
COE 530

Quantum Computer And

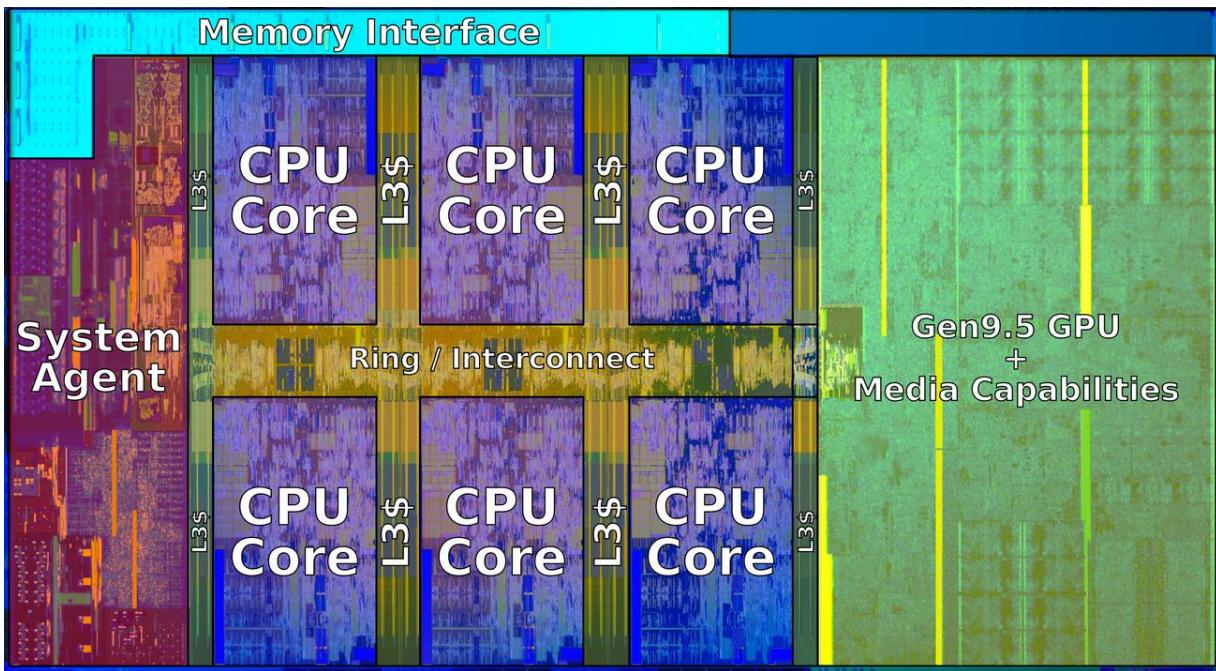
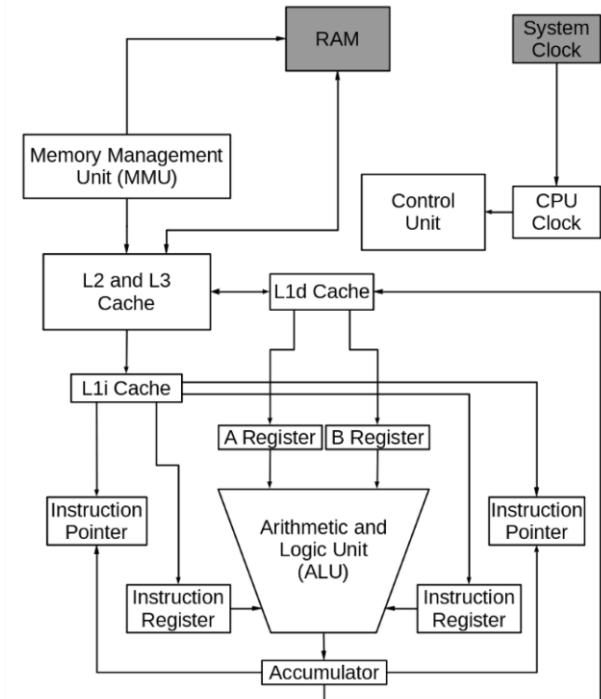
Architecture

Lecture 2

Classical Computer System II

ALU

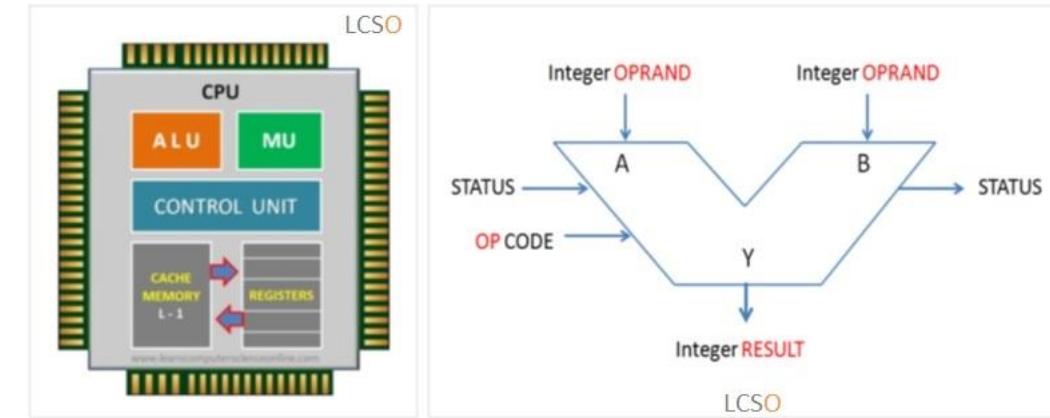
State of the art CPU



<https://www.redhat.com/sysadmin/cpu-components-functionality>

Arithmatic and Logic Unit (ALU)

- CPU executes computer programs, which contains set of machine instructions
- Machine instructions are set of arithmatic and logical operations
- ALU is a combinational digital circuit that performs pre-identified set of arithmatic and logical operations, example
 - Addition
 - Subtraction
 - Multiplication
 - AND
 - OR
 - Etc



<https://www.learncomputerscienceonline.com/arithmetic-logic-unit/>

In general, ALU takes two inputs (OPRANDS) and an instruction (OP CODE) and produces the RESULTS

Binary Addition

- Suppose we want to add two numbers 11 and 11
 - Recall that $11=1*2^3+0*2^2+1*2^1+1*2^0=(1011)_2$
 - $14=1*2^3+1*2^2+1*2^1+0*2^0=(1110)_2$
- We know that $11+11=25$, but how is it done in binary?

$$\begin{array}{r} 1011 \\ + 1110 \\ \hline \end{array}$$

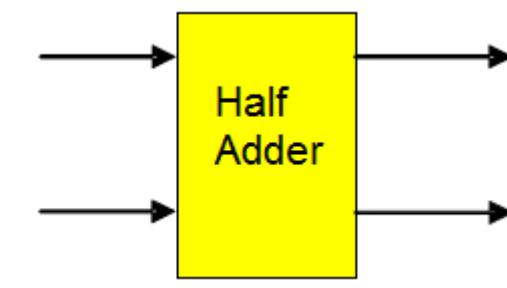
Binary Addition

- Binary addition is used frequently
- “Addition” Development:
 - **Half-Adder (HA)**, a 2-input bit-wise addition functional block
 - **Full-Adder (FA)**, a 3-input bit-wise addition functional block
 - **Ripple Carry Adder**, an iterative array to perform binary addition
 - **Carry-Look-Ahead Adder (CLA)**, Speeds up performance by generating carries from the input numbers directly to avoid carry ripple delay

Half-Adder

- A half adder (HA) is an arithmetic circuit that is used to add two bits. The block diagram of HA is shown. It has two inputs and two outputs.
- A 2-input (no carry input), 1-bit width binary adder that performs the following computations:

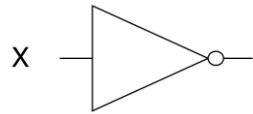
$$\begin{array}{r} X \\ + Y \\ \hline \text{CS} \end{array} \quad \begin{array}{r} 0 \\ + 0 \\ \hline 00 \end{array} \quad \begin{array}{r} 0 \\ + 1 \\ \hline 01 \end{array} \quad \begin{array}{r} 1 \\ + 0 \\ \hline 01 \end{array} \quad \begin{array}{r} 1 \\ + 1 \\ \hline 10 \end{array}$$



- A half adder adds two bits to produce two bits: S & C
- The output is expressed as a sum bit , S and a carry bit, C
- The half adder can be specified as a truth table for S and C

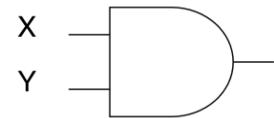
INPUTS		OUTPUTS	
X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Review of Boolean Algebra



