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State of the art CPU

This slide is from CMU course 
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https://www.redhat.com/sysadmin/cpu-components-functionality
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Arithmatic and Logic Unit (ALU) 

• CPU executes computer programs, which 
contains set of machine instructions

• Machine instructions are set of arithmatic and 
logical operations

• ALU is a combinational digital circuit that 
performs pre-identified set of arithmatic and 
logical operations, example

• Addition

• Subtraction

• Multiplication

• AND

• OR

• Etc 

https://www.learncomputerscienceonline.com/arithmetic-logic-unit/

In general, ALU takes two inputs 
(OPRANDS) and an instruction (OP 
CODE) and produces the RESULTS
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Binary Addition

• Suppose we want to add two numbers 11 and 11
• Recall that 11=1*23+0*22+1*21+1*20 =(1011)2 

14= 1*23+1*22+1*21+0*20 =(1110)2

• We know that 11+11=25, but how is it done in binary?

1011
+ 1110
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Binary Addition

• Binary addition is used frequently

• “Addition” Development:
• Half-Adder (HA), a 2-input bit-wise addition functional block

• Full-Adder (FA), a 3-input bit-wise addition functional block

• Ripple Carry Adder, an iterative array to perform binary addition

• Carry-Look-Ahead Adder (CLA), Speeds up performance by generating carries from the 
input numbers directly to avoid carry ripple delay

COE530: Lecture 2
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Half-Adder

• A half adder (HA) is an arithmetic circuit that is used to add two bits. The block 
diagram of HA is shown. It has two inputs and two outputs. 

• A 2-input (no carry input), 1-bit width binary adder that performs the following 
computations:

• A half adder adds two bits to produce two bits: S & C

• The output is expressed as a sum bit , S and a carry bit, C

• The half adder can be specified  as a truth table for S and C

X 0 0 1 1
+ Y + 0 + 1 + 0 + 1
C S 0 0 0 1 0 1 1 0

COE530: Lecture 2
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Review of Boolean Algebra

X Z

0 1

1 0

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

NOT 
Truth Table
𝑍 = ത𝑋

OR 
Truth Table
𝑍 = 𝑋𝑌

AND 
Truth Table
𝑍 = 𝑋 + 𝑌

X Y Z

0 0 0

0 1 1

1 0 1

1 1 0

XOR 
Truth Table
𝑍 = 𝑋⨁𝑌
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Implementations: Half-Adder

• The most common half adder implementation is:

X
Y

C

S𝑆 = 𝑋⨂𝑌
𝐶 = 𝑋𝑌

COE530: Lecture 2
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Transistors as Physical Logic Gates
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NAND Gate as Hardware 
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Full-Adder

• A full adder is similar to a half adder but includes a carry-in bit from lower stages.   
Like the half-adder, it computes a sum bit, S and a carry bit, C.

• For a carry-in (Z) of                                                            0, it is the same as                           
the half-adder: 

• For a carry- in
(Z) of 1:            

Z 0 0 0 0

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 0 0 1 0 1 1 0

Z 1 1 1 1

X 0 0 1 1

+ Y + 0 + 1 + 0 + 1

C S 0 1 1 0 1 0 1 1
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Exercise

• What is the circuit for Full-Adder?

• We need a way to write functions from truth table?

X Y Z C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Full Adder Truth Table
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Equations: Full-Adder

• The Boolean functions for the sum and carry outputs can be manipulated to 
simplify the circuit, as shown below: 

• Thus the full adder can be implemented using two half adders and an OR gate as 
shown below:
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4-bit Ripple-Carry Adder (RCA)

• A 4-bit Ripple-Carry Adder made from four 1-bit Full Adders: 

• N-bit Ripple-Carry Adder:   

𝐶0
𝐵3𝐵2𝐵1𝐵0

+ 𝐴3𝐴2𝐴1𝐴0
𝐶4𝑆3𝑆2𝑆1𝑆0

𝐶0
𝐵𝑛−1…𝐵2𝐵1𝐵0

+ 𝐴𝑛−1…𝐴2𝐴1𝐴0
𝐶𝑛𝑆𝑛−1…𝑆2𝑆1𝑆0



4-bit RCA: Carry Propagation & Delay*

• One problem with the addition of binary numbers is the length of time taken to 
propagate the ripple carry from the least significant bit to the most significant bit.

