
Docs » 1. Introduc!on to python

1. Introduction to python

print("Hello, world!")

Python is one of the most used computer languages nowadays. It’s an interpreted language, but
highly efficient since its libraries typically call Fortran or C codes on their backend. Its Wikipedia
ar!cle has a bit of its history and links to interes!ng texts and books.

Here I’ll give a brief introduc!on to essen!al features of the language and how to use it. I
suggest we use the Anaconda distribu!on, since it runs equally well in Linux, Windows and Mac.
Also, besides my introduc!on below, check also these tutorials:

1. Python at Tutorial’s point: [python], [numpy], [matplotlib]
2. Official documenta!on for [numpy - scipy - matplotlib]
3. Official documenta!on: how to install Anaconda
4. Youtube video (in Portuguese) Como instalar Anaconda em Windows e Linux

1.1. The IDEs

The Integrated Development Environments (IDEs) are the so#wares that we use to edit / debug /
run our codes. Here, I’ll suggest we start with these two that are already installed with
Anaconda:

• Jupyter: is a web-based IDE that runs in your browser. It runs the code in cells and allows
you to use markdown and Latex to document your code. Since jupyter integrates code,
documenta!on and images, I recommend we start with this one. The name jupyter refers to
the three ini!al languages it was design to support: julia, python, and R.

• Spyder IDE: is a tradi!onal IDE with the text editor and dedicated panels for the output and
figures. The name Spyder means Scien!fic Python Development Environment. The figure below
shows how it looks like.

The images below show how these IDE look like, click to zoom.

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

1 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/index.html
https://compphysics.readthedocs.io/index.html
https://compphysics.readthedocs.io/python/intropython.html#introduction-to-python
https://compphysics.readthedocs.io/python/intropython.html#introduction-to-python
https://compphysics.readthedocs.io/python/intropython.html#introduction-to-python
https://compphysics.readthedocs.io/python/intropython.html#introduction-to-python
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.anaconda.com/
https://www.anaconda.com/
https://www.tutorialspoint.com/python
https://www.tutorialspoint.com/python
https://www.tutorialspoint.com/numpy/
https://www.tutorialspoint.com/numpy/
https://www.tutorialspoint.com/matplotlib/index.htm
https://www.tutorialspoint.com/matplotlib/index.htm
https://www.scipy.org/docs.html
https://www.scipy.org/docs.html
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
https://www.youtube.com/watch?v=GaPrX6aF2E8
https://www.youtube.com/watch?v=GaPrX6aF2E8
https://compphysics.readthedocs.io/python/intropython.html#the-ides
https://compphysics.readthedocs.io/python/intropython.html#the-ides
https://compphysics.readthedocs.io/python/intropython.html#the-ides
https://compphysics.readthedocs.io/python/intropython.html#the-ides
https://jupyter.org/
https://jupyter.org/
https://www.spyder-ide.org/
https://www.spyder-ide.org/

The Jupyter IDE
The Spyder IDE

Other very interes!ng IDEs are the PyCharm and VS Code. I actually use VS Code for
everything: python, C, and even for wri$ng this webpage. But if you are a beginner, I
recommend you first try Spyder or Jupyter.

 Note

Jupyter vs Spyder: Both are great IDEs, however, they are quite different from each other.
Their main pros and cons are:

• Jupyter

◦ (pro) Saves in a single notebook the code, markdown/latex notes, and the
figures/plots;

◦ (pro) Run code in cell blocks that allow you to split calcula!ons and plots;
◦ (con) The notebook (.ipynb) is not a simple text file, but a json file;
◦ (con) There’s no structure for debugging.

• Spyder

◦ (pro) Saves the code as simple text (.py);
◦ (pro) It has a na!ve debugging structure;
◦ (pro) Allows you to run individual cells (similar to jupyter);
◦ (con) Figures must be saved into files for storage.

1.1.1. Using the IDEs

More details will be covered in the first class with simple examples, but here are the most
important things to remember.