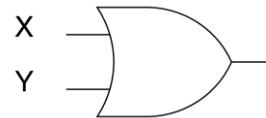
X	Z
0	1
1	0

NOT
Truth Table
 $Z = \bar{X}$



X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

OR
Truth Table
 $Z = XY$



X	Y	Z
0	0	0
0	1	0
1	0	0
1	1	1

AND
Truth Table
 $Z = X + Y$

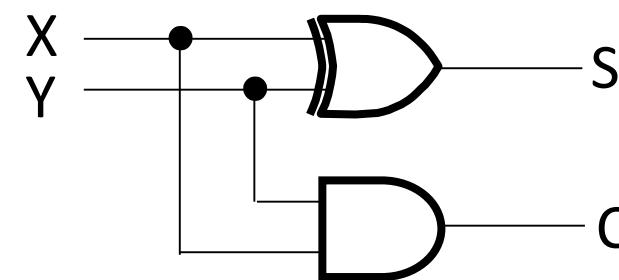
X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	0

XOR
Truth Table
 $Z = X \oplus Y$

Implementations: Half-Adder

- The most common half adder implementation is:

$$S = X \otimes Y$$
$$C = XY$$



INPUTS		OUTPUTS	
X	Y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Transistors as Physical Logic Gates

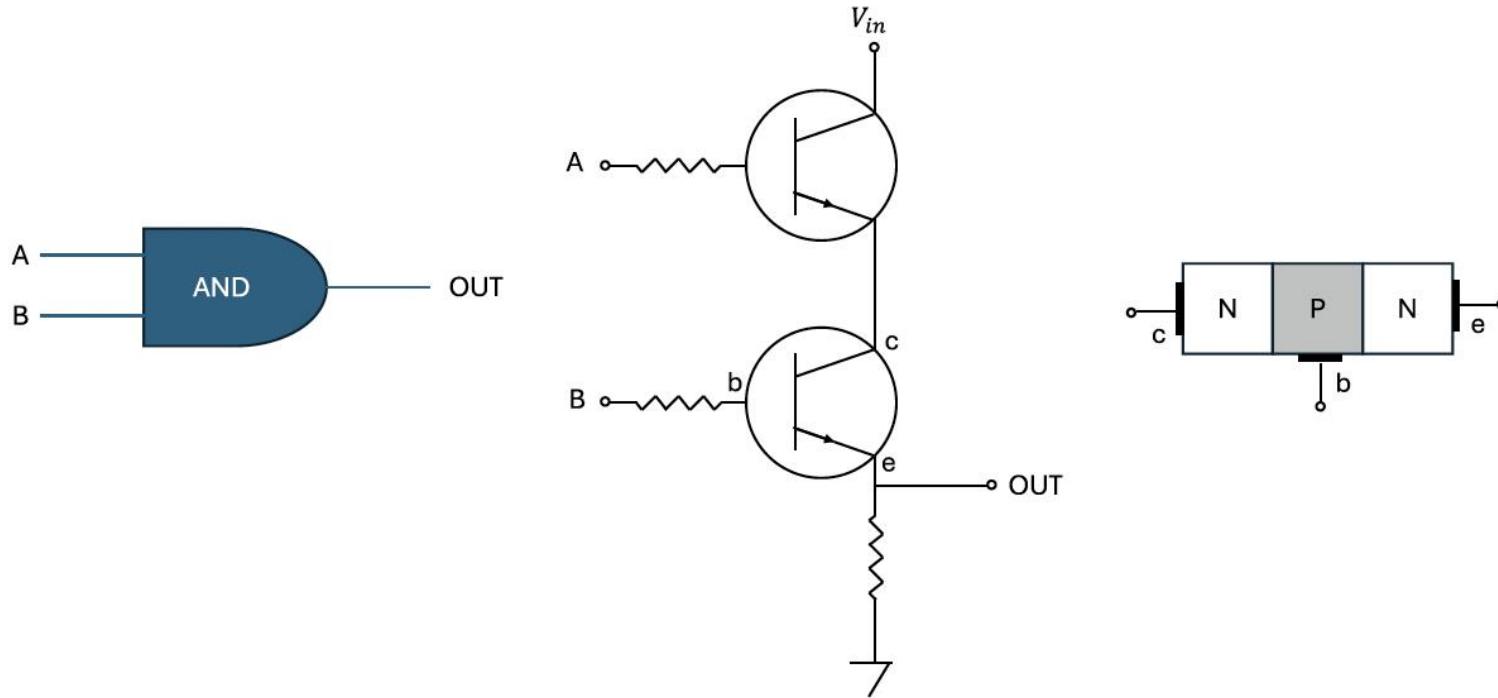
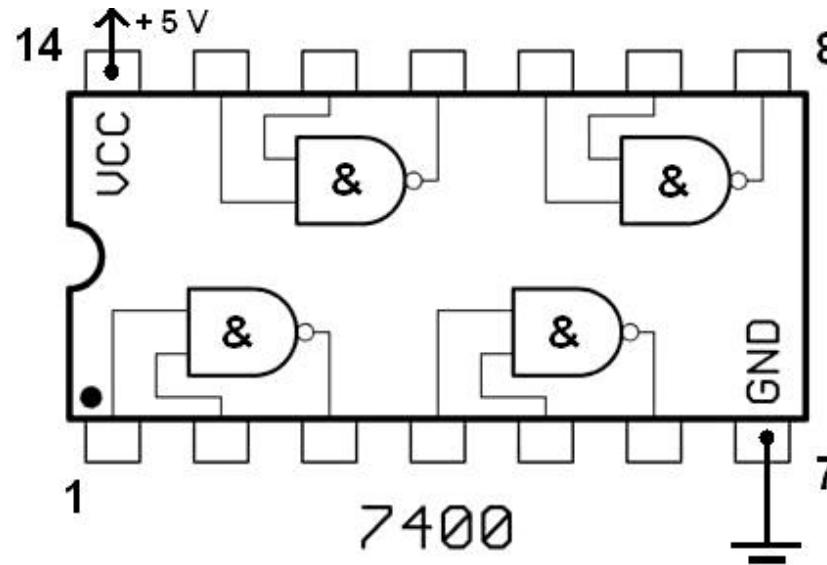
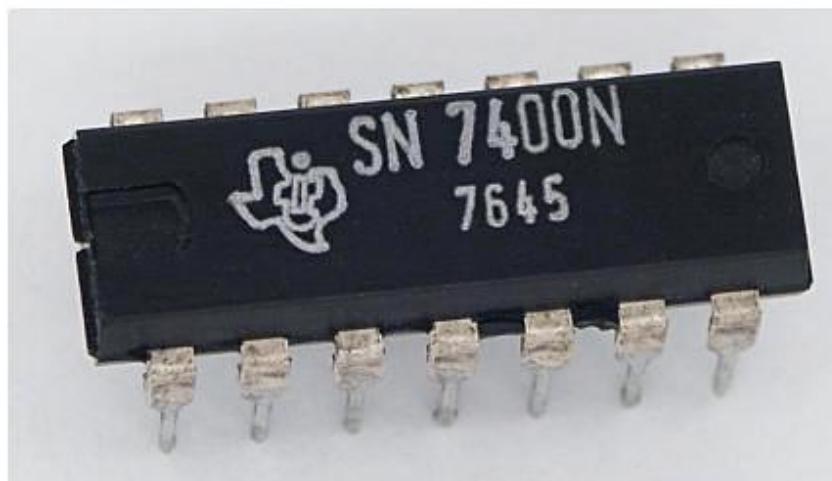
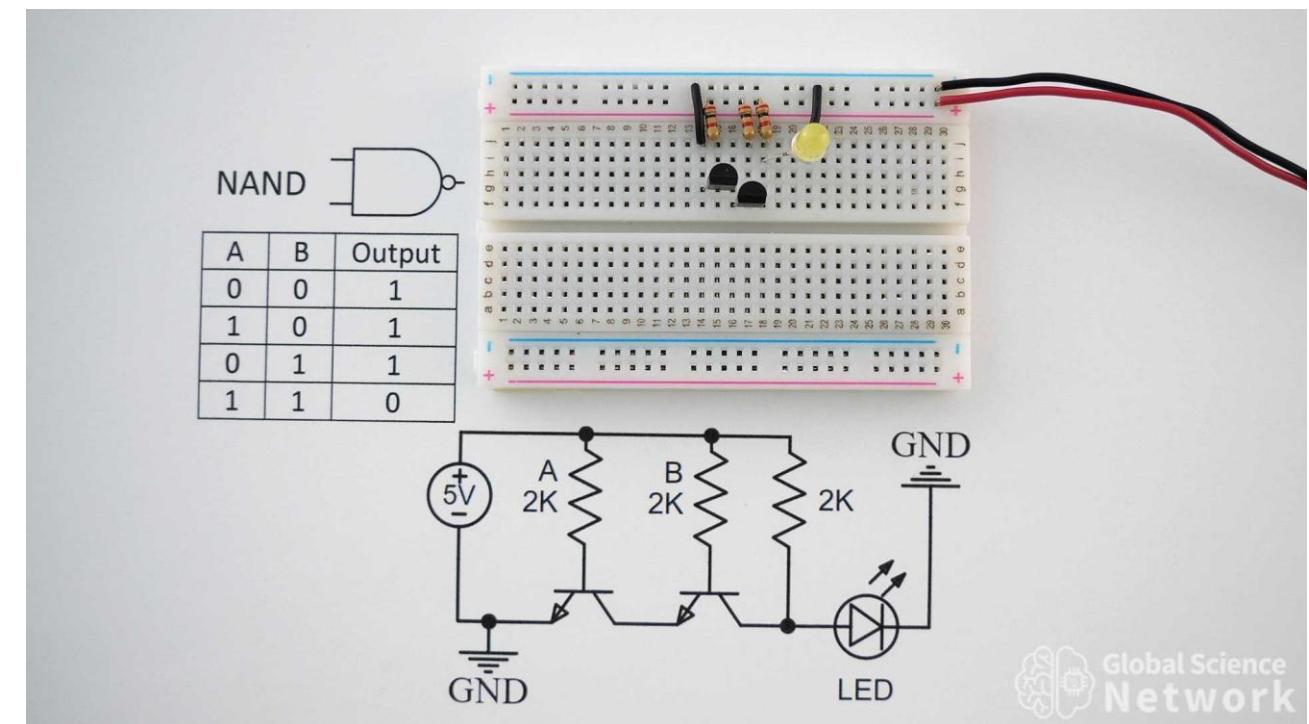


