

College of Computing and Mathematics

Information and Computer Science Department
ICS 560: Foundations of Quantum Computing
Semester 2025/2026 (251)
Midterm Exam

Date: Friday November 21 2025

Time allowed: 120 minutes

Name:	Key Answe	ID#	Sec. No. <u>1</u>	

Instructions:

- Remember to write your name and KFUPM_ID.
- Clearly list any assumptions you make while answering the written questions.
- This exam contributes 20% towards the total marks for the course.
- Any clear evidence of cheating will result in zero grade for ALL the students involved.
- Attempt all questions.

Marks distribution		Cheat sheet
Part 1	20 points	Cheat sheet
Part 2	20 points	
Total	/40	
Total	/20	

Name: ID#:

A B Fill the Coubble foolly. Use a dark pen or pencil. Erase clean by for changes.

1.	\bigcirc A \bigcirc B	© c	OD	11.	\bigcirc A	B	Oc
		0	O 5		O /\		0 0

2.
$$\bigcirc A \bigcirc B \bigcirc C \bigcirc D$$
 12. $\bigcirc A \bigcirc B \bigcirc C \bigcirc D$

3.
$$\bigcirc$$
 A \bigcirc B \bigcirc C \bigcirc D 13. \bigcirc A \bigcirc B \bigcirc C \bigcirc D

5.
$$\bigcirc$$
 A \bigcirc B \bigcirc C \bigcirc D 15. \bigcirc A \bigcirc B \bigcirc C \bigcirc D

6.
$$\bigcirc A \bigcirc B \bigcirc C \bigcirc D$$
 16. $\bigcirc A \bigcirc B \bigcirc C \bigcirc D$

7.
$$\bigcirc A \bigcirc B \bigcirc C \bigcirc D$$
 17. $\bigcirc A \bigcirc B \bigcirc C \bigcirc D$

8.
$$\bigcirc$$
 A \bigcirc B \bigcirc C \bigcirc D \bigcirc 18. \bigcirc A \bigcirc B \bigcirc C \bigcirc D

10.
$$\bigcirc$$
 A \bigcirc B \bigcirc C \bigcirc D 20. \bigcirc A \bigcirc B \bigcirc C \bigcirc D

Part 1 (MCQ): (20 points; 1 point each) Answer the following questions.

- 1. Which of the following is **not** a property of a vector space over complex numbers?
 - A. Commutativity of multiplicative
 - B. Associativity of scalar multiplication
 - C. Non-commutativity of vector addition
 - D. Existence of additive inverse
- 2. The transpose of a matrix A is denoted as:
 - $A. A^*$
 - B. A^T
 - C. A^{\dagger}
 - D. \overline{A}
- 3. The conjugate of a complex matrix A is obtained by:
 - A. Transposing A
 - B. Taking complex conjugate of each entry
 - C. Multiplying by i
 - D. Subtracting imaginary part
- 4. The adjoint (dagger) of a complex matrix A = A[j, k] is:
 - A. A[k,j]
 - B. $\overline{A[j,k]}$
 - C. $\overline{A[k,k]}$
 - D. $\overline{A[k,j]}$
- 5. A linear map between complex vector spaces V_1 and V_2 satisfies:
 - A. $f(\hat{V}_1 + V_2) = f(\hat{V}_1)f(V_2)$
 - B. $f(cV_1) = f(V_1)$ for some c > 0
 - C. $f(V_1 + V_2) = f(V_1) + f(V_2)$ and $f(cV_1) = cf(V_1)$ for some c > 0
 - D. None of the above

6.	In a deterministic classical system, the state evolution is represented by:
	A. A stochastic matrix
	B. A unitary matrix
	C. A Boolean adjacency matrix
	D. A probability vector.
7.	In a probabilistic system, transition likelihoods are represented by:
	A. Hermitian matrices
	B. Doubly stochastic matrices
	C. Identity matrices
	D. None of the above
8.	A doubly stochastic matrix has all entries:
	A. Equal to 1
	B. Complex entries
	C. None of the above
	D. Real numbers between 0 and 1 with rows and columns summing to 1.
9.	The modulus squared of a complex number gives:
	A. Phase
	B. Amplitude
	C. Probability
	D. Real part.
10.	Interference in quantum systems refers to:
	A. Complex numbers cancelling each other
	B. Matrix addition
	C. Probability normalization
	D. Vector transformation