• Jupyter: The code runs in blocks called cells. To run a cell type SHIFT+ENTER . The jupyter
codes are saved in a json format (extension .ipynb) and are called ipython notebooks, which

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

2 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/_images/jupyter-helloworld.png
https://compphysics.readthedocs.io/_images/jupyter-helloworld.png
https://compphysics.readthedocs.io/_images/spyder-helloworld.png
https://compphysics.readthedocs.io/_images/spyder-helloworld.png
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://compphysics.readthedocs.io/python/intropython.html#using-the-ides
https://compphysics.readthedocs.io/python/intropython.html#using-the-ides
https://compphysics.readthedocs.io/python/intropython.html#using-the-ides
https://compphysics.readthedocs.io/python/intropython.html#using-the-ides

allows you to save the code, markdown and images in a single file.

 Warning

Evidently, you can run the cells out of order while developing, but the final code should be
organized to run cell-by-cell in order.

The following keyboard shortcuts run in Command mode, which is ac!vated by pressing ESC . A
full list of shortcuts can be seen by pressing ESC+H . To add a cell, type ESC+A to add above or
ESC+B to add below. To delete a cell type ESC+D+D .

To change a cell type check the bu&ons bar at the top of the window you see a list of cell types.
The most important ones are code and markdown. In the markdown mode you can write
forma&ed text and Latex equa!ons, which is quite useful to document your code and present
the results. You can also change the cell to markdown mode by calling ESC+M , and back to code
mode with ESC+Y .

• Spyder: This IDE works with simple text files (extension .py). To run the (en!re) code you
press F5 . Spyder can also work with cells, which are defined by # %% Cell Name . The Cell
Name is op!onal, but helps with the organiza!on of the code. To run only the current cell and
advance to the next, you press Shift + Enter .

 Warning

It might be important to check the workspace directory on the top right corner of the
window, as it defines the rela!ve path to read and save files.

Spyder allows you to choose how to show the plots/images. To find the op!ons go to
Tools > Preferences > IPython console > Graphics > Backend . To capture the plots into the

Spyder panel, choose inline, and to plot as a separate window, choose automa!c.

1.2. Variables, data types and operations

For those used to C and Fortran, it seems weird that variables don’t need to be declared. Their
type is inferred by the assignment, which can be checked using the type(...) call. Try running
these examples

Example: Assignment and data types

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

3 of 15 2023-01-02, 5:57 p.m.

https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
https://compphysics.readthedocs.io/python/intropython.html#variables-data-types-and-operations
https://compphysics.readthedocs.io/python/intropython.html#variables-data-types-and-operations
https://compphysics.readthedocs.io/python/intropython.html#variables-data-types-and-operations
https://compphysics.readthedocs.io/python/intropython.html#variables-data-types-and-operations
https://compphysics.readthedocs.io/python/intropython.html#id1
https://compphysics.readthedocs.io/python/intropython.html#id1
https://compphysics.readthedocs.io/python/intropython.html#id1
https://compphysics.readthedocs.io/python/intropython.html#id1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

These will all be integers
a = 3
b = 4
c = a**2 + b**2
print('type of a is', type(a))
print('type of b is', type(b))
print('type of c is', type(c), ' and its value is', c)

These are floats (floating point, real numbers)
x = 1/3
y = 4.2
z = a/b
Na = 6.022e23 # here 1e23 = 10²³
print('x =', x, ' has type', type(x))
print('y =', y, ' has type', type(y))
print('z =', z, ' has type', type(z))
print('Na =', Na, ' has type', type(Na))

For complex numbers, use j instead if i
c = 4.5 + 3.1j
d = 2 + 3j
print('c =', c, 'has type', type(c))
print('d =', d, 'has type', type(d))

Strings
s = 'hello world!'
print(s, 'is a ', type(s))

Mixing strings and numbers with the str(...) cast
1st, using an integer to label a file
n = 8
myfile = 'somefile' + str(n) + '.txt'
print('File name:', myfile)
2nd, now using a float, but rounding it up
x = 1/3
myfile = 'somefile' + str(round(x, 2)) + '.txt'
print('File name:', myfile)

In the last lines above we use the str(...) call to cast its argument into a string. You can also
use cas!ng to integers with int(...) or floats with float(...) . Try it! Above we use
round(..., n) to trim a number up to n digits.

