KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS DEPARTMENT OF PHYSICS

Physics 373 – Introduction to Computational Physics – Winter Semester 2023 (Term 222) Course Schedule and Grading Policy

Course Description:

Computer Simulation of Physical systems. Topics covered: simulation techniques; programming methods; comparison of ideal and realistic systems; limitations of physical theory; behavior of physical systems.

Pre-requisite: PHYS 212 and ICS 101 (or 102 or 103)

Lecture Hours: UT (12:00-12:50) LAB Hours: W (12:00-2:50 PM) Office Hours: UMT (01:00-1:50 PM)

Textbook: "Computational Physics: Problem Solving with Computers", by Landau, Paez & Bordeianu,

Wiley (2012).

Supplementary Books:

(A) Numerical Analysis, Ninth Edition. Richard L. Burden and J. Douglas Faires

(B) Python For Everyone, 2rd Edition, Cay S. Horstmann, Rance D. Necaise

Instructor: Dr. Sabri Elatresh

Bldg. 6 room 116 Tel: 2860

Email: sabri.elatresh@kfupm.edu.sa

Web page: faculty.kfupm.edu.sa/PHYS/sabrielatresh

Grading Policy

Grading Policy	%
Classwork Quizzes (10%) + LAB work (15%)	25
Projects	15
MidTerm Exam	30
Final Exam	30
Total	100

Physics 373 Lecture Schedule Spring 2023 (Term 222)

Week	Date	Topics	Lab Assignment	
1	15 Jan	Introduction to Computational Physics.	No Lab	
	19	Programs: Language and Structure		
2	22 Jan	Error Analysis and Uncertainties	Programming with	
	26	Taylor Theorem	python	
Thursday – 26th Jan. 2023- Last day for dropping courses without permanent record				
3	29 Jan	Solving Nonlinear Equations:	Error Analysis	
	02 Feb.	Bisection method Secant method	Taylor Theorem	
4	05 Feb.	Numerical Roots of equations:	Root-Finding	
	09	Regula-Falsi method Newton-Raphson	(Bisection method)	
5	12 Feb	Systems of Linear Equations:	Root-Finding	
	16	Naive Gaussian Elimination	Newton-Raphson	
6	19 Feb.	Systems of Linear Equations: Gaussian	Systems of Linear	
	23	Elimination Algorithm for Tri-diagonal	Equations	
		Equations		
7	26 Feb	Curve Fitting: Least Squares	No Lab	
	02 Mar	Linear Regression Nonlinear Problems		
8	05 Mar.	Interpolation: Newton Polynomial Interpolation	Curve Fitting	
	09	Lagrange's interpolation:		
9	12 Mar.	Numerical integration methods:	Interpolation	
	16	Trapezoidal rule Simpson's rules Monte Carlo		
10	19 Mar	Ordinary Differential Equations:	Numerical	
	23	Runge-Kutta Methods	integration	
Midterm Exam: TBA				
11	26 Mar	Partial Differential Equation in Physics	ODE	
	30	Finite Difference algorithms for PDE		
12	02 Apr	The Laplace and Poisson equations	PDE	
	06	Time-dependent Heat Equation		
13	09 Apr	Quantum mechanical Calculations:	PDE (applications)	
	13	The Density-Functional Method (DFT)		
Eid Al-Fitr Holidays: Apr. 14th - Apr. 27th 2023				
14	30 Apr	Molecular Dynamics Simulation Method /	MD Ising model	
	04 May	Ising model		
Thursday - 04 May 2023: Last day for major exams; Last day for withdrawal from all courses with grade of "W"				
15	07 May	Presentations	No Lab	
	11	Presentations	1.0 1.00	
Final Exam: TBA				
I IIIII DAGIII; IDA				

Attendance Policy:

PHYS 373 course is offered in person. Class attendance and participation are required.

- A **DN** grade shall be given to the student who has more than <u>12 unexcused absences</u> in lectures.
- A Student who has a valid excuse (from KFUPM clinic or Students Affairs) for his absence must present it to his instructor no later than one week after resuming classes

Course Learning Outcomes PHYS-373

On completion of the course, the student should be able to:

- Design and implement working Python code.
- Understand the basic principles of numerical methods and their application to solving physics problems.
- Be able to write computer programs to solve physics problems numerically.
- Be able to use numerical methods to model physical systems and analyze the results.
- Understand the limitations of numerical methods and the trade-offs between accuracy and computational time.
- Be able to critically evaluate the results of numerical simulations and compare them to analytical solutions and experimental data.
- Understand the importance of parallel computing and distributed computing in computational physics.
- Be familiar with the use of common programming languages and software packages used in computational physics.