- 11. The modulus squared of entries of a unitary matrix forms:
 - A. Identity matrix
 - B. Doubly stochastic matrix
 - C. Hermitian matrix
 - D. Complex exponential matrix
- 12. A quantum state is represented as:
 - A. Real-valued vector
 - B. Hermitian operator
 - C. Scalar value
 - D. Complex column vector
- 13. The probability of finding a particle at position x_i is:
 - A. $\frac{|c_i|^2}{\sum |c_i|^2}$
 - B. $|c_i|^2$
 - C. $c_i / \sum |c_i|$
 - D. $c_i \overline{c_i}$
- 14. Which of the following matrices is Hermitian?
 - A. $\begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$
 - B. $\begin{bmatrix} 1 & i \\ i & 2 \end{bmatrix}$
 - C. $\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$
 - D. $\begin{bmatrix} 1 & i \\ -i & 2 \end{bmatrix}$
- 15. The eigenvalues of a Hermitian matrix are always:
 - A. Complex
 - B. Purely imaginary
 - C. Real
 - D. Zero

- 16. For a valid qubit, the condition is:
 - A. $\alpha \bar{\alpha} + \beta \bar{\beta} = 1$
 - B. $|\alpha| + |\beta| = 1$
 - C. $\alpha^2 + \beta^2 = 1$
 - D. $\alpha \bar{\alpha} \beta \bar{\beta} = 1$
- 17. The Hadamard gate (H) acts as:
 - A. Bit swapper
 - B. Superposition generator
 - C. Phase shifter
 - D. NOT gate
- 18. The Phase gate (S) corresponds to a rotation of:
 - A. 90° about the x-axis
 - B. 90° about the z-axis
 - C. 90° about the y-axis
 - D. 45° about the z-axis
- 19. The T gate is equivalent to:
 - A. S^2
 - B. $Z^{1/4}$
 - C. Z⁴
 - D. Z^2
- 20. In the Bloch sphere parameterization, the angle θ determines:
 - A. The longitude (phase) of the state
 - B. The rotation about the z-axis
 - C. The overall global phase
 - D. The probability amplitude ratio between |0 and |1 and |

Part II: (20 points) show all necessary steps to answer the following questions

1. Consider the qubit $|\omega\rangle = -\frac{i}{\sqrt{2}}|00\rangle + \frac{1}{2}|01\rangle - \frac{\sqrt{3}-i}{4}|11\rangle$. Measure the right qubit in the state $|1\rangle$ and what quantum state does the system collapse to after the measurement.

P(1) =
$$\left|\frac{1}{2}\right|^2 + \left|\frac{\sqrt{3} - i}{4}\right|^2 = \frac{1}{4} + \frac{4}{16} = \frac{1}{2}$$

Collapse to
$$\frac{\frac{1}{2}}{\sqrt{12}} = \frac{1}{4} + \frac{4}{16} = \frac{1}{2}$$

$$= \frac{\sqrt{2}}{2} = \frac{1}{2} = \frac{1}{2}$$

2. Describe a circuit that will generate the following Bell states.

$$|B_{01}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

$$|0\rangle + |H| + |10\rangle$$

$$|1\rangle + |11\rangle + |11\rangle$$

$$|14\rangle = |01\rangle$$

$$|14\rangle = |14\rangle + |14\rangle$$

$$= |1+\rangle |11\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$
(3) CNOT $|4\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$

3. Determine the polar angle θ and the phase rotation φ of the following qubit.

$$|\psi\rangle = \frac{1}{2}|0\rangle + \frac{\sqrt{3}i}{2}|1\rangle$$

$$= \frac{1}{2}|0\rangle + \frac{\sqrt{3}i}{2}|1\rangle$$

$$\Rightarrow 0 = \frac{\pi}{3}$$

$$\Rightarrow 0 = \frac{\pi}{3}$$

$$\varphi = \frac{\pi}{2}$$

4. Design a quantum circuit using basic gates that transforms the state $|1\rangle$ to the state $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$

 $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$ $\frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle)$

5. Find the matrix representation of the Controlled – U gate, if U = H

$$C-H(00) = |00\rangle$$

 $C-H(01) = |01\rangle$
 $C-H(10) = |10\rangle$
 $C-H(10) = |10\rangle$

$$C-H = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{52} & \sqrt{52} \\ 0 & 0 & \sqrt{52} & \sqrt{52} \end{pmatrix}$$