1.2.1. Arithmetic operations

Check these examples:

Example: arithme!c opera!ons

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

4 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#arithmetic-operations
https://compphysics.readthedocs.io/python/intropython.html#arithmetic-operations
https://compphysics.readthedocs.io/python/intropython.html#arithmetic-operations
https://compphysics.readthedocs.io/python/intropython.html#arithmetic-operations
https://compphysics.readthedocs.io/python/intropython.html#id2
https://compphysics.readthedocs.io/python/intropython.html#id2
https://compphysics.readthedocs.io/python/intropython.html#id2
https://compphysics.readthedocs.io/python/intropython.html#id2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

let's start assigning numbers to x and y
x = 5
y = 2

and now let's operate and print the results
print('addition: ', x + y)
print('subtraction: ', x - y)
print('multiplication: ', x * y)
print('division: ', x / y)
print('exponentiation: ', x**y)
print('remainder: ', x % y)

Besides the simple assignments, python allows for increments. For instance, x += 2 is the same
as x = x + 2 . Try these examples:

Example: assignment with increments

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

let's start with a simple assignment
x = 2
and apply the increments

x += 5 # the same as x = x + 5
print('now x =', x)

x -= 5 # the same as x = x - 5
print('now x =', x)

x /= 2 # the same as x = x / 2
print('now x =', x)

x *= 2 # the same as x = x * 2
print('now x =', x)

No!ce in the example above that the type of x has changed at some point. Why?

1.2.2. Comparisons and logical operations

Comparisons opera!ons are simple == , > , < and etc. The logical opera!ons act on True or
False values by combining it with and , or , not opera!ons. We’ll see how to use

comparisons with if and loops later. For now, let’s check the examples:

Example: Comparisons and logical opera!ons

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

5 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#id3
https://compphysics.readthedocs.io/python/intropython.html#id3
https://compphysics.readthedocs.io/python/intropython.html#id3
https://compphysics.readthedocs.io/python/intropython.html#id3
https://compphysics.readthedocs.io/python/intropython.html#comparisons-and-logical-operations
https://compphysics.readthedocs.io/python/intropython.html#comparisons-and-logical-operations
https://compphysics.readthedocs.io/python/intropython.html#comparisons-and-logical-operations
https://compphysics.readthedocs.io/python/intropython.html#comparisons-and-logical-operations
https://compphysics.readthedocs.io/python/intropython.html#id4
https://compphysics.readthedocs.io/python/intropython.html#id4
https://compphysics.readthedocs.io/python/intropython.html#id4
https://compphysics.readthedocs.io/python/intropython.html#id4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

x = 3
y = 4
z = 3

simple comparisons
print('is x larger than y?', x > y)
print('is y larger than z?', y > z)
print('is x larger or equal to z?', x >= z)
print('is x different than z?', x != z)
print('is z equal to z?', x == z)

composed comparisons
print('is x larger than both y and z?', x > y and x > z)
print('is x larger or equal to z?', x > z or x == z) # the same as x >= z
print('is x between 1 and 7?', 1 <= x <= 7)

Comparisons and floats: BE VERY CAREFUL! You should NEVER use == to check equivalence
between floats, and this example shows why:

Example: Error comparing floats

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

x = 0.1
y = 3 * x
z = 0.3

should both questions be True?
print('obviously z == 0.3 by definition, right?', z == 0.3)
print('and y is also 0.3, right?', y == z)

let's check the values
the format call allows you to specify the number of digits
print('x = ', format(x, '0.30f'))
print('y = ', format(y, '0.30f'))
print('z = ', format(z, '0.30f'))

What’s happening there? Shouldn’t both be 0.3???? While 0.1 and 0.3 are exact in base 10, in
binary they are repea!ng frac!ons: (0.3) = (0.0[1001]) , and (0.1) = (0.0[0011]) . The
numbers between […] are the repea!ng pa&ern. Since numbers are stored in memory with 64
bits (typically), it requires a trunca!on. For instance, if you truncate a#er three repe!!ons, the
0.1 becomes (0.0001100110011) = (0.0999755859375) , and the 0.3 is (0.0100110011001)
= (0.2999267578125) .