Fig. 4.2 Left: AND gate. Center: AND gate implemented using bipolar junction transistors of NPN type. Right: Schematic of a bipolar junction transistor of NPN type with labeled doped regions

NAND Gate as Hardware



Full-Adder

- A full adder is similar to a half adder but **includes a carry-in bit from lower stages**. Like the half-adder, it computes a sum bit, S and a carry bit, C.
- For a carry-in (Z) of 0, it is the same as the half-adder:

Z	0	0	0	0
X	0	0	1	1
$+ Y$	$+ 0$	$+ 1$	$+ 0$	$+ 1$
CS	0 0	0 1	0 1	1 0

- For a carry- in (Z) of 1:

Z	1	1	1	1
X	0	0	1	1
$+ Y$	$+ 0$	$+ 1$	$+ 0$	$+ 1$
CS	0 1	1 0	1 0	1 1

Exercise

- What is the circuit for Full-Adder?

Full Adder Truth Table

x	y	z	c	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- We need a way to write functions from truth table?

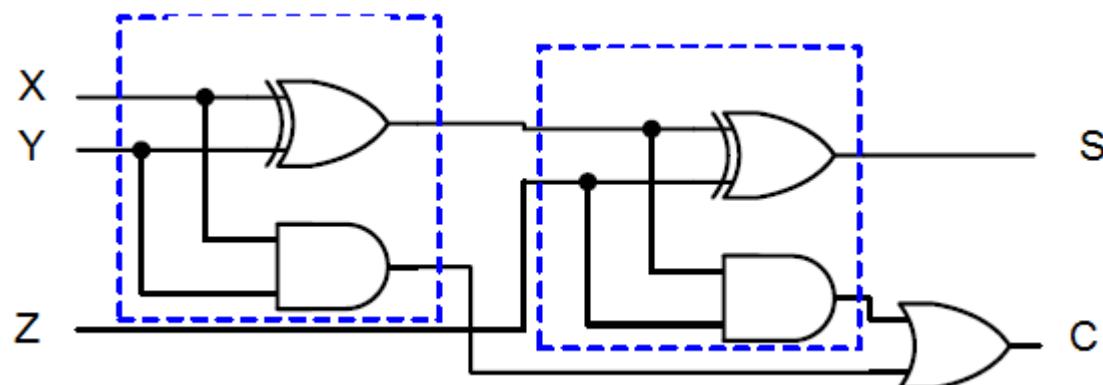
Equations: Full-Adder

- The Boolean functions for the sum and carry outputs can be manipulated to simplify the circuit, as shown below:

$$\begin{aligned} S &= \overline{XYZ} + \overline{XY}\overline{Z} + X\overline{YZ} + XYZ \\ &= X \oplus Y \oplus Z \\ &= (X \oplus Y) \oplus Z \end{aligned}$$

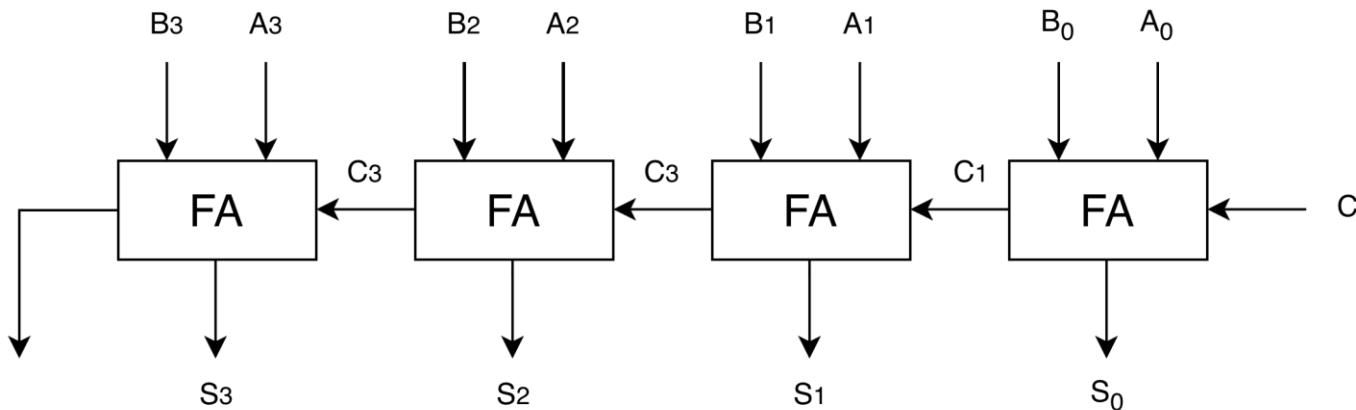
$$\begin{aligned} C &= XY + X\overline{Y}Z + \overline{X}YZ \\ &= XY + Z(X\overline{Y} + \overline{X}Y) \\ &= XY + Z(X \oplus Y) \end{aligned}$$

- Thus the full adder can be implemented using two half adders and an OR gate as shown below:



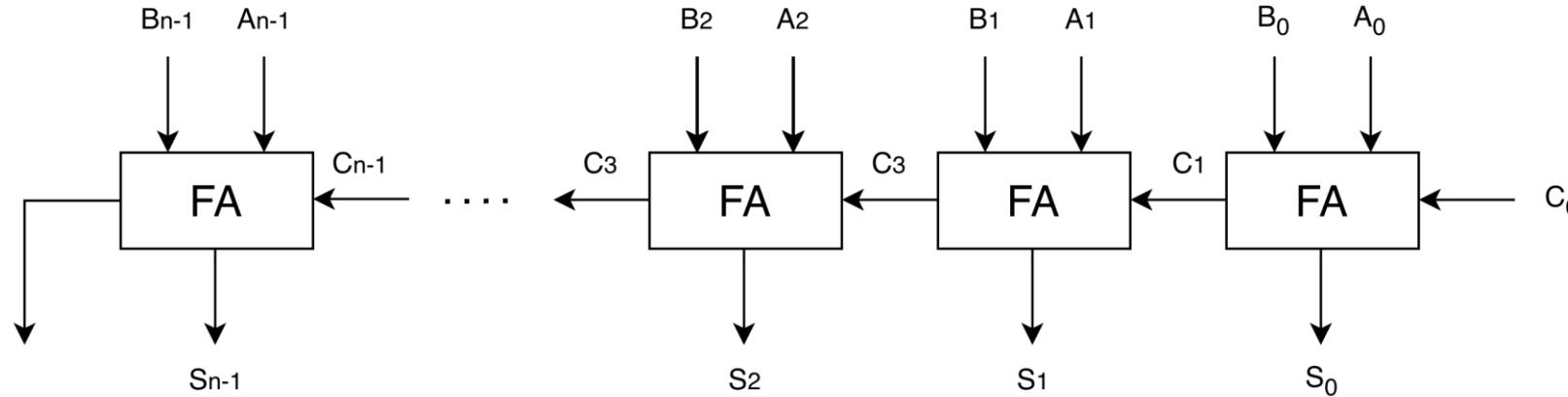
4-bit Ripple-Carry Adder (RCA)

- A 4-bit Ripple-Carry Adder made from four 1-bit Full Adders:



$$\begin{array}{r} C_0 \\ B_3 B_2 B_1 B_0 \\ + A_3 A_2 A_1 A_0 \\ \hline C_4 S_3 S_2 S_1 S_0 \end{array}$$

