Given the complex numbers  $Z_1 = 3 + 4i$  and  $Z_2 = 1 - 2i$ , find the following:

#### **Solution:**

- (a)  $Z_1 + Z_2 : 3 + 4i + 1 2i = 4 + 2i$
- (b)  $Z_1 Z_2 : 3 + 4i 1 + 2i = 2 + 6i$
- (c)  $Z_1 \times Z_2 : (3+4i) \times (1-2i) = 3-6i+4i+8 = 11-2i$
- (d)  $\frac{Z_2}{Z_1} = \frac{1-2i}{3+4i} \times \frac{3-4i}{3-4i} = \frac{-5-10i}{25} = -\frac{1}{5} \frac{2}{5}i$

### Question 2

Find the modulus of Z = -5 + 12i.

**Solution:** 

$$|-5 + 12i| = \sqrt{5^2 + 12^2} = 13$$

### Question 3

Convert the complex number Z = -5 - 5i from algebraic to polar form  $(\rho, \theta)$ .

Solution:

$$\rho = \sqrt{5^2 + 5^2} = 5\sqrt{2}$$

$$\theta = \tan^{-1}(1) = \frac{\pi}{4} \implies \frac{5\pi}{4} \text{ (in 3rd quadrant)}$$

$$Z = \left(5\sqrt{2}, \frac{5\pi}{4}\right)$$

# Question 4

Write the complex number  $Z = -4 + 4i\sqrt{3}$  in the Euler's form.

$$\rho = \sqrt{4^2 + 3 \times 4^2} = 8$$

$$\theta = \tan^{-1} \left( -\sqrt{3} \right) = -\frac{\pi}{3} \implies \frac{2\pi}{3} \text{ (in 2nd quadrant)}$$

$$Z = 8e^{i\frac{2\pi}{3}}$$

Find the cube roots of the complex number  $Z = 125e^{0i}$ .

#### **Solution:**

$$Z = 125 + 0i = 125e^{0i}$$

$$z_0 = 5$$

$$z_1 = 5e^{i\frac{2\pi}{3}}$$

$$z_2 = 5e^{i\frac{4\pi}{3}}$$

### Question 6

Given the complex number  $Z = 3e^{i\frac{\pi}{4}}$ , find  $Z^4$ .

Solution:

$$Z^4 = (3)^4 e^{i\frac{\pi}{4} \times 4} = 81e^{i\pi}$$

## Question 7

Rotate the complex number  $Z=5e^{30^{\circ}i}$  by  $90^{\circ}$  counterclockwise. Express the resulting complex number in algebraic form.

Solution:

$$Z \times e^{90^{\circ}i} = 5e^{120^{\circ}i} = 5\left(\cos 120^{\circ} + i\sin 120^{\circ}\right) = -\frac{5}{2} + \frac{5\sqrt{3}}{2}i$$

#### Question 8

Consider the vectors  $v = \begin{bmatrix} 1+i \\ 2-i \\ 3 \end{bmatrix}$ ,  $u = \begin{bmatrix} 2 \\ 1+i \\ 1-i \end{bmatrix}$ , and  $w = \begin{bmatrix} 3-i \\ i \\ 1 \end{bmatrix}$  in  $\mathbb{C}^3$ . Are these vectors linearly independent? Justify your answer.

**Solution:** By forming the matrix [v|u|w]:

$$\begin{bmatrix} 1+i & 2 & 3-i \\ 2-i & 1+i & i \\ 3 & 1-i & 1 \end{bmatrix}$$

The determinant is  $-16 - 8i \neq 0$ , therefore the vectors are linearly independent

Given the vectors  $v = \begin{bmatrix} 1+i \\ 2 \\ 3-i \end{bmatrix}$ ,  $u = \begin{bmatrix} 2-i \\ i \\ 1 \end{bmatrix}$ , calculate the inner product  $\langle u, v \rangle$ .

Solution:

$$\langle u, v \rangle = \begin{bmatrix} 2+i & -i & 1 \end{bmatrix} \begin{bmatrix} 1+i \\ 2 \\ 3-i \end{bmatrix}$$
  
=  $(2+i)(1+i) + (-i)(2) + (1)(3-i)$   
=  $2+2i+i-1-2i+3-i$   
=  $4$ 

#### Question 10

Find the norm (or length) of the vector  $v = \begin{bmatrix} 2+i\\-i\\1-i \end{bmatrix}$ .

**Solution:** 

$$||v|| = \sqrt{\langle v, v \rangle} = \sqrt{2^2 + 1 + 1 + 1 + 1} = \sqrt{8} = 2\sqrt{2}$$

### Question 11

Given the matrix  $A = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$ . Show that A is Hermitian matrix, Is this matrix A unitary? Justify your answer.

$$A^{\dagger} = \overline{A}^{T} = \begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}^{T} = \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix} = A$$

$$\implies A \text{ is Hermitian}$$

$$\det(A) = 1 \cdot 1 - i \cdot (-i) = 1 - (-1) = 0$$

$$\implies \text{Singular} \implies \text{Not Unitary}$$

Show that the vectors  $v = \begin{bmatrix} 1+i \\ 2-i \end{bmatrix}$  and  $u = \begin{bmatrix} i \\ 1+2i \end{bmatrix}$  are linearly independent, then find the span of these vectors.