1.2.3. Lists and dictionaries

A list in python is indeed a list of whatever elements. You can mix oranges and bananas… and
numbers as well. This is different from an array, which is a structure with a well defined type and
we’ll discuss within the numpy sec!on. Let’s focus on generic lists for now, check the example:

10 2 10 2

2 10 2

10

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

6 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#id5
https://compphysics.readthedocs.io/python/intropython.html#id5
https://compphysics.readthedocs.io/python/intropython.html#id5
https://compphysics.readthedocs.io/python/intropython.html#id5
https://compphysics.readthedocs.io/python/intropython.html#lists-and-dictionaries
https://compphysics.readthedocs.io/python/intropython.html#lists-and-dictionaries
https://compphysics.readthedocs.io/python/intropython.html#lists-and-dictionaries
https://compphysics.readthedocs.io/python/intropython.html#lists-and-dictionaries

Example: lists and opera!ons on lists

1
2
3
4
5
6
7
8
9

using only strings for now
cart = ['banana', 'oranges'] # init list with two items
cart.append('apple') # add an item
cart.sort() # sort alphabetically

print('Number of elements:', len(cart)) # len from length
print('The first item: ', cart[0]) # indexes start from 0
print('The last item: ', cart[-1]) # and you can count backwards
print('Is there bananas?', 'banana' in cart) # a membership comparison

Above we have used in , which is a membership comparison and be used with if and loops
below.

Now let’s start with an empty list and mix types as we add to the list:

Example: mixing types

1
2
3
4
5
6

mylist = [] # start empty
mylist.append(2) # add an integer
mylist.append(2.0) # and an float
mylist.append('two') # add an string

print('The list:', mylist)

 Warning

A list is not a mathema!cal vector, it does not support mathema!cal opera!ons. For
instance, the code x = [1, 2, 3] and y = 2*x WILL NOT GIVE [2, 4, 6] , instead, it
repeats the list twice to give [1, 2, 3, 1, 2, 3] . This is useful to create long lists with a
repeated pa&ern.

The mathema!cal vectors will be defined within the numpy package as
x = np.array([1, 2, 3]) . In this case the call y = 2*x will return [2, 4, 6] .

1.2.3.1. Dictionaries

It can be useful to use a list of mixed types to store different parameters for your code. But it’s
even be&er to use dic!onaries. It basically works like a list, but instead of using integers 0, 1, …
as indexes, it uses strings or integers. Let’s check:

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

7 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#id6
https://compphysics.readthedocs.io/python/intropython.html#id6
https://compphysics.readthedocs.io/python/intropython.html#id6
https://compphysics.readthedocs.io/python/intropython.html#id6
https://compphysics.readthedocs.io/python/intropython.html#id7
https://compphysics.readthedocs.io/python/intropython.html#id7
https://compphysics.readthedocs.io/python/intropython.html#id7
https://compphysics.readthedocs.io/python/intropython.html#id7
https://compphysics.readthedocs.io/python/intropython.html#dictionaries
https://compphysics.readthedocs.io/python/intropython.html#dictionaries
https://compphysics.readthedocs.io/python/intropython.html#dictionaries
https://compphysics.readthedocs.io/python/intropython.html#dictionaries

Example: using dic!onaries to store parameters

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

pars = {} # init an empty dictionary

pars['T'] = 273 # K
pars['P'] = 1.013e5 # Pa
pars['V'] = 22.4 # L
pars['filename'] = 'myfile.txt'
pars[5] = 'five' # useless example as an example

let's change a value
pars['T'] = 300

and print all
print('Temperature is', pars['T'])
print('Pressure is', pars['P'])
print('Volume is', pars['V'])
print('Store in file: ', pars['filename'])
print('Element 5 is: ', pars[5])

No!ce above that we can use an integer 5 as the index, but it is not as useful as using strings.
The idea is to use it when your code has many parameters, and it’s easier to pass it around as a
dic!onary instead of using many… many arguments on each func!on. Use it wisely!