• Gate-level propagation path for the 4-bit 

ripple carry adder (XOR = 3 gate delays)

A3
B3

S3

B2

S2

B1

S1 S0

B0

A2 A1 A0

C4

C3 C2 C1 C0

Critical (longest) delay path

(Worst case scenario)

Longest Total Carry Ripple Delay from inputs to S3 = 3 + 3 + 2(n-1) gate delays
where n is the number of stages (= 4 here) → 12 gate delays



Carry Lookahead Adder (CLA)*

• Defining the equations for the Full Adder in terms of the Pi and Gi:

• In the ripple carry adder:
• Gi, Pi, Ci and Si are obtained locally at each bit cell of 

the adder (i.e. limited to that bit)

• In the carry lookahead adder, in order to reduce the length of the ripple 
carry chain, Ci is changed to a more global function spanning multiple cells

iiiiii BAGBAP ==

iii1iiii CPGCCPS +== +



CLA Block*

• The 4-bit carry look-ahead (CLA) adder consists 
of 3 levels of logic: 

• First level: Generates all the P & G signals. Four sets 
of P & G logic (each consists of an XOR gate and an 
AND gate)

• Second level: The Carry Look-Ahead (CLA) logic 
block which consists of four 2-level implementation 
logic circuits. It generates the carry signals (C1, C2, 
C3, and C4)

• Third level: Four XOR gates which generate the sum 
signals (Si) (Si = Pi ⊕ Ci), (S0, S1, S2, and S3)

• The delay of CLA is 8 gates 
(down from 12 gates)

• How?  
Beyond the scope of this course
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Back to ALU 

• We implemented a circuit to add two n-bit 
numbers in the ALU 

• How can we construct a a circuit to subtract two 
4-bit numbers using 4-bit Ripple Carry Adder?



Adder/Subtractor for Signed 2’s Complement

• One circuit computes A + B or A – B:

• Subtraction is done by the addition of the 2's Complement  

• For S = 0 (add):

B is passed through
to the adder unchanged

• For S = 1 (subtract):
→ 2’s complement
of B is obtained using
XORs to form 
the 1’s comp + 1

applied to C0 of 

1st stage→ 2’s comp. added to A

Subtract/
Add

No correction
Needed



One’s Complement Representation*

• Positive numbers are represented using normal 
binary equivalent .

• Negative numbers are represented by the 1's 
complement (complement) of the normal 
binary representation of the magnitude. 

• Example:
• +9 is represented as 01001 

• -9 is represented as 10110 (obtained by 
complementing the binary representation of 9). 



Why is it called “one’s complement?”*

• Complementing a single bit is equivalent to subtracting it from 1.

0’ = 1, and 1 - 0 = 1 1’ = 0, and 1 - 1 = 0

• Similarly, complementing each bit of an n-bit number is equivalent to subtracting 
that number from 2n-1.

• For example, we can negate the 5-bit number 01101.
• Here n=5, and 2n-1 = 3110 = 111112.

• Subtracting 01101 from 11111 yields 10010:

1 1 1 1 1
- 0 1 1 0 1

1 0 0 1 0



One’s Complement Addition*

• Example 1: Adding 0111 (+7) + 0111 (+7)
• The result is 1110 and the carry out is 0, hence an overflow has occurred (adding two 

positive numbers resulted in a negative number, -1 in this case). 

• Example 2: Subtracting 0001 (+1) – 0111 (+7) 
• 0001 (+1) + 1000 (-7) = 1001 (-6) 

• The result is 1001 with no end carry. The result represents -6 (the correct result) and no 
further addition is required. 

• Example 3: Subtracting 0111 (+7) - 0001 (+1)
• 0111 (+7) + 1110 (-1) = 0101 (+5) with carry out=1 

• The result is 0101 with an end carry of 1. This carry has to be added to the previous result 
and yields 0110 (+6), the correct answer). 



