COE 530
Quantum Computer And
Architecture

Lecture 2
Classical Computer System Il
ALU

State of the art CPU

-]

Memory Management

unit (MMU)
Control CPU

CPU o l Unit Clock

s ‘ | L2 and L3
Core 9 . and _%

i
(09)
]

IRiin g¥/Alinte iconine ctid _ '
| ‘ [A Register][B Register|

Instruction) . Instruction
Painter Arithmetic and Pointer

CPU {Pf CPU U} CPU : | Lo(gAiELLJJ)nit
& | ; ‘ Instruction Instruction
° Core ti (@0} o= il Core

Register Register

https://www.redhat.com/sysadmin/cpu-components-functionality

COE530: Lecture 2

This slide is from CMU course

https://www.redhat.com/sysadmin/cpu-components-functionality

Arithmatic and Logic Unit (ALU)

"« CPU executes computer programs, which

. . . . R Integer OPRAND Integer OPRAND
contains set of machine instructions g " E i 1
. g m m ; STATUS A ° fy STATUS
* Machine instructions are set of arithmatic and E N ——_
logical operations = E’E .)
* ALU is a combinational digital circuit that

https://www.learncomputerscienceonline.com/arithmetic-logic-unit/

performs pre-identified set of arithmatic and

logical operations, example
In general, ALU takes two inputs

* Addition (OPRANDS) and an instruction (OP
e Subtraction CODE) and produces the RESULTS

Multiplication
AND

* OR

Etc

COE530: Lecture 2 3

Binary Addition

e Suppose we want to add two numbers 11 and 11
e Recall that 11=1%23+0*22+1*21+1*2°=(1011),

14=1*23+1*22+1*21+0%2°=(1110),

* We know that 11+11=25, but how is it done in binary?

1011
+ 1110

COE530: Lecture 2

Binary Addition

. Binary addition is used frequently

e “Addition” Development:
* Half-Adder (HA), a 2-input bit-wise addition functional block
* Full-Adder (FA), a 3-input bit-wise addition functional block
* Ripple Carry Adder, an iterative array to perform binary addition

* Carry-Look-Ahead Adder (CLA), Speeds up performance by generating carries from the
input numbers directly to avoid carry ripple delay

COE530: Lecture 2 5

Half-Adder

"« A half adder (HA) is an arithmetic circuit that is used to add two bits. The block
diagram of HA is shown. It has two inputs and two outputs.

* A 2-input (no carry input), 1-bit width binary adder that performs the following

computations:

R —
X 0 0 1 1

+Y +0 +1 +0 +1

CS 00 01 01 10

* A half adder adds two bits to produce two bits: S & C

* The output is expressed as a sum bit, S and a carry bit, C

Half
Adder

* The half adder can be specified as a truth table for S and C

COE530: Lecture 2

—>
—

INPUTS OUTPUTS

X Y C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Review of Boolean Algebra

> ?i} o

X |Z X X1|Y |Z XY |Z
0 |1 0 (0 |0 0 (0 |0 0 (0 |0
1 {0 0 |1 |1 0 1 |0 0 |1 |1
1 10 |1 1 {0 |0 1 10 |1
111 1 1 (1 |1 1 {1 |0
NOT OR AND XOR
Truth Table Truth Table Truth Table Truth Table

7=X Z=XY Z=X+Y Z = XY

COE530: Lecture 2

Implementations: Half-Adder

"« The most common half adder implementation is:

S =XQY
C = XY

Y—

COE530: Lecture 2

INPUTS OUTPUTS
X Y C S
0 0 0 0
0 1 0 1
| 0 0 1
1 1 1 0
S
C

Transistors as Physical Logic Gates

ouT

Fig.4.2 Left: AND gate. Center: AND gate implemented using bipolar junction transistors of
NPN type. Right: Schematic of a bipolar junction transistor of NPN type with labeled doped
regions

COE530: Lecture 2

NAND Gate as Hardware

14

«|GND

NAND]

=lolklo|x
Rk lolo

10

Full-Adder

« A full adder is similar to a half adder but includes a carry-in bit from lower stages. I
Like the half-adder, it computes a sum bit, S and a carry bit, C.