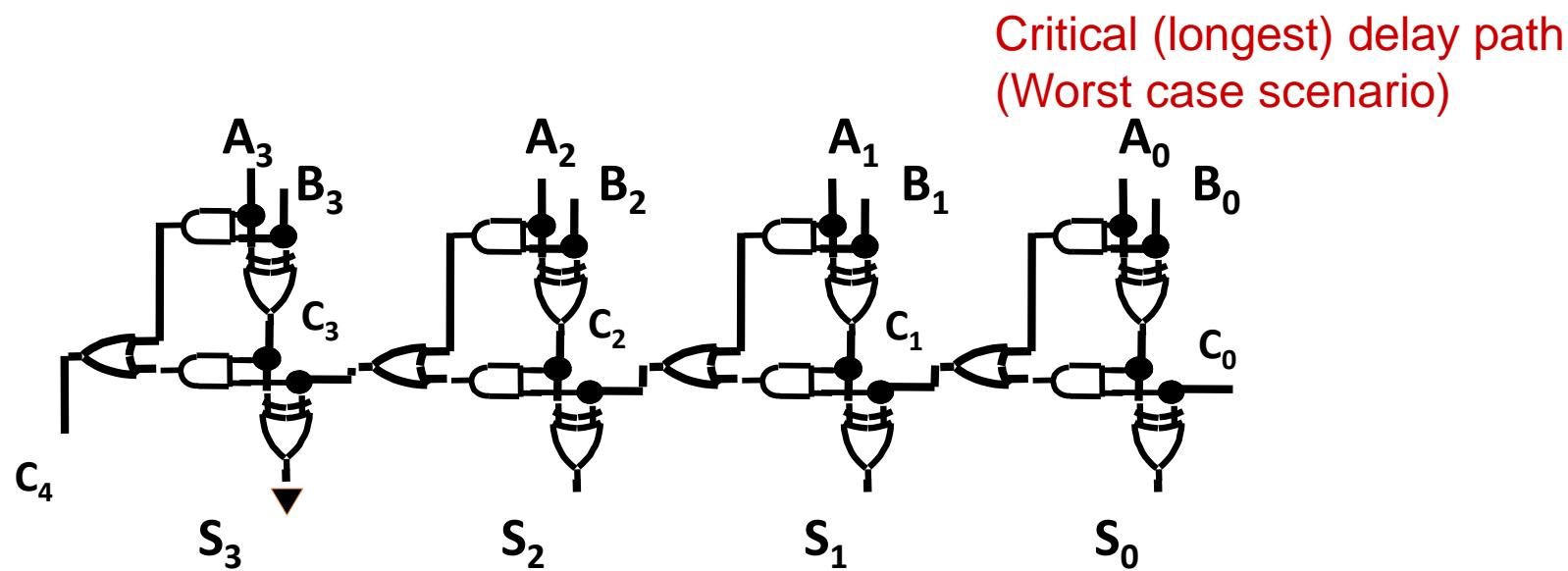
- N-bit Ripple-Carry Adder:



$$\begin{array}{r} C_0 \\ B_{n-1} \dots B_2 B_1 B_0 \\ + A_{n-1} \dots A_2 A_1 A_0 \\ \hline C_n S_{n-1} \dots S_2 S_1 S_0 \end{array}$$

4-bit RCA: Carry Propagation & Delay*

- One problem with the addition of binary numbers is the length of time taken to **propagate the ripple carry** from the least significant bit to the most significant bit.
- Gate-level propagation path for the 4-bit ripple carry adder (XOR = 3 gate delays)



Longest Total Carry Ripple Delay from inputs to $S_3 = 3 + 3 + 2(n-1)$ gate delays
where n is the number of stages (= 4 here) \rightarrow 12 gate delays

Carry Lookahead Adder (CLA)*

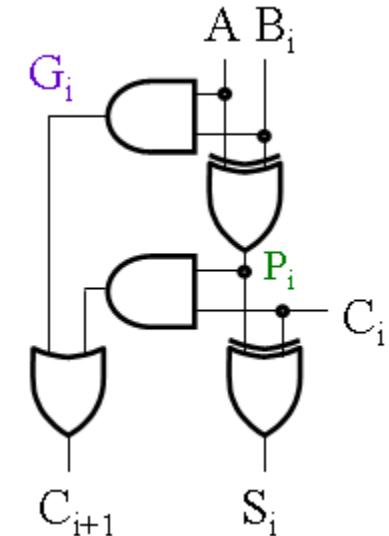
- Defining the equations for the Full Adder in terms of the P_i and G_i :

$$P_i = A_i \oplus B_i$$

$$G_i = A_i B_i$$

$$S_i = P_i \oplus C_i$$

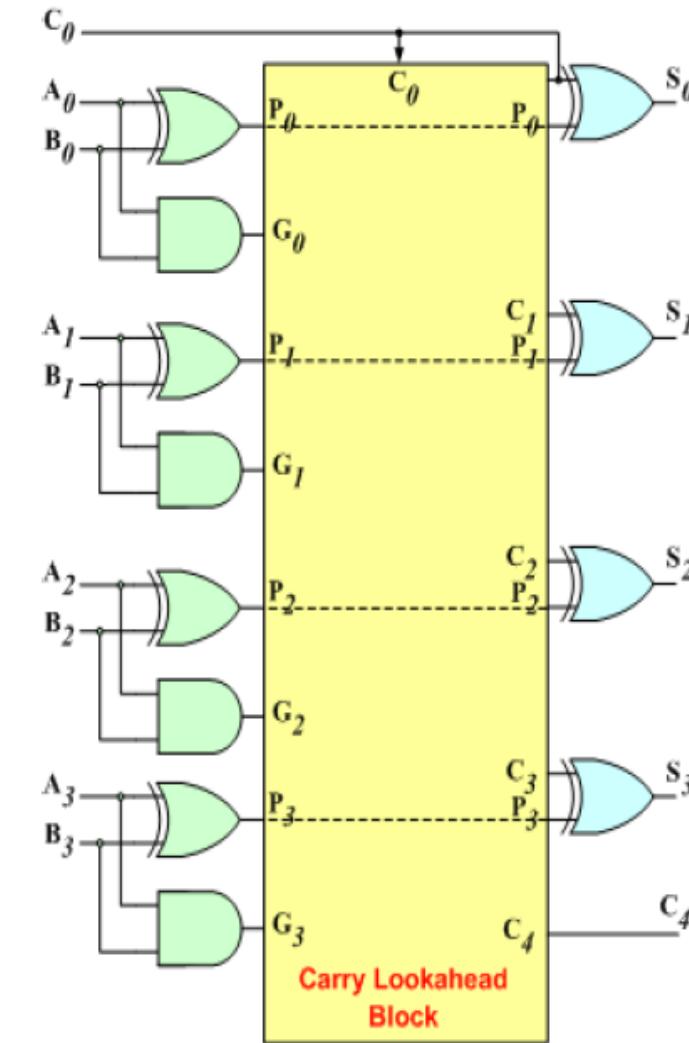
$$C_{i+1} = G_i + P_i C_i$$



- In the **ripple carry** adder:
 - G_i , P_i , C_i and S_i are obtained locally at each bit cell of the adder (i.e. limited to that bit)
- In the **carry lookahead** adder, in order to reduce the length of the ripple carry chain, C_i is changed to a **more global function spanning multiple cells**

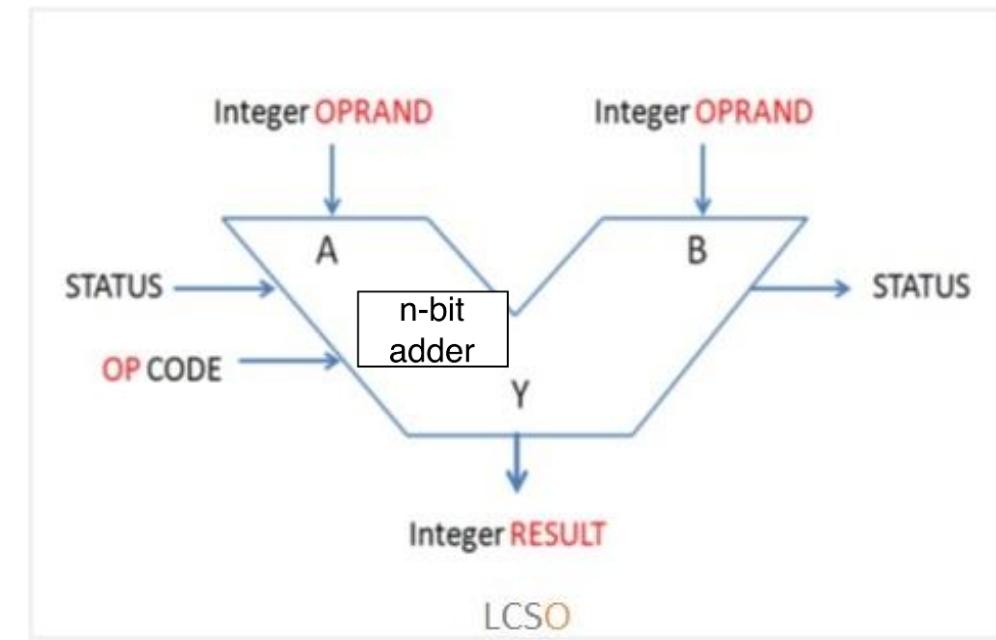
CLA Block*

- The 4-bit carry look-ahead (CLA) adder consists of 3 levels of logic:
 - **First level:** Generates all the P & G signals. Four sets of P & G logic (each consists of an XOR gate and an AND gate)
 - **Second level:** The Carry Look-Ahead (CLA) logic block which consists of four 2-level implementation logic circuits. It generates the carry signals (C1, C2, C3, and C4)
 - **Third level:** Four XOR gates which generate the sum signals (S_i) ($S_i = P_i \oplus C_i$), (S_0, S_1, S_2 , and S_3)
- The delay of CLA is 8 gates
(down from 12 gates)
- How?
Beyond the scope of this course



Back to ALU

- We implemented a circuit to add two n-bit numbers in the ALU
- How can we construct a circuit to subtract two 4-bit numbers using 4-bit Ripple Carry Adder?