Two’s Complement Representation*

• Positive numbers are represented using normal binary 
equivalent.

• Negative numbers are represented by the 2's 
complement of the normal binary representation of the 
magnitude. 

• The 2's complement of a binary number equals its 1's 
complement + 1. 

• Another easy way to obtain the 2's complement of a 
binary number:

• Start at the LSB, leaving all the 0s unchanged, look for the first 
occurrence of a 1. Leave this 1 unchanged and complement all 
the bits after it. 



Computing the 2's Complement*

Another way to obtain the 2's complement:

Start at the least significant 1

Leave all the 0s to its right unchanged

Complement all the bits to its left

starting value 001001002 = +36

step1: Invert the bits (1's complement) 110110112

step 2: Add 1 to the value from step 1 +      12

sum = 2's complement representation 110111002 = -36

Binary Value

= 00100 1 00

2's Complement

= 11011 1 00

least
significant 1

2’s complement of 110111002 (-36) = 001000112 + 1 = 001001002 = +36

The 2’s complement of A is the negative of A



Two’s Complement Representation*

• To find the value of a number represented in two’s complement, check the sign 
bit

• If the sign bit is 0, the number is positive and find its value using weighted method

• If the sign is 1, the number is negative and you can find value in two ways
• Take the 2’s complement, you will get the corresponding positive value, then add a minus sign to it

• Example: Find the value of the 4-bit number 1011
• Take the 2’s complement-> 0101 = +5; thus 1011 represents -5



Two’s Complement Addition*

• Example 1: Adding 0111 (+7) + 0111 (+7) 
• The result is 1110 (-2), hence an overflow has occurred (adding two positive numbers 

resulted in a negative number). 

• Example 2: Subtracting 0001 (+1) - 0111 (+7)
• 0001 (+1) - 0111 (+7) = 0001 (+1) + 1001 (-7) = 1010 (-6)
• The result represents -6 in 2's complement (the correct result) and no further operation is 

required. 

• Example 3: Subtracting 0111 (+7) – 0001 (+1) 
• 0111 (+7) – 0001 (+1) = 0111 (+7) + 1111 (-1) = 0110
• The result is 0110 (+6, the correct result). Since the last two carries being 1 no overflow has 

occurred and no further operations are required. 



Adder/Subtractor for Signed 2’s Complement -- Revisited

• One circuit computes A + B or A – B:

• Subtraction is done by the addition of the 2's Complement  

• For S = 0 (add):

B is passed through
to the adder unchanged

• For S = 1 (subtract):
→ 2’s complement
of B is obtained using
XORs to form 
the 1’s comp + 1

applied to C0 of 

1st stage→ 2’s comp. added to A

Subtract/
Add

No correction
Needed



Arithmetic and Logic Unit (ALU)

• ALU performs arithmetic and logic functions

• We will design an ALU with 8 functions

• The function F is coded with 3 bits as follows:

OP CODE ALU Result Function ALU Result

F = 000 
(ADD)

R = A + B
F = 100 
(AND)

R = A & B

F = 001 
(ADD + 1)

R = A + B + 1
F = 101 
(OR)

R = A | B

F = 010 
(SUB – 1)

R = A – B – 1
F = 110 
(NOR)

R = ~(A | 
B)

F = 011 
(SUB)

R = A – B
F = 111 
(XOR)

R = (A ^ B)



ALU with Addition, Subtraction, AND, OR< XOR

n

B[n-1:0]

n-bit Adder

n n

c0

n

n XOR
gates

𝐹0

n n

n

n AND
gates

n n

n XOR
gates

n

n OR
gates

n n

𝑆1𝑆0 = 𝐹1𝐹0

n

F[2:0] = 3-bit Function 
code

cn-

1

cn

A[n-1:0]

Result = R[n-1:0]
V C

V = Overflow
C = Carry 
output

mux
3210

n

mux
10

n

𝐹2

2

𝐹1

𝑆



Multiplexers: 2n-to-1

• A multiplexer (MUX) selects information from one of 2n input line and directs it 
toward a single output line.