* For a carry-in (Z) of 0, it is the same as
the half-adder:
V4 0 0 0 0
X 0 0 1 1
+Y +0 +1 +0 +1
* For a carry-in cCSs 00 01 01 10
(Z) of 1:
Z 1 1 1 1
X 0 0 1 1
+Y +0 +1 +0 +1
CS 01 10 10 11

11

Exercise

P What is the circuit for Full-Adder?
Full Adder Truth Table

X Y 7 C S
0O 0 0| O 0
O 0 1|1 0 1
0O 1 0| O 1
01 1| 1 0
1 0 0| O 1
1 0 1] 1 0
1 1 0 1 0
1 1 11 1 1

* We need a way to write functions from truth table?

12

Equations: Full-Adder

"« The Boolean functions for the sum and carry outputs can be manipulated to
simplify the circuit, as shown below:

S=XYZ+XYZ+XYZ+XYZ C=XY +XYZ+XYZ
=XOY®Z = XY +Z(XY + XY)
=(XPN®Z =XY +Z(X DY)

* Thus the full adder can be implemented using two half adders and an OR gate as
shown below:

P e e e —

ol

>

VY
[
5

13

4-bit Ripple-Carry Adder (RCA)

o A 4-bit Ripple-Carry Adder made from four 1-bit Full Adders:

Lo C

FA 43 FA ~<CL FA <i FA |l«—— C BBBZBlBO

r l l l l + A3;A4,A{4,

S S St S C453525150

* N-bit Ripple-Carry Adder:

Bn1 An B2 Az B1 Af By A CO
| | I R A A A Bn—1 - B25150
ot R U I U A + A4, ... 4414

r l l l l C.S,_1...5,5.S,

Sn-1 S2 S1 Sy

4-bit RCA: Carry Propagation & Delay™

- One problem with the addition of binary numbers is the length of time taken to
propagate the ripple carry from the least significant bit to the most significant bit.

* Gate-level propagation path for the 4-bit

ripple carry adder (XOR = 3 gate delays)

Critical (longest) delay path
(Worst case scenario)

Longest Total Carry Ripple Delay from inputs to S3 = 3 + 3 + 2(n-1) gate delays
where n is the number of stages (= 4 here) - 12 gate delays

Carry Lookahead Adder (CLA)*

. Defining the equations for the Full Adder in terms of the P, and G;:

- A B,
-C
Pi=Ai(-DBi Gi=AiBi
S; =P;®C; Cit1 =G +PC, éc 1c
* In the ripple carry adder: Cin 5
* G, P, C,and S, are obtained locally at each bit cell of

the adder (i.e. limited to that bit)

* In the carry lookahead adder, in order to reduce the length of the ripple
carry chain, C; is changed to a more global function spanning multiple cells

CLA Block™

"« The 4-bit carry look-ahead (CLA) adder consists

of 3 levels of logic: 0 ;

= -

slvislvAvIvAsly,

* First level: Generates all the P & G signals. Four sets "
of P & G logic (each consists of an XOR gate and an
AND gate)

e Second level: The Carry Look-Ahead (CLA) logic A
block which consists of four 2-level implementation *
logic circuits. It generates the carry signals (C1, C2,

C3, and C4)
* Third level: Four XOR gates which generate the sum N ¥
signals (Si) (Si = Pi &@ Ci), (SO, S1, S2, and S3) B2
* The delay of CLA is 8 gates %)
(down from 12 gates) y S rj
* How? A .