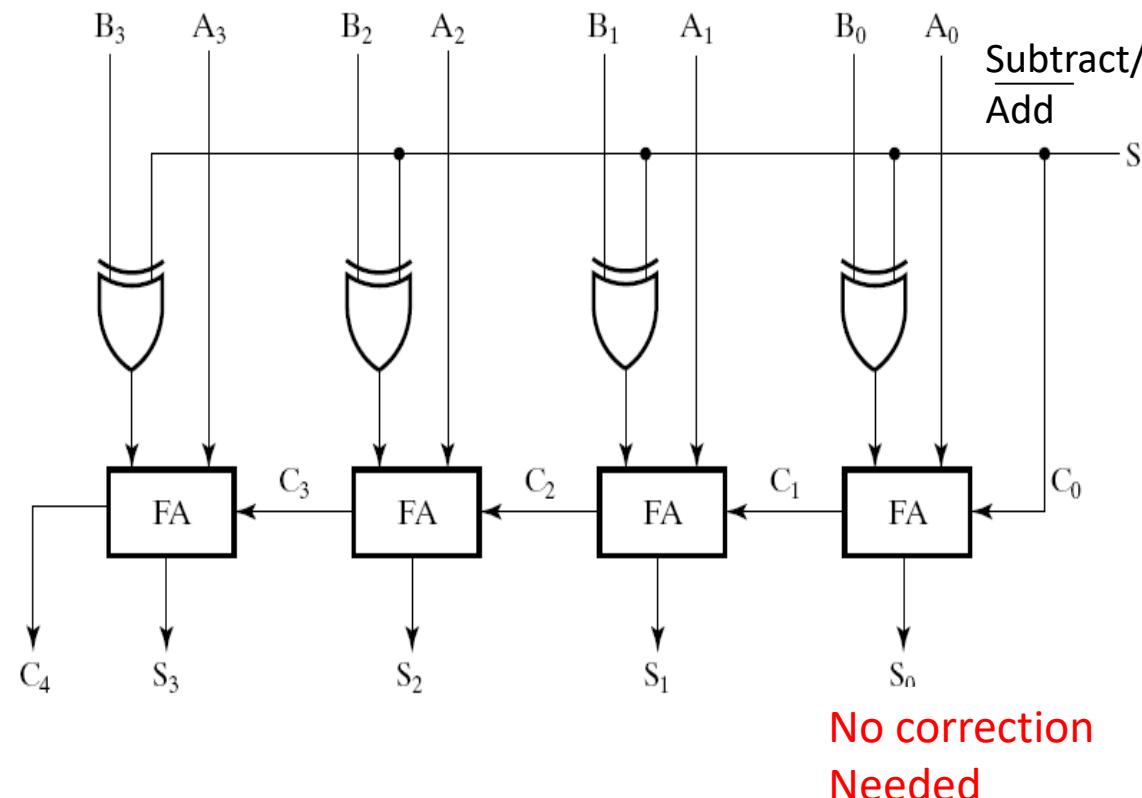


Adder/Subtractor for Signed 2's Complement

- One circuit computes $A + B$ or $A - B$:
- Subtraction is done by the addition of the 2's Complement
- For $S = 0$ (add):

B is passed through
to the adder **unchanged**

- For $S = 1$ (subtract):
→ 2's complement
of B is obtained using
XORs to form
the 1's comp + 1
applied to C_0 of
1st stage → 2's comp. added to A



One's Complement Representation*

- Positive numbers are represented using normal binary equivalent .
- Negative numbers are represented by the 1's complement (complement) of the normal binary representation of the magnitude.
- Example:
 - +9 is represented as 01001
 - 9 is represented as 10110 (obtained by complementing the binary representation of 9).

8 bit ones' complement		
Binary value	Ones' complement interpretation	Unsigned interpretation
00000000	+0	0
00000001	1	1
...
01111101	125	125
01111110	126	126
01111111	127	127
10000000	-127	128
10000001	-126	129
10000010	-125	130
...
11111101	-2	253
11111110	-1	254
11111111	-0	255

Why is it called “one’s complement?”*

- Complementing a single bit is equivalent to subtracting it from 1.

$$0' = 1, \text{ and } 1 - 0 = 1 \quad 1' = 0, \text{ and } 1 - 1 = 0$$

- Similarly, complementing each bit of an n-bit number is equivalent to subtracting that number from $2^n - 1$.
- For example, we can negate the 5-bit number 01101 .
 - Here $n=5$, and $2^n - 1 = 31_{10} = 11111_2$.
 - Subtracting 01101 from 11111 yields 10010 :

$$\begin{array}{r} 1 1 1 1 1 \\ - 0 1 1 0 1 \\ \hline 1 0 0 1 0 \end{array}$$

One's Complement Addition*

- Example 1: Adding 0111 (+7) + 0111 (+7)
 - The result is 1110 and the carry out is 0, hence an overflow has occurred (adding two positive numbers resulted in a negative number, -1 in this case).
- Example 2: Subtracting 0001 (+1) – 0111 (+7)
 - $0001 (+1) + 1000 (-7) = 1001 (-6)$
 - The result is 1001 with no end carry. The result represents -6 (the correct result) and no further addition is required.
- Example 3: Subtracting 0111 (+7) - 0001 (+1)
 - $0111 (+7) + 1110 (-1) = 0101 (+5)$ with carry out=1
 - The result is 0101 with an end carry of 1. This carry has to be added to the previous result and yields 0110 (+6), the correct answer).

Two's Complement Representation*

- Positive numbers are represented using normal binary equivalent.
- Negative numbers are represented by the 2's complement of the normal binary representation of the magnitude.
- The 2's complement of a binary number equals its 1's complement + 1.
- Another easy way to obtain the 2's complement of a binary number:
 - Start at the LSB, leaving all the 0s unchanged, look for the first occurrence of a 1. Leave this 1 unchanged and complement all the bits after it.

8 bit two's complement		
Binary value	Two's complement interpretation	Unsigned interpretation
00000000	0	0
00000001	1	1
...
01111110	126	126
01111111	127	127
10000000	-128	128
10000001	-127	129
10000010	-126	130
...
11111110	-2	254
11111111	-1	255

Computing the 2's Complement*

starting value	$00100100_2 = +36$
step1: Invert the bits (1's complement)	11011011_2
step 2: Add 1 to the value from step 1	$+ 1_2$
sum = 2's complement representation	$11011100_2 = -36$

$$\text{2's complement of } 11011100_2 (-36) = 00100011_2 + 1 = 00100100_2 = +36$$

The 2's complement of A is the **negative of A**

Another way to obtain the 2's complement:

Start at the least significant 1

Leave all the 0s to its right unchanged

Complement all the bits to its left

Binary Value

= 00100 **1** 00 least significant 1

2 ' s Complement

= **11011 1** 00

Two's Complement Representation*

- To find the value of a number represented in two's complement, check the sign bit
 - If the sign bit is 0, the number is positive and find its value using weighted method
 - If the sign is 1, the number is negative and you can find value in two ways
 - Take the 2's complement, you will get the corresponding positive value, then add a minus sign to it
- Example: Find the value of the 4-bit number 1011
 - Take the 2's complement-> 0101 = +5; thus 1011 represents -5

