1.2 Complex Vector Space

Sunday, August 31, 2025 6:30 PM

Representation of Vectors over Complex Numbers

 $V \in \mathbb{C}^{N} \quad V = (N_{1}, N_{2}, N_{3}, \dots, N_{N})$ $V = \mathbb{C}^{2}$ U=(1+1,3) N=(1-41,2+1)

<u>Definition 2.2.1</u>: A vector space $\mathbb{V} = \mathbb{C}^n$ over \mathbb{C} is a set \mathbb{V} with two operations $\mathcal{U} + \mathcal{V} = (2-3i, 5+i)$

- Vector addition: for every $v, u \in \mathbb{V}$, there is an element $v + u \in \mathbb{V}$
- Scalar multiplication: for every $c \in \mathbb{C}$ and $v \in \mathbb{V}$, there is an element $c \cdot v \in \mathbb{V}$ such that the following axioms hold: (1+i) $\sim = (1-4i, 2+i)$ $\sim \sim \in (2+i)$
- I. v + u = u + v for every $v, u \in \mathbb{V}$ (commutativity of addition)
- II. (v+u) + w = v + (u+w) for every $v, u \in \mathbb{V}$ (commutativity of addition) $\forall v = (1-4/2, 2+i)$ III. (v+u) + w = v + (u+w) for every $v, u, w \in \mathbb{V}$ (associativity of addition) $\forall v \in \mathbb{V}$ ($v \in \mathbb{V}$) $\forall v \in \mathbb{V}$ ($v \in \mathbb{V}$) is vector additive identity)
- IV. For every $v \in V$ there is $-v \in V$ such that v + (-v) = 0 (vector additive inverse) $\Rightarrow \bigcirc + (-v) = 0$
- V. $1 \cdot v = v$ for every $v \in \mathbb{V}$ (where 1 is multiplicative identity of \mathbb{C}) $\forall v \in \mathbb{V}$
- VI. $c_1 \cdot (c_2 \cdot v) = (c_1 \cdot c_2) \cdot v$ for every $c_1, c_2 \in \mathbb{C}$ and $v \in \mathbb{V}$ (associativity of scalar multiplication
- VII. $c_1 \cdot (u+v) = c_1 \cdot u + c_1 \cdot v$ for every $c_1 \in \mathbb{C}$ and $v, u \in \mathbb{V}$ (distributivity)
- VIII. $(c_1 + c_2) \cdot v = c_1 \cdot v + c_2 \cdot v$ for every $c_1, c_2 \in \mathbb{C}$ and $v \in \mathbb{V}$ (distributivity)

Exercise 2.2.3 Let $c_1 = 2i$, $c_2 = 1 + 2i$, and $A = \begin{bmatrix} 1 - i & 3 \\ 2 + 2i & 4 + i \end{bmatrix}$. Verify Properties

(vi) and (viii) in showing $\mathbb{C}^{2 \times 2}$ is a complex vector space. $\begin{pmatrix} C_1 & C_2 \end{pmatrix} A = C_1 \begin{pmatrix} C_2 & A \end{pmatrix}$ $\begin{pmatrix} C_1 & C_2 \end{pmatrix} A = \begin{pmatrix} C_1 & C_2 & A \end{pmatrix}$ $\begin{pmatrix} C_2 & A \end{pmatrix} \begin{pmatrix} C_$

Definition 2.2.2: Let $A \in \mathbb{C}^{m \times n}$, the **transpose** of A is denoted by A^T and is defined as $A^T[i,j] = A[j,i]$

Definition 2.2.3: Let $A \in \mathbb{C}^{m \times n}$, the **Conjugate** of A is denoted by \overline{A} and is defined as $\overline{A}[i,j] = \overline{A[i,j]}$

Definition 2.2.4: Let $A \in \mathbb{C}^{m \times n}$, the **dagger or adjoint** of A is denoted by A^{\dagger} and is defined as $A^{\dagger} = \overline{A[j,i]}$