1.3. Decision making: if / else / etc…

Using if/else is as simple as in any other language. We just need to check the syntax. But
remember that we can use the simple comparisons >, <, >=, <=, != , the logical operators
and, or, not and membership operators in, not in . Let’s check it:

Example: if / else and comparisons

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

8 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#id8
https://compphysics.readthedocs.io/python/intropython.html#id8
https://compphysics.readthedocs.io/python/intropython.html#id8
https://compphysics.readthedocs.io/python/intropython.html#id8
https://compphysics.readthedocs.io/python/intropython.html#decision-making-if-else-etc
https://compphysics.readthedocs.io/python/intropython.html#decision-making-if-else-etc
https://compphysics.readthedocs.io/python/intropython.html#decision-making-if-else-etc
https://compphysics.readthedocs.io/python/intropython.html#decision-making-if-else-etc
https://compphysics.readthedocs.io/python/intropython.html#id9
https://compphysics.readthedocs.io/python/intropython.html#id9
https://compphysics.readthedocs.io/python/intropython.html#id9
https://compphysics.readthedocs.io/python/intropython.html#id9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

let's start with a simple one
a = 3
b = 4
if a > b:

print('a is larger than b')
elif a < b:

print('b is larger than a')
else:

print('they are equal')

now let's check a membership comparison with lists
cart = ['apple', 'banana', 'orange']

if 'grape' in cart:
print('yes, we have grapes')

else:
print('no, we need grapes')

No!ce that the structure has no termina!on. The segment is delimited by the indenta!on.

1.4. Loops: for / while and comprehensions

The loop for is usually used when it runs over a predefined list of elements, while the while uses
a less predictable termina!on point. Let’s start with the for:

Example: using a for loop over lists

1
2
3
4
5
6
7
8

let's use our fruits again
cart = ['apple', 'banana', 'orange']
for fruit in cart:

print('we have:', fruit)

similarly, you could also do
for i in range(len(cart)):

print('item', i, ' is', cart[i])

So you can loop over the elements of a list using the membership operator in , or you can use
an integer i to loop over the indexes. In this case we use len(cart) to get the number of
elements in the list (3) and the command range(...) to create a list of integers. Let’s check how
range works in this example:

Example: using range

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

9 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#loops-for-while-and-comprehensions
https://compphysics.readthedocs.io/python/intropython.html#loops-for-while-and-comprehensions
https://compphysics.readthedocs.io/python/intropython.html#loops-for-while-and-comprehensions
https://compphysics.readthedocs.io/python/intropython.html#loops-for-while-and-comprehensions
https://compphysics.readthedocs.io/python/intropython.html#id10
https://compphysics.readthedocs.io/python/intropython.html#id10
https://compphysics.readthedocs.io/python/intropython.html#id10
https://compphysics.readthedocs.io/python/intropython.html#id10
https://compphysics.readthedocs.io/python/intropython.html#id11
https://compphysics.readthedocs.io/python/intropython.html#id11
https://compphysics.readthedocs.io/python/intropython.html#id11
https://compphysics.readthedocs.io/python/intropython.html#id11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

range(n) = 0..n-1
for i in range(10):

print(i)

range(ni, nf) = n1..nf-1
for i in range(3, 15):

print(i)

range(n1, nf, step) takes steps instead of increasing by 1
for i in range(1, 15, 2):

print(i)

 Warning

No!ce that range defines an interval closed at the le# side and open at the right side.

range(init, end, step) goes from init to end-1 in steps of step

You can use any type of lists or arrays (numpy) to delimit the for loop.

Now let’s check a while example:

Example: using while to sum 1 + 1/2 + 1/4 + 1/8… un!l the new element is small enough

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

x = 1 # init x
s = 0 # and init the sum
loop until x is small enough
while x > 1e-5:

s += x # add to the sum
x /= 2 # update x

print the results
print('the final x =', x)
print('the sum s =', s)

Above we are not specifying the number of loops, but looping un!l x gets small enough.

A compact for loop can be used to define lists as comprehensions. Check this example:

Example: comprehensions

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

10 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#id12
https://compphysics.readthedocs.io/python/intropython.html#id12
https://compphysics.readthedocs.io/python/intropython.html#id12
https://compphysics.readthedocs.io/python/intropython.html#id12
https://compphysics.readthedocs.io/python/intropython.html#id13
https://compphysics.readthedocs.io/python/intropython.html#id13
https://compphysics.readthedocs.io/python/intropython.html#id13
https://compphysics.readthedocs.io/python/intropython.html#id13

1
2
3
4
5
6
7
8

let's start with a list for the example
x = [0, 2, 4, 5, 9]

and define y using a comprehension:
y = [xi**2 for xi in x]

print('x = ', x)
print('y = ', y)

The comprehension executes the code before the for for each element in the list.

