0⟩ (0, 0, 1, 0)T

|11⟩ = |1⟩ ⊗ |1⟩ (0, 0, 0, 1)T

General 2-qubit state:

|ψ⟩ = α|00⟩+ β|01⟩+ γ|10⟩+ δ|11⟩

Tensor Product Rules:

• (a|ψ⟩)⊗ |ϕ⟩ = a(|ψ⟩ ⊗ |ϕ⟩)
• (|ψ1⟩+ |ψ2⟩)⊗ |ϕ⟩ = |ψ1⟩ ⊗ |ϕ⟩+ |ψ2⟩ ⊗ |ϕ⟩
• A⊗B creates block matrix
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Common Single-Qubit States

The Building Blocks

Name Dirac Vector Properties

Zero |0⟩
(
1
0

)
Computational basis

One |1⟩
(
0
1

)
Computational basis

Plus |+⟩ = |0⟩+|1⟩√
2

1√
2

(
1
1

)
H|0⟩ = |+⟩

Minus |−⟩ = |0⟩−|1⟩√
2

1√
2

(
1
−1

)
H|1⟩ = |−⟩

Circular+ |i⟩ = |0⟩+i|1⟩√
2

1√
2

(
1
i

)
Y-basis eigenstate

Circular- | − i⟩ = |0⟩−i|1⟩√
2

1√
2

(
1
−i

)
Y-basis eigenstate

These form 3 orthogonal pairs: {|0⟩, |1⟩} (Z-basis), {|+⟩, |−⟩} (X-basis), {|i⟩, | − i⟩} (Y-basis)

Single-Qubit Gates

Fundamental Operations

Gate Symbol Matrix Action

Pauli-X X,σx

(
0 1
1 0

)
X|0⟩ = |1⟩, X|1⟩ = |0⟩

Pauli-Y Y, σy

(
0 −i
i 0

)
Y |0⟩ = i|1⟩, Y |1⟩ = −i|0⟩

Pauli-Z Z, σz

(
1 0
0 −1

)
Z|0⟩ = |0⟩, Z|1⟩ = −|1⟩

Hadamard H 1√
2

(
1 1
1 −1

)
H|0⟩ = |+⟩, H|1⟩ = |−⟩

Phase S

(
1 0
0 i

)
S|0⟩ = |0⟩, S|1⟩ = i|1⟩

T gate T

(
1 0
0 eiπ/4

)
T |1⟩ = eiπ/4|1⟩

Key insight: Gates are unitary matrices that preserve normalization: U†U = I

Two-Qubit Gates

Entangling Operations

Gate Action Matrix Size

CNOT |00⟩ → |00⟩, |01⟩ → |01⟩, |10⟩ → |11⟩, |11⟩ → |10⟩ 4× 4

CZ |11⟩ → −|11⟩, others unchanged 4× 4

SWAP |01⟩ ↔ |10⟩, |00⟩, |11⟩ unchanged 4× 4

CNOT Matrix:


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 Key: CNOT creates entanglement from product states!
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Entangled States

The Magic of Quantum Computing

Bell States (Maximally Entangled):

Name State

|Φ+⟩ |00⟩+|11⟩√
2

|Φ−⟩ |00⟩−|11⟩√
2

|Ψ+⟩ |01⟩+|10⟩√
2

|Ψ−⟩ |01⟩−|10⟩√
2

Key properties:

• Cannot write as |ψ⟩ ⊗ |ϕ⟩ (not separable)
• Measuring one qubit instantly determines the other

• All Bell states are orthonormal

• Created by: CNOT(H ⊗ I)|00⟩ = |Φ+⟩

Inner Products - Computing Amplitudes

The Bracket Operation

Definition: ⟨ϕ|ψ⟩ =
∑

i ϕ
∗
iψi

Key Properties:

• Returns complex number (amplitude)

• ⟨ψ|ψ⟩ = 1 for normalized states

• ⟨0|1⟩ = 0 (orthogonal basis states)

• ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩∗ (conjugate symmetry)

• ⟨ψ|U |ϕ⟩ represents matrix element of U

Examples:

• |ψ⟩ = 1√
2
(|0⟩+ i|1⟩):

⟨ψ|ψ⟩ = 1
2 (1 + 1) = 1✓

• ⟨+|0⟩ = 1√
2

• ⟨+|1⟩ = 1√
2

• ⟨+|−⟩ = 0 (orthogonal)

Outer Products and Projectors

Building Matrices from States

Outer Product: |ψ⟩⟨ϕ| creates a matrix
Examples:

• |0⟩⟨1| =
(
1
0

)
(0 1) =

(
0 1
0 0

)
• |1⟩⟨0| =

(
0
1

)
(1 0) =

(
0 0
1 0

)
Projectors: Pi = |i⟩⟨i|

• P0 = |0⟩⟨0| =
(
1 0
0 0

)
• P1 = |1⟩⟨1| =

(
0 0
0 1

)
• Completeness: P0 + P1 = I

• Idempotent: P 2
i = Pi

Applications:

• Density matrix:
ρ = |ψ⟩⟨ψ| for pure state

• Measurement operators:
Mi = |i⟩⟨i|

• Gate construction:
X = |0⟩⟨1|+ |1⟩⟨0|
Y = −i|0⟩⟨1|+ i|1⟩⟨0|
Z = |0⟩⟨0| − |1⟩⟨1|
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Measurements - How We Extract Information

The Fundamental Quantum Operation

Born Rule (Core of QC):

P (i) = |⟨i|ψ⟩|2

Example: For |ψ⟩ = 3
5 |0⟩+

4
5 |1⟩

• P (0) = |⟨0|ψ⟩|2 =
∣∣ 3
5

∣∣2 = 9
25 = 36%

• P (1) = |⟨1|ψ⟩|2 =
∣∣ 4
5

∣∣2 = 16
25 = 64%

• Verification: P (0) + P (1) = 1✓

Measurement Process:

1. Calculate P (i) = |⟨i|ψ⟩|2

2. Outcome i with probability P (i)

3. State collapses: |ψ⟩ → |i⟩
4. Subsequent measurements give same result

General Observable:
For A =

∑
i ai|i⟩⟨i|:

• ⟨A⟩ = ⟨ψ|A|ψ⟩
• Var(A) = ⟨A2⟩ − ⟨A⟩2

Quick Reference Tables

Pauli Identities

• X2 = Y 2 = Z2 = I

• XY = iZ, Y Z = iX, ZX = iY

• XY Z = iI

• {X,Y } = 0 (anticommute)

• [X,Y ] = 2iZ (commutator)

• HXH = Z, HZH = X

Useful Formulas

• H = X+Z√
2

• |+⟩ = H|0⟩, |−⟩ = H|1⟩
• S =

√
Z, T =

√
S

• CNOT = (I ⊗H)CZ(I ⊗H)

• Bell: |Φ+⟩ = CNOT(H ⊗ I)|00⟩

State Overlap Quick Check

⟨·|·⟩ |0⟩ |1⟩ |+⟩ |−⟩ |i⟩ | − i⟩

⟨0| 1 0 1√
2

1√
2

1√
2

1√
2

⟨1| 0 1 1√
2

− 1√
2

−i√
2

i√
2

⟨+| 1√
2

1√
2

1 0 1−i
2

1+i
2
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