Two's Complement Addition*

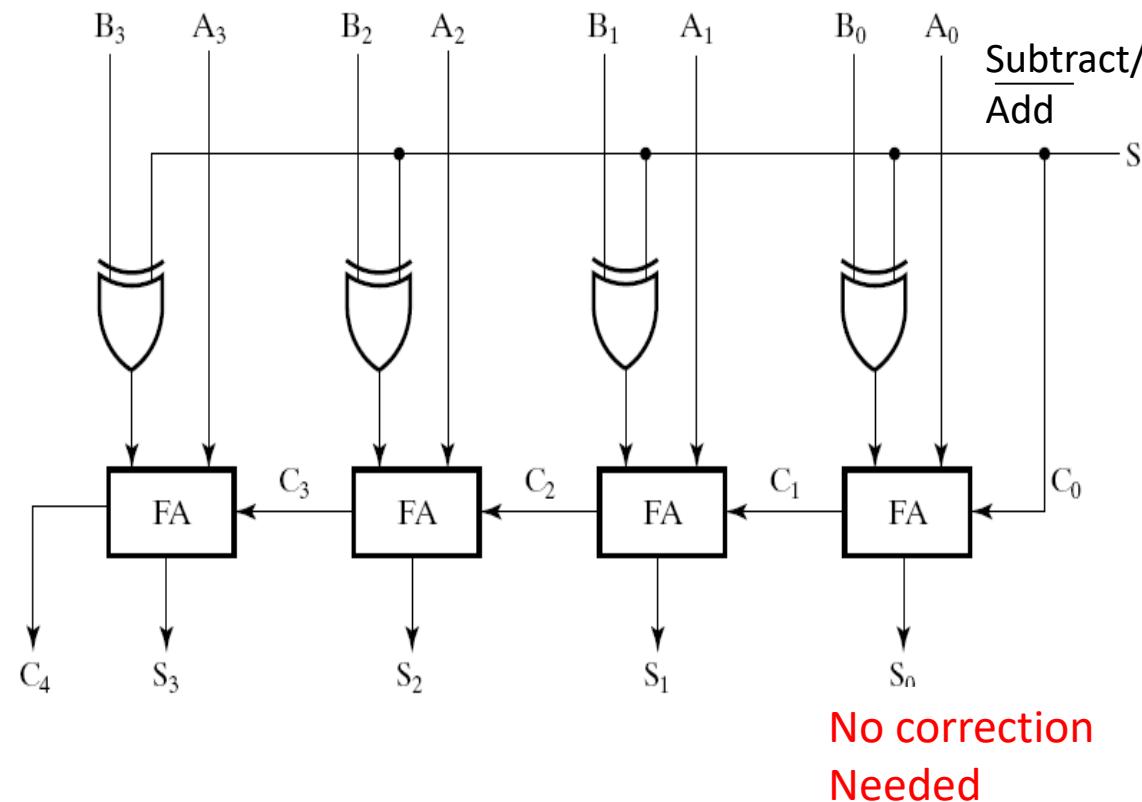
- Example 1: Adding 0111 (+7) + 0111 (+7)
 - The result is 1110 (-2), hence an overflow has occurred (adding two positive numbers resulted in a negative number).
- Example 2: Subtracting 0001 (+1) - 0111 (+7)
 - $0001 (+1) - 0111 (+7) = 0001 (+1) + 1001 (-7) = 1010 (-6)$
 - The result represents -6 in 2's complement (the correct result) and no further operation is required.
- Example 3: Subtracting 0111 (+7) - 0001 (+1)
 - $0111 (+7) - 0001 (+1) = 0111 (+7) + 1111 (-1) = 0110$
 - The result is 0110 (+6, the correct result). Since the last two carries being 1 no overflow has occurred and no further operations are required.

Adder/Subtractor for Signed 2's Complement -- Revisited

- One circuit computes $A + B$ or $A - B$:
- Subtraction is done by the addition of the 2's Complement
- For $S = 0$ (add):

B is passed through
to the adder **unchanged**

- For $S = 1$ (subtract):
→ 2's complement
of B is obtained using
XORs to form
the 1's comp + 1
applied to C_0 of
1st stage → 2's comp. added to A



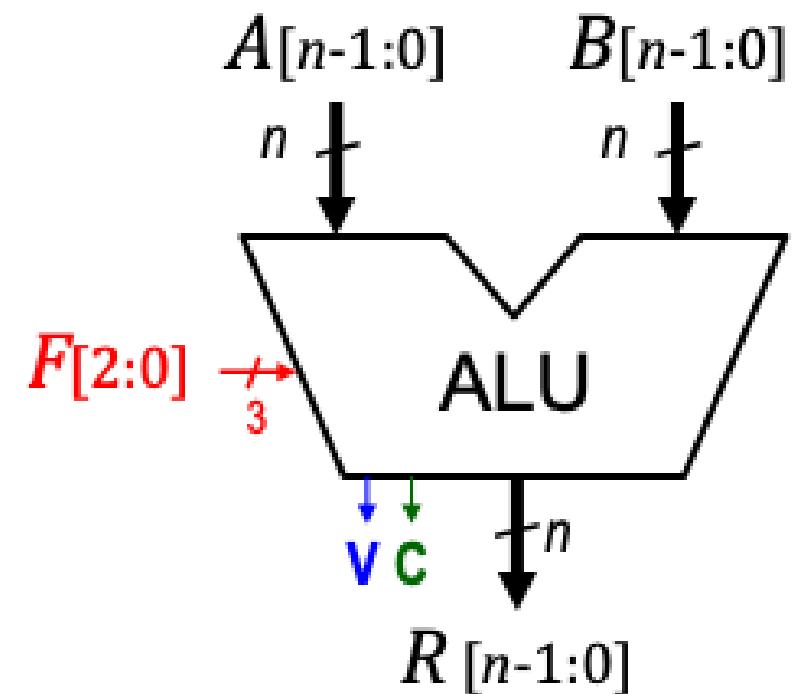
Arithmetic and Logic Unit (ALU)

- ALU performs arithmetic and logic functions

- We will design an ALU with 8 functions

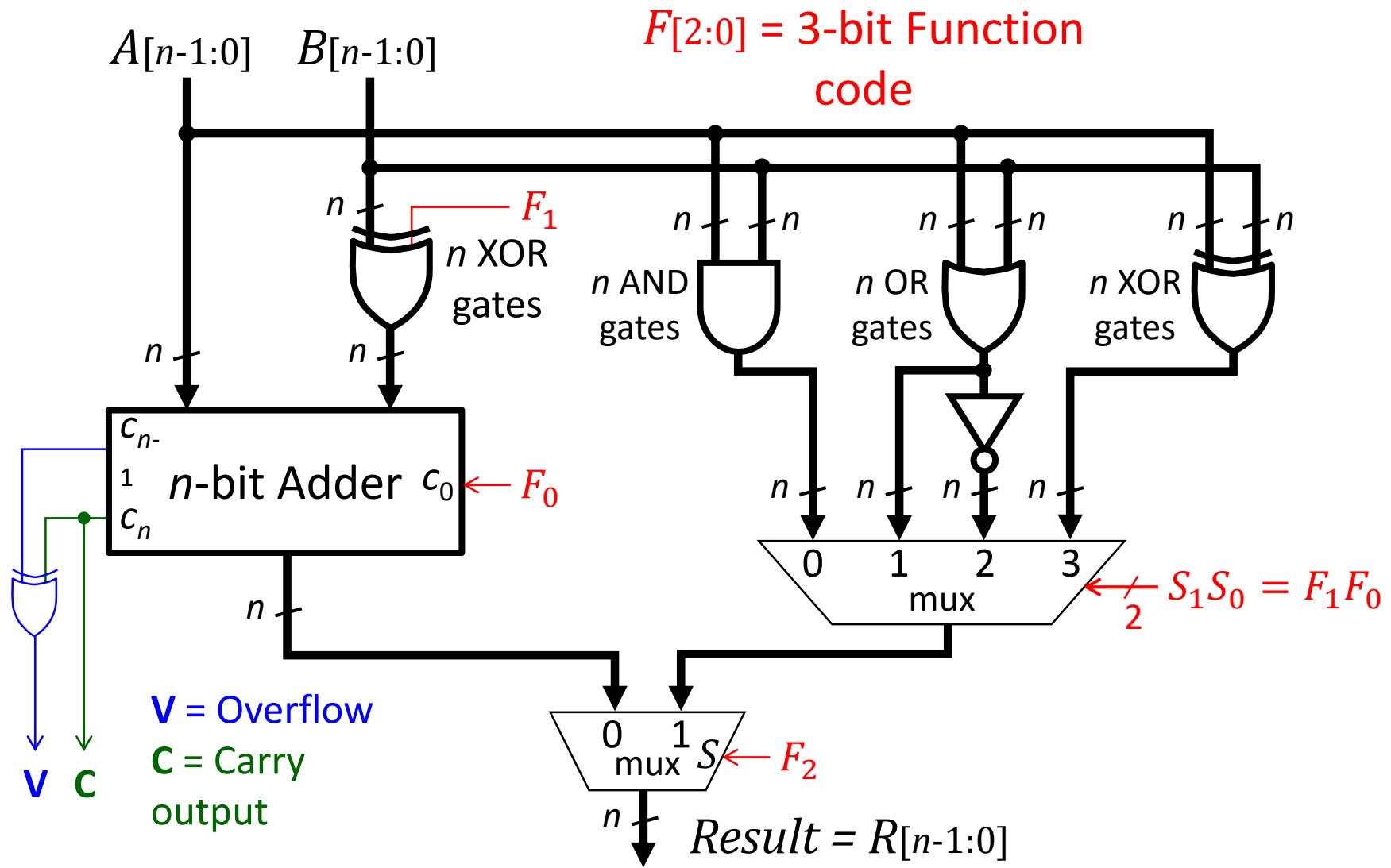
- The function F is coded with 3 bits as follows:

OP CODE	ALU Result	Function	ALU Result
$F = 000$ (ADD)	$R = A + B$	$F = 100$ (AND)	$R = A \& B$
$F = 001$ (ADD + 1)	$R = A + B + 1$	$F = 101$ (OR)	$R = A B$
$F = 010$ (SUB - 1)	$R = A - B - 1$	$F = 110$ (NOR)	$R = \sim(A B)$
$F = 011$ (SUB)	$R = A - B$	$F = 111$ (XOR)	$R = (A \wedge B)$