1.5. Functions and scope of variables

As usual, func!ons take arguments and returns something. The main differences from C/Fortran
is that a func!on can return more than one object. Also, there’s a compact form for inline
func!ons called lambda func!ons. Let’s check the examples:

Example: simple func!ons

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import the square root from the complex math library
from cmath import sqrt

define the function
here c has a default value
def bhaskara(a, b, c=0):

d = sqrt(b**2 - 4*a*c)
x1 = (-b+d)/(2*a)
x2 = (-b-d)/(2*a)
return x1, x2

calling the function
s1, s2 = bhaskara(1, 2, -15)
print('sols:', s1, 'and', s2)

let's call again with different numbers
x1, x2 = bhaskara(1, 5, 0)
print('sols:', x1, 'and', x2)

above, we could have omitted c
x1, x2 = bhaskara(1, 5)
print('sols:', x1, 'and', x2)

a final example
x1, x2 = bhaskara(1, 2, 2)
print('sols:', x1, 'and', x2)

Above we are impor!ng the sqrt from the cmath library to allow for complex numbers.

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

11 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#functions-and-scope-of-variables
https://compphysics.readthedocs.io/python/intropython.html#functions-and-scope-of-variables
https://compphysics.readthedocs.io/python/intropython.html#functions-and-scope-of-variables
https://compphysics.readthedocs.io/python/intropython.html#functions-and-scope-of-variables
https://compphysics.readthedocs.io/python/intropython.html#id14
https://compphysics.readthedocs.io/python/intropython.html#id14
https://compphysics.readthedocs.io/python/intropython.html#id14
https://compphysics.readthedocs.io/python/intropython.html#id14

The func!on bhaskara receives three parameters, but the third one has a default keyword
argument. If not informed, it’s assumed to be zero as indicated. At the end, the func!on returns
two values, x1 and x2, which are a&ributed to two variables on the calls that follow.

1.5.1. The scope

No!ce above that we have variables x1 and x2 within the func!on bhaskara, and also outside
the func!on. These are not the same variables. The (x1,x2) variables within bhaskara have the
same name but are not the same variables as those (x1,x2) outside. To make it clear, let’s try this
other example, which you could run in debug mode to follow the values of the variables.

Example: scope of a variable

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

some random function
def f(x):

a = 10
s = a * x**2
return s

let's call it directly
print('the value of f(10) is', f(10))

is x, a, or s defined?
print('x =', x)
print('a =', a)
print('s =', s)

let's try again
a = 0
print('is f(10) now zero?', f(10))

let's define x
x = 5
print('x is now = ', x)
print('for this x we have f(x)=', f(x))

let's call f(10) again
print('the value of f(10) is', f(10))
print('did it change the value of x? x=', x)

We have to understand the local scope of each variable:

Within the func!on f(x) , its argument x and the inner variables a and s are local variables, their
value and defini!on are set only within the func!on and are not accessible outside unless you
return their values. On the outside, the a and x defined in lines 16 and 20 are on the global
scope.

1.5.2. The lambda functions

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

12 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#the-scope
https://compphysics.readthedocs.io/python/intropython.html#the-scope
https://compphysics.readthedocs.io/python/intropython.html#the-scope
https://compphysics.readthedocs.io/python/intropython.html#the-scope
https://compphysics.readthedocs.io/python/intropython.html#id15
https://compphysics.readthedocs.io/python/intropython.html#id15
https://compphysics.readthedocs.io/python/intropython.html#id15
https://compphysics.readthedocs.io/python/intropython.html#id15
https://compphysics.readthedocs.io/python/intropython.html#the-lambda-functions
https://compphysics.readthedocs.io/python/intropython.html#the-lambda-functions
https://compphysics.readthedocs.io/python/intropython.html#the-lambda-functions
https://compphysics.readthedocs.io/python/intropython.html#the-lambda-functions