Solution:

$$(1+i)c_1 + ic_2 = 0 \implies c_2 = (i-1)c_1$$

$$(2-i)c_1 + (1+2i)(i-1)c_1 = 0$$

$$(2-i)c_1 + (-1-2i)c_1 = 0$$

$$(-1-2i)c_1 = 0 \implies c_1 = 0 \implies c_2 = 0$$

Alternatively:

$$\det\begin{bmatrix} 1+i & i \\ 2-i & 1+2i \end{bmatrix} = (1+i)(1+2i) - i(2-i)$$
 
$$= -2+i \neq 0 \implies \text{linearly independent}$$
 
$$\text{span}\{v,u\} = \mathbb{C}^2$$

#### Question 13

Given the following vectors in  $\mathbb{C}^2$ 

$$v = \begin{bmatrix} \frac{3+i\sqrt{3}}{4} \\ \frac{1}{2} \end{bmatrix}$$
 and  $u = \begin{bmatrix} \frac{1}{4} \\ x \end{bmatrix}$ .

Find the value of x such that v and u are orthogonal.

$$\langle v, u \rangle = \begin{bmatrix} \frac{3 - i\sqrt{3}}{4} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{4} \\ x \end{bmatrix} = 0$$
$$\frac{1}{16} (3 - i\sqrt{3}) + \frac{x}{2} = 0$$
$$x = -\frac{1}{8} (3 - i\sqrt{3})$$

Consider the matrix  $A = \begin{bmatrix} 1+i & 2 \\ -i & 1-i \end{bmatrix}$ , find the eigenvalues of A.

**Solution:** 

$$\det(A - \lambda I) = 0$$
$$(1 + i - \lambda)(1 - i - \lambda) + 2i = 0$$
$$\lambda^2 - 2\lambda + (2 + 2i) = 0$$
$$\lambda = 1 \pm \sqrt{-1 - 2i}$$

### Question 15

Find the eigenvalues and its associated eigenvectors of the following matrix  $A = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$ .

**Solution:** 

$$\det(A - \lambda I) = 0 \implies (2 - \lambda)^2 + 1 = 0$$
$$(2 - \lambda)^2 = -1 \implies 2 - \lambda = \pm i$$
$$\lambda = 2 \mp i$$

For eigenvalues:

$$\lambda = 2 - i : \begin{bmatrix} i & -1 \\ 1 & i \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\implies x_1 = ix_0 \implies v_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$$

$$\lambda = 2 + i : \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\implies x_1 = -ix_0 \implies v_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$$

## Question 16

Show that A is Hermitian if and only if  $A^T = \overline{A}$ .

Hermitian 
$$\Longrightarrow A = A^{\dagger}$$

$$\Longrightarrow A = \overline{A}^{T}$$

$$\Longrightarrow A^{T} = \left(\overline{A}^{T}\right)^{T}$$

$$\Longrightarrow A^{T} = \overline{A} \quad \square$$

Given the Hermitian matrix  $A = \begin{bmatrix} 3 & 2-i \\ 2+i & 1 \end{bmatrix}$ , find its eigenvalues. Verify that the eigenvalues are real.

Solution:

$$\det(A - \lambda I) = 0$$

$$(3 - \lambda)(1 - \lambda) - |2 - i|^2 = 0$$

$$(3 - \lambda)(1 - \lambda) - 5 = 0$$

$$\lambda^2 - 4\lambda - 2 = 0$$

$$\lambda = 2 \pm \sqrt{6}$$

The eigenvalues are real, as expected for a Hermitian matrix.

## Question 18

Let  $B = \begin{bmatrix} 2 & 1+i \\ 1-i & 2 \end{bmatrix}$  and  $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ . Compute the matrix  $D = B \cdot C$  and determine whether D is Hermitian.

$$D = B \cdot C = \begin{bmatrix} 2 & 1+i \\ 1-i & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -(1+i) \\ 1-i & -2 \end{bmatrix}$$
$$D^{\dagger} = \begin{bmatrix} 2 & 1+i \\ -(1-i) & -2 \end{bmatrix} \neq D$$
$$\implies \text{Not Hermitian}$$

Compute the tensor product  $A \otimes B$ , where  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  and  $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ .

Solution:

$$A \otimes B = \begin{bmatrix} 1 \cdot B & 2 \cdot B \\ 3 \cdot B & 4 \cdot B \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \\ \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} & \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & 3 & 0 & 4 \\ 3 & 0 & 4 & 0 \end{bmatrix}$$

#### Question 20

Compute the tensor product  $A \otimes B$ , where  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  and  $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ . Determine whether  $A \otimes B$  is Hermitian.

$$A \otimes B = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 2 & 0 \\ 0 & 3 & 0 & 4 \\ 3 & 0 & 4 & 0 \end{bmatrix}$$
$$(A \otimes B)^{\dagger} = \overline{(A \otimes B)}^{T} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 1 & 0 & 3 & 0 \\ 0 & 2 & 0 & 4 \\ 2 & 0 & 4 & 0 \end{bmatrix}$$
$$\neq A \otimes B \implies \text{Not Hermitian}$$