ALU with Addition, Subtraction, AND, OR< XOR

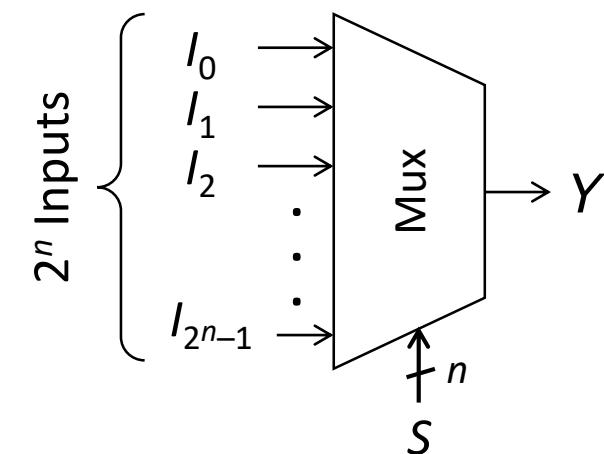
Function	ALU Result	Function	ALU Result
$F = 000$ (ADD)	$R = A + B$	$F = 100$ (AND)	$R = A \& B$
$F = 001$ (ADD + 1)	$R = A + B + 1$	$F = 101$ (OR)	$R = A B$
$F = 010$ (SUB - 1)	$R = A - B - 1$	$F = 110$ (NOR)	$R = \sim(A B)$
$F = 011$ (SUB)	$R = A - B$	$F = 111$ (XOR)	$R = (A \wedge B)$



Multiplexers: 2^n -to-1

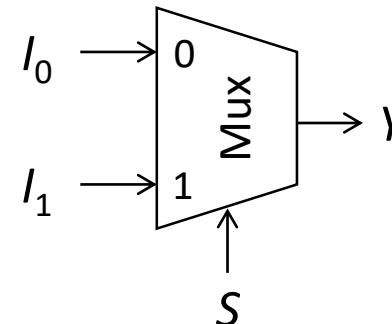
- A **multiplexer (MUX)** selects information from one of 2^n input line and directs it toward a single output line.
- A typical multiplexer has:
 - 2^n information inputs ($I_{(2^n-1)}, \dots, I_0$) **(to select from)**
 - 1 Output Y **(to select to)**
 - n select control (address) inputs (S_{n-1}, \dots, S_0) **(to select with)**

MUX selection circuits can be **duplicated m times** (with the same selection controls in parallel) to provide **m -wide** data widths



2-to-1 MUX

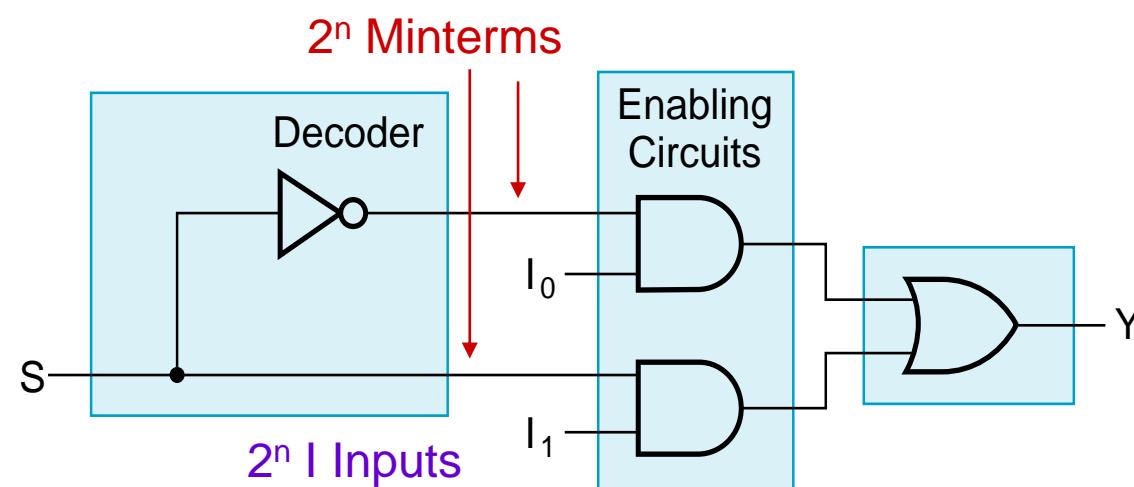
- The single selection variable S has two values:
 - $S = 0$ selects input I_0
 - $S = 1$ selects input I_1
- 3-input K-map optimization gives the output equation:



S	I_0	I_1	Y
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

- The circuit:
- Can be seen As:
 - 1-to-2 decoder
 - + Enabling
 - + Selection

$$Y = \bar{S}I_0 + SI_1$$



4-to-1 MUX

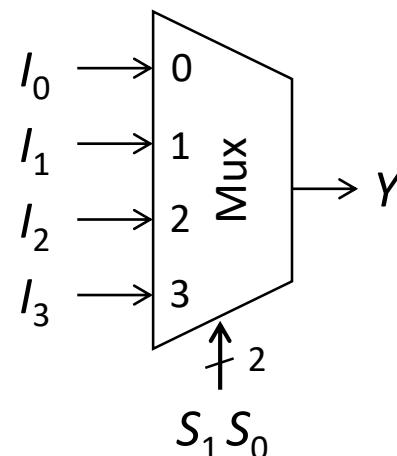
- 4-to-1 Multiplexer

if ($S_1S_0 == 00$) $Y = I_0$;

else if ($S_1S_0 == 01$) $Y = I_1$;

else if ($S_1S_0 == 10$) $Y = I_2$;

else $Y = I_3$;



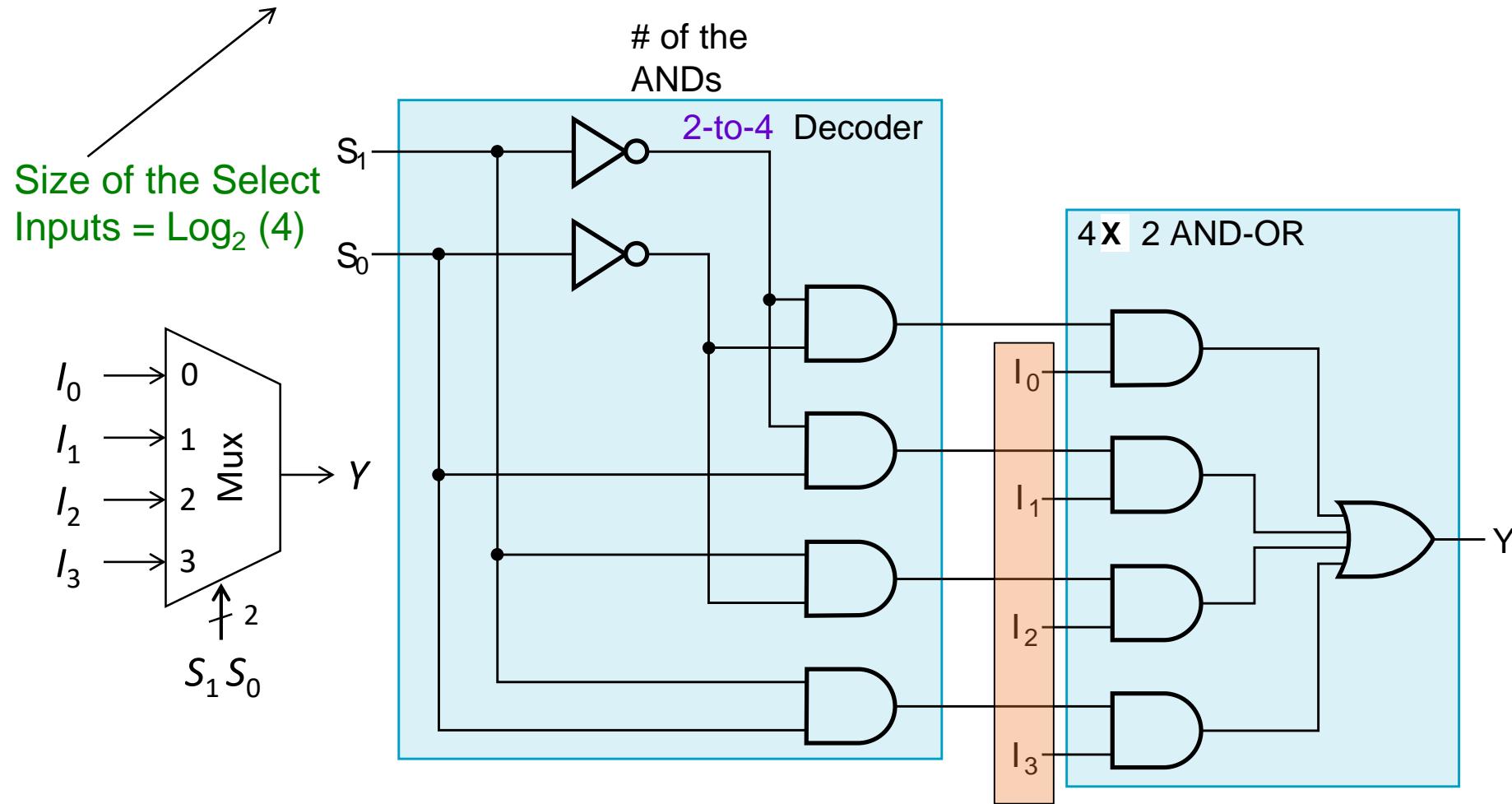
Logic expression:

$$Y = I_0 S'_1 S'_0 + I_1 S'_1 S_0 + I_2 S_1 S'_0 + I_3 S_1 S_2$$

Inputs						Output
S_1	S_0	I_0	I_1	I_2	I_3	Y
0	0	0	X	X	X	$0 = I_0$
0	0	1	X	X	X	$1 = I_0$
0	1	X	0	X	X	$0 = I_1$
0	1	X	1	X	X	$1 = I_1$
1	0	X	X	0	X	$0 = I_2$
1	0	X	X	1	X	$1 = I_2$
1	1	X	X	X	0	$0 = I_3$
1	1	X	X	X	1	$1 = I_3$

