Please answer the below questions:

Q1 (2.5pts): Implement the bisection method in a Python programming language to find the roots of a simple polynomial function (e.g. $f(x) = x^3 - x^2 + 2$). Plot the function and the root found using the bisection method.

Q2 (2.5pts):

The function defined by $f(x) = \sin \pi x$ has zeros at every integer. Show that when -1 < a < 0 and 2 < b < 3, the Bisection method converges to

- **a.** 0, if a+b < 2
- **b.** 2, if a+b>2 c. 1, if a+b=2

Q3 (2.5pts):

Use the Bisection method to find solutions accurate to within 10^{-2} for $x^4 - 2x^3 - 4x^2 + 4x + 4 = 0$ on each interval.

- [-2, -1]
- **b.** [0, 2]
- [2, 3]
- **d.** [-1,0]

Q4 (2.5pts): Using Newton Method to find a root of:

$$f(x) = e^{-x} - x,$$

$$f(x) = e^{-x} - x,$$
 $f'(x) = -e^{-x} - 1$

Try to produce the result in the following format:

x_k	$f(x_k)$	$f'(x_k)$	$\frac{f(x_k)}{f'(x_k)}$
1.0000	-0.6321	-1.3679	0.4621
0.5379	0.0461	-1.5840	-0.0291
0.5670	0.0002	-1.5672	-0.0002
0.5671	0.0000	-1.5671	-0.0000

Q5 (2.5pts): Use Newton's method to find solutions accurate to within 10^{-5} for the following problems

a.
$$e^x + 2^{-x} + 2\cos x - 6 = 0$$
 for $1 \le x \le 2$

for
$$1 < x < 2$$

b.
$$ln(x-1) + cos(x-1) = 0$$
 for $1.3 \le x \le 2$

for
$$1.3 \le x \le 2$$

Q6 (2.5*pts*): Repeat Exercise 6 using the Secant method.