A lambda func!on is simple a short nota!on for short func!ons:

Example: the lambda func!ons

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

let's start by defining a very simple function
def f(x, y):

return x**y

which can be defined also as a lambda function
g = lambda x, y: x**y

let's compare:
print('calling f:', f(2, 10))
print('calling g:', g(2, 10))

The lambda func!on is defined such that the arguments follow the keyword lambda and the
direct return follows a#er the :

1.6. Importing libraries

The core of python comes with many func!onali!es, but it always need to be complemented
with external libraries using import as shown above for cmath. There are many ways to import a
library.

You should avoid impor!ng like this:

Example: causing a conflict with BAD IMPORTS

1
2
3
4
5
6
7
8

this imports only the sqrt command from math
from cmath import sqrt

this imports sqrt from math (non-complex math library)
from math import sqrt

you could, but shouldn't import everything as well
from math import *

 Warning

No!ce that by calling from math import * or the other examples above you may cause
conflicts since the sqrt func!on exists in more than one library. The correct way is shown
next.

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

13 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#id16
https://compphysics.readthedocs.io/python/intropython.html#id16
https://compphysics.readthedocs.io/python/intropython.html#id16
https://compphysics.readthedocs.io/python/intropython.html#id16
https://compphysics.readthedocs.io/python/intropython.html#importing-libraries
https://compphysics.readthedocs.io/python/intropython.html#importing-libraries
https://compphysics.readthedocs.io/python/intropython.html#importing-libraries
https://compphysics.readthedocs.io/python/intropython.html#importing-libraries
https://compphysics.readthedocs.io/python/intropython.html#id17
https://compphysics.readthedocs.io/python/intropython.html#id17
https://compphysics.readthedocs.io/python/intropython.html#id17
https://compphysics.readthedocs.io/python/intropython.html#id17

The proper way to import a library is:

Example: safe import

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

import math as rm
import cmath as cm
the import alias do not have to be rm and cm, you can choose whatever (?) you want

using the real math library
print('The square root of 2 is: ', rm.sqrt(2))

using the complex math library
print('The square root of +2 is: ', cm.sqrt(+2))
print('The square root of -2 is: ', cm.sqrt(-2))

It’s a pain to carry the objects rm. or cm. up and down the code, but that’s the safe way and
you should use it!

Above we use rm and cm as alias to make the calls shorter, but you could have also used simply
import math without an alias. In this case the calls would be math.sqrt(2) and so on.

In prac!ce, always try to use common alias for the libraries, for instance, we’ll use these a lot:

Example: common libraries and their alias

1
2
3

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

1.7. Reading/saving files and string manipulation

To save data files it might be be&er use the numpy package. The discussion here will be more
useful to read or save structured files. An important example would be to read a file with
parameters for your code.

Commands to discuss:

• open and close, using with
• read / readline
• write / writelines
• print(data, file=open(filename, 'w'))

• find / replace

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

14 of 15 2023-01-02, 5:57 p.m.

https://compphysics.readthedocs.io/python/intropython.html#id18
https://compphysics.readthedocs.io/python/intropython.html#id18
https://compphysics.readthedocs.io/python/intropython.html#id18
https://compphysics.readthedocs.io/python/intropython.html#id18
https://compphysics.readthedocs.io/python/intropython.html#id19
https://compphysics.readthedocs.io/python/intropython.html#id19
https://compphysics.readthedocs.io/python/intropython.html#id19
https://compphysics.readthedocs.io/python/intropython.html#id19
https://compphysics.readthedocs.io/python/intropython.html#reading-saving-files-and-string-manipulation
https://compphysics.readthedocs.io/python/intropython.html#reading-saving-files-and-string-manipulation
https://compphysics.readthedocs.io/python/intropython.html#reading-saving-files-and-string-manipulation
https://compphysics.readthedocs.io/python/intropython.html#reading-saving-files-and-string-manipulation

• split into list
• …

1. Introduction to python — Intro: Computational Physics https://compphysics.readthedocs.io/python/intropython.html

15 of 15 2023-01-02, 5:57 p.m.