4-to-1 MUX

- Using 2-to-4 decoder + 4 2-input AND + 4-input OR for Enabling/Selection

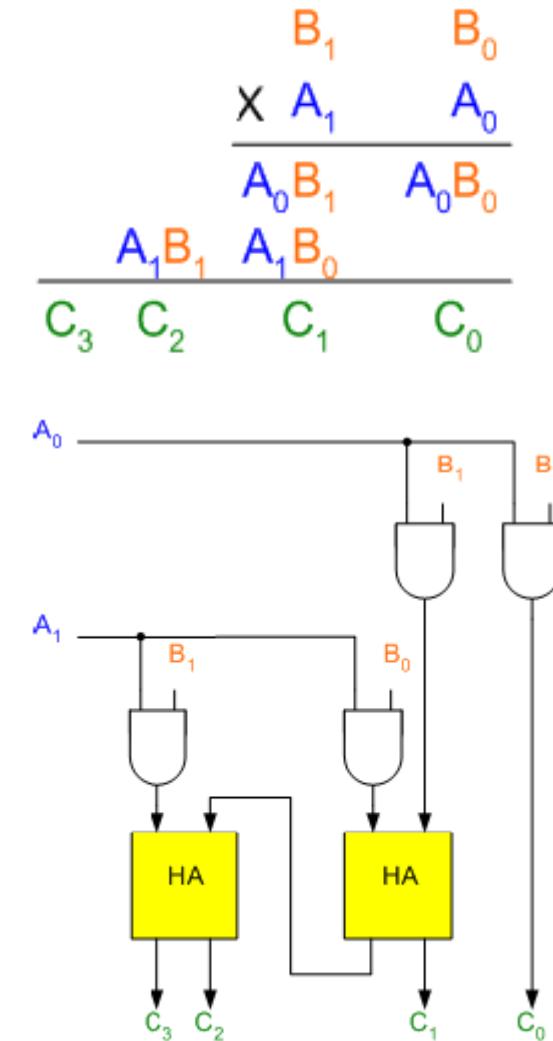


How About Multiplication?*

- Multiplication of binary numbers is performed in the same way as with decimal numbers
- The multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit
- The result of each such multiplication forms a partial product. Successive partial products are shifted one bit to the left
- The product is obtained by adding these shifted partial products

Binary Multiplier*

- **Example 1:** Consider an example of multiplication of two numbers, say A and B (2 bits each), $C = A \times B$.
- The first partial product is formed by multiplying the $B_1 B_0$ by A_0 . The multiplication of two bits such as A_0 and B_0 produces a 1 if both bits are 1; otherwise it produces a 0 like an AND operation. So the partial products can be implemented with AND gates.
- The second partial product is formed by multiplying the $B_1 B_0$ by A_1 and is shifted one position to the left.

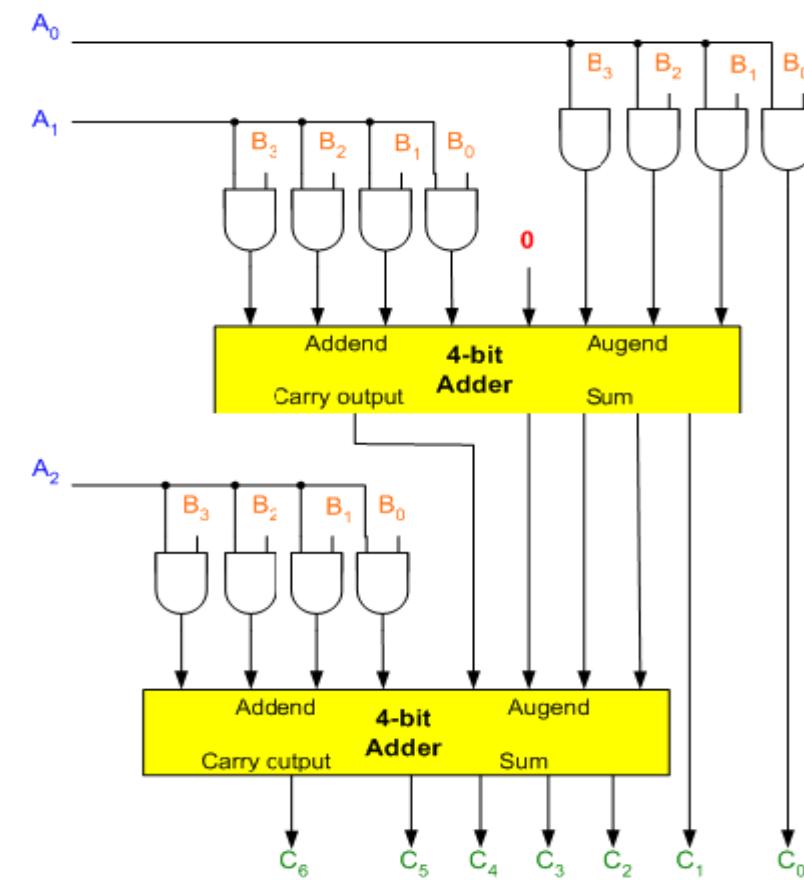


Binary Multiplier*

- **Example 2:** Consider the example of multiplying two numbers, say A (3-bit number) and B (4-bit number).

$$\begin{array}{r} & B_3 & B_2 & B_1 & B_0 \\ & \times & A_2 & A_1 & A_0 \\ \hline A_0 & B_3 & A_0 B_2 & A_0 B_1 & A_0 B_0 \\ A_1 & B_3 & A_1 B_2 & A_1 B_1 & A_1 B_0 \\ \hline A_2 & B_3 & A_2 B_2 & A_2 B_1 & A_2 B_0 \\ \hline C_6 & C_5 & C_4 & C_3 & C_2 & C_1 & C_0 \end{array}$$

Since $J = 3$ and $K = 4$, 12 ($J \times K$) AND gates and two 4-bit ($(J - 1) K$ -bit) adders are needed to produce a product of seven ($J + K$) bits.



Full-fledge ALU

- We can implement a full-fledge ALU that can perform ALL arithmetic and logical operations
- Each operation will have a unique OP CODE

Addition = ADD

Subtraction = SUM

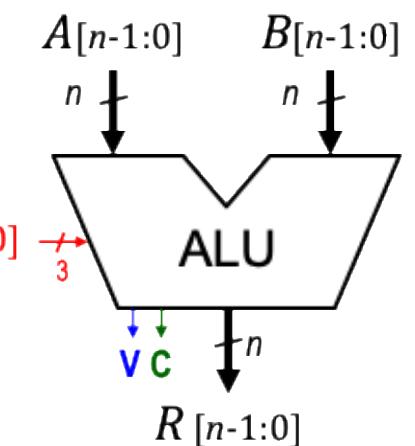
Multiplication = MUL

Division = DIV

AND = AND

So on

- The value of OP CODE depends on the implementation of the ALU



OP CODE	ALU Result	Function	ALU Result
F = 0000 (ADD)	R = A + B	F = 1000 (AND)	R = A & B
F = 0001 (ADD + 1)	R = A + B + 1	F = 1001 (OR)	R = A B
F = 0010 (SUB - 1)	R = A - B - 1	F = 1010 (NAND)	R = ~(A & B)
F = 0011 (SUB)	R = A - B	F = 1011 (NOR)	R = ~(A B)
F=0100 (MUL)	R = A * B	F = 1100 (XOR)	R = A \oplus B
F=0101 (POW)	R = A ^B	F = 1101 (XNOR)	R = ~(A \oplus B)
F=0110 (DIV)	R = A / B	F = 1110 (SHR)	R >> 1
F=0111 (SQRT)	R = A ^{1/B}	F = 1111 (SHL)	R << 1

Can We Construct a Quantum ALU?

- Yes!
- The key is to find an equivalency of each digital gate (NOT, AND, OR)
- Whether it is useful or not, we will debate this later.