Beyond the scope of this course Carry Lookahead

Block

v U

v ¢

Back to ALU

- We implemented a circuit to add two n-bit

numberS |n the ALU Integer OPRAND Integer OPRAND
N | |
* How can we construct a a circuit to subtract two —_— '
. . . . A B
4-bit numbers using 4-bit Ripple Carry Adder? STATUS ——\ | —— £ swrus
OP CODE —\-2dder :
|
Integer RESULT
LCS

COE530: Lecture 2 18

Adder/Subtractor for Signed 2’s Complement

"« One circuit computes A+ Bor A —B:

 Subtraction is done by the addition of the 2's Complement
* For S=0 (add):

B is passed through S | ' subtract/
to the adder unchanged _ - | Add

* For S =1 (subtract):
- 2's complement
of B is obtained using
XORs to form — e e L o e

the 1'scomp + 1 T i i i l

applied to C, of 1ol N ! '

t ’ No correction
15t stage—> 2’s comp. added to A Needed

g

A
A

One’s Complement Representation®

* Positive numbers are represented using normal
binary equivalent .

* Negative numbers are represented by the 1's
complement (complement) of the normal
binary representation of the magnitude.

* Example:
* +9 is represented as 01001

* -9 is represented as 10110 (obtained by
complementing the binary representation of 9).

8 bit ones’ complement

00000000
00000001
01111101
01111110
01111111
10000000
10000001
10000010
11111101
11111110
111111

Ones’
complement
interpretation

+0
1
125
126
127
—127

-126
-125

Unsigned
interpretation
0
1
125
126
127
123
129
130
253
254
255

Why is it called “one’s complement?”*

. Complementing a single bit is equivalent to subtracting it from 1.
O=1,and1-0=11"=0,and1-1=0

e Similarly, complementing each bit of an n-bit number is equivalent to subtracting
that number from 2"-1.

* For example, we can negate the 5-bit number 01101.
* Here n=5, and 2"-1=31,,=11111,.
e Subtracting 01101 from 11111 yields 10010:

1
O k-
Ol =
Ol =
O k.
Ol =

One’s Complement Addition*

. Example 1: Adding 0111 (+7) + 0111 (+7)

 The resultis 1110 and the carry out is 0, hence an overflow has occurred (adding two
positive numbers resulted in a negative number, -1 in this case).

 Example 2: Subtracting 0001 (+1) — 0111 (+7)
* 0001 (+1) + 1000 (-7) = 1001 (-6)

e The result is 1001 with no end carry. The result represents -6 (the correct result) and no
further addition is required.

* Example 3: Subtracting 0111 (+7) - 0001 (+1)
e 0111 (+7) + 1110 (-1) = 0101 (+5) with carry out=1

* The result is 0101 with an end carry of 1. This carry has to be added to the previous result
and yields 0110 (+6), the correct answer).

Two’s Complement Representation™

* Positive numbers are represented using normal binary
equivalent.

* Negative numbers are represented by the 2's
complement of the normal binary representation of the
magnitude.

* The 2's complement of a binary number equalsits 1's
complement + 1.

* Another easy way to obtain the 2's complement of a
binary number:
» Start at the LSB, leaving all the Os unchanged, look for the first

occurrence of a 1. Leave this 1 unchanged and complement all
the bits after it.

¢ bit two's complement

Binary
value
00000000
00000001
01111110
01111111
10000000

10000001
10000010

1111110
1111111

Two's
complement
interpretation

0

1
126
127
-1248

=127
-126

Unsigned
interpretation

0
1
126
127
128
129
130
254
255

Computing the 2's Complement*

starting value 00100100, = +36
stepl: Invert the bits (1's complement) 11011011,
step 2: Add 1 to the value from step 1 + 1,
sum = 2's complement representation 11011100, = -36

2’s complement of 11011100, (-36) = 00100011, + 1 = 00100100, = +36

The 2’s complement of A is the negative of A

Another way to obtain the 2's complement: Binary Value

least
Start at the least significant 1 = 00100(1]00 significant 1
Leave all the Os to its right unchanged 2's Complement