Example 2.4: Find the transpose, conjugate, and adjoint of

nspose, conjugate, and adjoint of A = A[i,j] = -m $A = \begin{bmatrix} 6-3i & 2+12i & -19i \\ 0 & 5+2.1i & 17 \\ 1 & 2+5i & 3-4.5i \end{bmatrix} \cdot 1)A = A[j,i]$ A = A[j,j] A = A[j,i] A = A[i,j]

$$A = \begin{bmatrix} 6-3i & 0 & 1 \\ 2+12i & 5+2\cdot1i & 2+51 \\ -19i & 17 & 3-4\cdot5i \end{bmatrix} \xrightarrow{2} A = A[i,j]$$

$$A = \begin{bmatrix} 6+3i & 2-12i & +19i \\ 0 & 5-2\cdot1i & 17 \\ 1 & 2-5i & 3+4\cdot5i \end{bmatrix} \xrightarrow{3} A = (A^{T}) = A[j,i]$$

$$A = \begin{bmatrix} 6+3i & 0 & 1 \\ 2-12i & 5-2\cdot1i & 2-5i \\ +19i & 17 & 3+4\cdot5i \end{bmatrix}$$

These operations satisfy the following properties for all $c \in \mathbb{C}$ and for all A, $B \in \mathbb{C}^{m \times n}$:

- (i) Transpose is idempotent: (A^T)^T = A.
- (ii) Transpose respects addition: $(A + B)^T = A^T + B^T$.
- (iii) Transpose respects scalar multiplication: $(c \cdot A)^T = c \cdot A^T$.
- (iv) Conjugate is idempotent: $\overline{A} = A$.

(iv) Conjugate is idempotent:
$$\overline{A} = A$$
.
(v) Conjugate respects addition: $\overline{A + B} = \overline{A} + \overline{B}$.
(vi) Conjugate respects scalar multiplication: $\overline{c \cdot A} = \overline{c} \cdot \overline{A}$.
(vii) Adjoint is idempotent: $(A^{\dagger})^{\dagger} = A$.
(viii) Adjoint respects addition: $(A + B)^{\dagger} = A^{\dagger} + B^{\dagger}$.
(ix) Adjoint relates to scalar multiplication: $(c \cdot A)^{\dagger} = \overline{c} \cdot A^{\dagger}$.

$$(C \cdot A) = (C \cdot A) = (C \cdot A) = (C \cdot A) = (C \cdot A)$$

Matrix Multiplication:

$$\mathbb{C}^{m \times n} \times \mathbb{C}^{n \times p} \longrightarrow \mathbb{C}^{m \times p}$$

 $\mathbb{C}^{m \times n} \times \mathbb{C}^{n \times p} \longrightarrow \mathbb{C}^{m \times p}$.

Formally, given A in $\mathbb{C}^{m \times n}$ and B in $\mathbb{C}^{n \times p}$, we construct $A \star B$ in $\mathbb{C}^{m \times p}$ as

Formally, given A in Cook and B in Cook, we construct
$$A \star B$$
 in $Cook a$ as
$$C = (A \star B)[j,k] = \sum_{h=1}^{n-1} A[j,h] \times B[h,k].$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A \times B \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$= A[1,1]B[1,1] = + A[1,2]B[2,1] + A[1,3]B[3,1]$$

$$= \begin{bmatrix} 200 + 3x - 1 + 6x^{3} \\ 4x + 5x - 1 + 7x^{3} \end{bmatrix} = \begin{bmatrix} 15 \\ 16 \end{bmatrix}$$

For every n, there is a special n-by-n matrix called the identity matrix,

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix},$$

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad T_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

$$A \cdot I = A$$

Matrices multiplication properties: For all A, B, $C \in \mathbb{C}^{n \times n}$,

- (i) Matrix multiplication is associative: $(A \star B) \star C = A \star (B \star C)$.
- (ii) Matrix multiplication has I_n as a unit: $I_n \star A = A = A \star I_n$.
- (iii) Matrix multiplication distributes over addition:

$$A \star (B+C) = (A \star B) + (A \star C),$$

$$(B+C) \star A = (B \star A) + (C \star A).$$

(iv) Matrix multiplication respects scalar multiplication:

$$c \cdot (A \star B) = (c \cdot A) \star B = A \star (c \cdot B).$$

(v) Matrix multiplication relates to the transpose:

$$(\underline{A} \star B)^T = B^T \star A^T.$$

(vi) Matrix multiplication respects the conjugate:

$$\overline{A \star B} = \overline{A} \star \overline{B}.$$

(vii) Matrix multiplication relates to the adjoint:
$$(A \star B)^{\dagger} = B^{\dagger} \star A^{\dagger}. \quad (A \star B)^{\dagger} = ($$

$$A = \begin{bmatrix} 3+2i & 0 & 5-6i \\ 1 & 4+2i & i \\ 4-i & 0 & 4 \end{bmatrix}, B = \begin{bmatrix} 5 & 2-i & 6-4i \\ 0 & 4+5i & 2 \\ 7-4i & 2+7i & 0 \end{bmatrix}.$$

$$A = \begin{bmatrix} 3-2i & 1 & 4+6i \\ 0 & 4+5i & 2 \\ 7-4i & 2+7i & 0 \end{bmatrix}.$$

$$A = \begin{bmatrix} 3-2i & 1 & 4+6i \\ 0 & 4+5i & 2 \\ 7-4i & 2+7i & 0 \end{bmatrix}.$$

Definition 2.2.4 Given two complex vector spaces \vee and \vee , ... \vee plex subspace of \mathbb{V}' if \mathbb{V} is a subset of \mathbb{V}' and the operations of \mathbb{V} are restrictions of \mathbb{V}

Equivalently, V is a complex subspace of V' if V is a subset of the set V' and

- (i) \mathbb{V} is closed under addition: For all V_1 and V_2 in \mathbb{V} , $V_1 + V_2 \in \mathbb{V}$.
- (ii) \mathbb{V} is closed under scalar multiplication: For all $c \in \mathbb{C}$ and $V \in \mathbb{V}$, $c \cdot V \in \mathbb{V}$.

Example 2.2.7: Consider the set of all vectors of \mathbb{C}^9 with the second, fifth, and eighth position \mathbb{C}^9 elements being 0: $V \in \mathbb{C}^9$ $V = (\stackrel{\circ}{\mathcal{N}}_1, \stackrel{\circ}{\mathcal{N}}_3, \stackrel{\circ}{\mathcal{N}}_4, \stackrel{\circ}{\mathcal{N}}_4, \stackrel{\circ}{\mathcal{N}}_7, \stackrel{\circ}{\mathcal{N}}_7, \stackrel{\circ}{\mathcal{N}}_9)$

P(x)=N1+N2x2+N4x3+N6x4+N3x+N9x

Definition 2.2.5: The set of polynomials of degree n or less in one variable with coefficients in \mathbb{C} is

form a complex vector space.

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n.$$

Definition 2.2.5 Let \mathbb{V} and \mathbb{V}' be two complex vector spaces. A linear map from \mathbb{V} to \mathbb{V}' is a function $f: \mathbb{V} \longrightarrow \mathbb{V}'$ such that for all $V, V_1, V_2 \in \mathbb{V}$, and $c \in \mathbb{C}$, $\bigvee_{l_1} \bigvee_{l_2} \in \bigvee$

- (i) f respects the addition: $f(V_1 + V_2) = f(V_1) + f(V_2)$,
- (ii) f respects the scalar multiplication: $f(c \cdot V) = c \cdot f(V)$.

Definition 2.2.6 Two complex vector spaces \mathbb{V} and \mathbb{V}' are isomorphic if there is a one-to-one onto linear map $f: \mathbb{V} \longrightarrow \mathbb{V}'$. Such a map is called an isomorphism.

Example 2.2.8: Show that the map $f: \mathbb{C} \to \mathbb{R}^{2\times 2}$ define below is an isomorphic from \mathbb{C} to $\mathbb{R}^{2\times 2}$

$$f(x+iy) = \begin{bmatrix} x_1 & y \\ -y_1 & x \end{bmatrix}$$

$$V_1 = x_1 + iy_1$$

$$V_2 = x_2 + iy_2$$

$$= \begin{bmatrix} x_1 + x_2 & y_1 + y_2 \\ -y_1 - y_2 & x_1 + x_2 \end{bmatrix}$$

$$= \begin{cases} x_1 + x_2 & y_1 + y_2 \\ -y_1 - y_2 & x_1 + x_2 \end{cases}$$

$$= \begin{cases} x_1 + x_2 & y_1 + y_2 \\ -y_1 - y_2 & x_1 + x_2 \end{cases}$$