• A typical multiplexer has:
• 2n information inputs (I(2

n
– 1), … I0) (to select from)

• 1 Output Y (to select to)

• n select control (address) inputs (Sn - 1, … S0) (to select with)

M
u

x

I0

I1

I2 .
.
.

Y

2
n

In
p

u
ts

n

S

I2n–1

MUX selection circuits can be duplicated m 

times (with the same selection controls in 
parallel) to provide m-wide data widths  



2-to-1 MUX

• The single selection variable S 

has two values:
• S = 0 selects input I0
• S = 1 selects input I1

• 3-input K-map optimization gives 

the output equation:

• The circuit:

• Can be seen As:

1-to-2 decoder

+ Enabling

+ Selection 
S

I0

I1

Decoder
Enabling
Circuits

Y

2n Minterms

2n I Inputs

M
u

x

I0

I1

Y

S

0

1



4-to-1 MUX

• 4-to-1 Multiplexer

if (S1S0 == 00) Y = I0 ;
else if (S1S0 == 01) Y = I1;
else if (S1S0 == 10) Y = I2;
else Y = I3;

Logic expression:

𝑌 = 𝐼0 𝑆1
′𝑆0

′ + 𝐼1 𝑆1
′𝑆0 + 𝐼2 𝑆1𝑆0

′ + 𝐼3 𝑆1𝑆2
M

u
x

Y

2

S1 S0

I0

I1

I2

I3

0

1

2

3

Inputs Output

S1 S0 I0 I1 I2 I3 Y

0 0 0 X X X 0 = I0

0 0 1 X X X 1 = I0

0 1 X 0 X X 0 = I1

0 1 X 1 X X 1 = I1

1 0 X X 0 X 0 = I2

1 0 X X 1 X 1 = I2

1 1 X X X 0 0 = I3

1 1 X X X 1 1 = I3



4-to-1 MUX

• Using 2-to-4 decoder +4 2-input AND + 4-input OR for Enabling/Selection

S1

Decoder

S0

Y

S1

Decoder

S0

Y

S1

Decoder

4 3  2 AND-OR
S0

Y

I2

I3

I1

I0

X

2-to-4

Size of the Select

Inputs = Log2 (4)

# of the

ANDs

M
u

x

Y

2

S1 S0

I0

I1

I2

I3

0

1

2

3



How About Multiplication?* 

• Multiplication of binary numbers is performed in the same way as with decimal 
numbers

• The multiplicand is multiplied by each bit of the multiplier, starting from the least 
significant bit

• The result of each such multiplication forms a partial product. Successive partial 
products are shifted one bit to the left

• The product is obtained by adding these shifted partial products



Binary Multiplier*

• Example 1: Consider an example of 
multiplication of two numbers, say A and B 
(2 bits each), C = A x B. 

• The first partial product is formed by 
multiplying the B1B0 by A0. The 
multiplication of two bits such as A0 and B0
produces a 1 if both bits are 1; otherwise it 
produces a 0 like an AND operation. So the 
partial products can be implemented with 
AND gates. 

• The second partial product is formed by 
multiplying the B1B0 by A1 and is shifted one 
position to the left. 



Binary Multiplier*

• Example 2: Consider the example of multiplying two numbers, say A (3-bit 
number) and B (4-bit number). 

Since J = 3 and K = 4, 12 (J x K) AND 
gates and two 4-bit ((J - 1) K-bit) adders 
are needed to produce a product of 
seven (J + K) bits. 



Full-fledge ALU

• We can implement a full-fledge ALU that can perform ALL arithmetic 
and logical operations

• Each operation will have a unique OP CODE 
Addition = ADD

Subtraction = SUM

Multiplication = MUL

Division = DIV

AND = AND 

So on 

• The value of OP CODE depends on the implementation of the ALU 
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Can We Construct a Quantum ALU? 

• Yes!

• The key is to find an equivalency of each digital gate (NOT, AND, OR)

• Whether it is useful or not, we will debate this later. 