Complement all the bits to its left = 11011(1]o0

Two’s Complement Representation™

"« To find the value of a number represented in two’s complement, check the sign
bit
* If the sign bit is 0, the number is positive and find its value using weighted method

* If the signis 1, the number is negative and you can find value in two ways
* Take the 2’s complement, you will get the corresponding positive value, then add a minus sign to it

* Example: Find the value of the 4-bit number 1011
* Take the 2’s complement-> 0101 = +5; thus 1011 represents -5

Two’s Complement Addition*

E Example 1: Adding 0111 (+7) + 0111 (+7)

 The resultis 1110 (-2), hence an overflow has occurred (adding two positive numbers
resulted in a negative number).

* Example 2: Subtracting 0001 (+1) - 0111 (+7)
e 0001 (+1) - 0111 (+7) = 0001 (+1) + 1001 (-7) = 1010 (-6)

* The result represents -6 in 2's complement (the correct result) and no further operation is
required.

e Example 3: Subtracting 0111 (+7) — 0001 (+1)
0111 (+7) — 0001 (+1) = 0111 (+7) + 1111 (-1) = 0110

* The result is 0110 (+6, the correct result). Since the last two carries being 1 no overflow has
occurred and no further operations are required.

Adder/Subtractor for Signed 2’s Complement -- Revisited

"« One circuit computes A+ Bor A —B:

 Subtraction is done by the addition of the 2's Complement
* For S=0 (add):

B is passed through S | ' subtract/
to the adder unchanged _ - | Add

* For S =1 (subtract):
- 2's complement
of B is obtained using
XORs to form — e e L o e

the 1'scomp + 1 T i i i l

applied to C, of 1ol N ! '

t ’ No correction
15t stage—> 2’s comp. added to A Needed

g

A
A

Arithmetic and Logic Unit (ALU)

. ALU performs arithmetic and logic functions

A[n 1:0] B[n 1:0]

* We will design an ALU with 8 functions F
[2:0] *\ ALU /

* The function F'is coded with 3 bits as follows: —
~ OPCODE AlUResult Function ALUResult Ve

F =000 F=100

P R=A+B 0] R=A&B .R[nlﬂ]

F=001 F=101

(ADD + 1) R=A+B+1 (OR) R=A|B

F =010 o F =110 R="(A|

(SUB —1) R=A-B-1 (NOR) B)

F=011 AR F=111 R = (A A B)

(SUB) (XOR)

ALU with Addition, Subtraction, AND, OR< XOR

| hncion ARk Funcion AL Resut An-1:0] Bn-1:0] F12:01 = 3-bit Function
F =000 F =100 - -
(ADD) R=A+B (AND) Bt COde
ooy RTATBRL (% R=Als =1
F=010 F=110 R="(A|
(SUB-1) R=A-B=1 " noR) B) n _
F=011 . F=111 A - F1 n I n n I n n I n
(SUB) R=A-B (XOR) AR n XOR
n AND n OR n XOR
gates ates ates ates
n , g g g
v
1 n-bit Adder Gf—F, nt n¥y nF n
Cn
0 1 2 3
n \ mux A 5150 = F1 Fy
V = Overflow l
C = Carr 0 1S F
V C = \ mux 2
output

Result = R[n-1:0]

Multiplexers: 2"-to-1

. A multiplexer (MUX) selects information from one of 2" input line and directs it

toward a single output line.

* A typical multiplexer has:
* 2" information inputs (1,"_ 4, ...
« 1 Output Y (to select to)
* n select control (address) inputs (S,,_ 4, ..

l,) (to select from)

. Sp) (to select with)

.
MUX selection circuits can be duplicated m 9 ;cli :\
times (with the same selection controls in 2) L, = 5 |y
_ . . = | =
parallel) to provide m-wide data widths 3 ,
L Izn—]_ ;4
n
S

2-to-1 MUX

"+ The single selection variable S

has two values:

* S =0 selects input |,
* S =1 selects input I,

 3-input K-map optimization gives

the output equation:

* The circult:

e Can be seen As:
1-to-2 decoder
+ Enabling
+ Selection

Y= SI,+ SI,

J
- o
U’%\ Mux/

2" Minterms

Decoder

|

\ o

lo

2" | Inputs

4

s Io 14 Y
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Enabling
Circuits

—Y

4-to-1 MUX

« 4-to-1 Multiplexer
if (5,5,==00)Y=1,;

else !f(slso ==01) Y=1,; 000X X X 0=l
else if (5,5,==10) Y =1; 00 1 X X X 1=l
else Y=1;; 01 X0 X X 0=l
i ﬁ0\ 01 X1 X X 1=|
1 0 X X 0 X 0=1,
lh =11 % _
.- Sy 1 0 XX 1 X 1=1,
3 1 1 X X X O 0=1;
3 4 1 1 XX X 1 1=l

Logic expression: 5,5,

Y =1y 518y +1; S1So + I S1Sy + I3 5,5,

4-to-1 MUX

* Using 2-to-4 decoder +4 2-input AND + 4-input OR for Enabling/Selection

of the
ANDs
s, . >c 2-to-4 Decoder

Size of the Select
Inputs = Log, (4 4X 2 AND-OR
P d, (4) Sy——+ >C
1))
IO %O\ ! |0 I
[, —11 x)
[, —>2 = Y 1 }
I, —{3 t N Y
t J =
5
515 N\
D —
I3

How About Multiplication?*

. Multiplication of binary numbers is performed in the same way as with decimal
numbers

* The multiplicand is multiplied by each bit of the multiplier, starting from the least
significant bit

* The result of each such multiplication forms a partial product. Successive partial
products are shifted one bit to the left

* The product is obtained by adding these shifted partial products

Binary Multiplier*

* Example 1: Consider an example of
multiplication of two numbers, say A and B
(2 bits each), C= A x B.

* The first partial product is formed by
multiplying the BB, by A,. The
multiplication of two bits such as A,and B,
produces a 1 if both bits are 1; otherwise it
produces a 0 like an AND operation. So the
partial products can be implemented with
AND gates.

* The second partial product is formed by
multiplying the BB, by A; and is shifted one
position to the left.

X 0
AB, AB

AB, AR
c, C, C, C,

Binary Multiplier*

. Example 2: Consider the example of multiplying two numbers, say A (3-bit
number) and B (4-bit number).

_2' _2' |_ |_ 0 - :
X A A A A, ' U
A,B AB, AB, AB
R vyww
- - . Addend i Augend
Az_j Az_ AE - Agl_: Carry output :c-l::letr Eol.lg
¢, ¢, C C C C, C N
| .I | l .I
SinceJ=3and K=4, 12 (J x K) AND
gates and two 4-bit ((J - 1) K-bit) adders Vloy
are needed to produce a product of Addand g4 py Augend
A er
seven (J + K) bits. e d1 15”"1 l

-
=]

C-.". C’, C’; C 3 C’?

Full-fledge ALU

"« We can implement a full-fledge ALU that can perform ALL arithmetic

) _ A[n-1:01 Bln-1:0]
and logical operations nt nt
* Each operation will have a unique OP CODE \/
Addition = ADD F[2:0] l\ ALU /
Subtraction = SUM ’ —
Multiplication = MUL ve "
Division = DIV R [n-1:0]
AND = AND
* The value of OP CODE depends on the implementation of the ALU EF:{ESOB N :FZ:;JM -
SR8 R R g
(Fszg?ll R=A-B ::N=01R0)11 R="(A18)
{;0530 R=A*B &ZSOO R=ADB
e S O - S ST
(F;ﬂ/l)lo R=A/B rs;;)no R>>1
e S o L

Can We Construct a Quantum ALU?

* Yes!
* The key is to find an equivalency of each digital gate (NOT, AND, OR)

* Whether it is useful or not, we will debate this later.

COE530: Lecture 2

38

