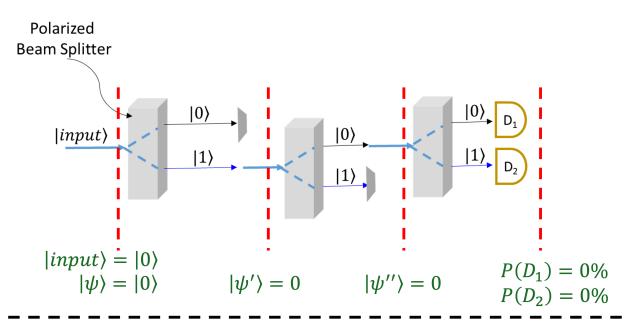
### Question 1: Quantum Hardware (Qubits) [3 marks]

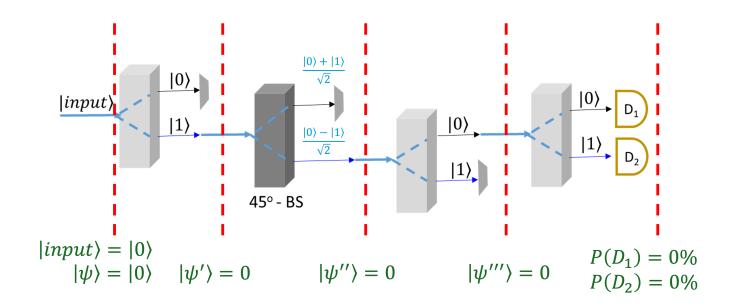

Name different quantum hardware options under consideration.

- (i) Photonics (Light Polarization)
- (ii) Spin Qubits (Stern-Gerlach)
- (iii) Superconducting Qubits
- (iv) Topological Qubits

#### Question 2: Photonic Qubits [6 marks]

If the  $|\text{input}\rangle$  states in the figure given below are: Find the probabilities of clicking detectors  $D_1$  and  $D_2$ . Clearly show the state of the system at each BS before you calculate the final probability. (HV-BS is not a 50-50 beam splitter):

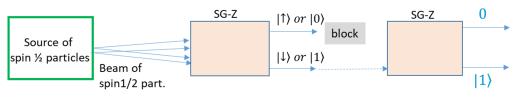
 $green: |0\rangle$  $cyan: |1\rangle$ 



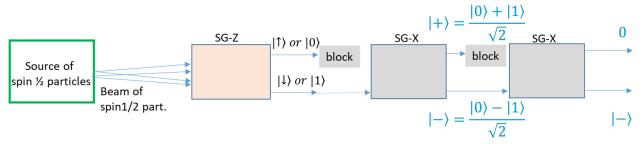

$$|input\rangle = |1\rangle$$
  
 $|\psi\rangle = |1\rangle$   $|\psi'\rangle = |1\rangle$   $|\psi''\rangle = 0$   $P(D_1) = 0\%$   
 $P(D_2) = 0\%$ 

#### Question 3: Photonic Qubits [6 marks] (Optional)

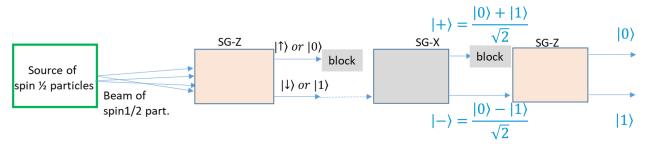
Find the probabilities of clicking detectors  $D_1$  and  $D_2$ . Clearly show the state of the system at each BS before you calculate the final probability. (Functioning of 45°-BS is same as given in slides):


 $green: |0\rangle$  $cyan: |1\rangle$ 




$$\begin{aligned} |input\rangle &= |1\rangle \\ |\psi\rangle &= |1\rangle \quad |\psi'\rangle = |1\rangle \quad |\psi''\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \qquad |\psi'''\rangle = |0\rangle \quad P(D_1) = 25\% \\ P(D_2) &= 0\% \end{aligned}$$
 But only 50% of the time

#### Question 4: Spin Qubits [12 marks]

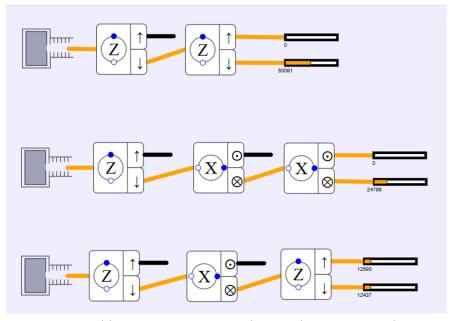

Write down all the unknown outputs of each SG-X/Z boxes in all three given arrangements of SG experiments. Further write down the probability of final output as well, assuming 100% is at left of first SG-Z box.



**OUTPUT: 50% |1)** 



OUTPUT: 25%  $|-\rangle$ 12.5%  $|0\rangle$  & 12.5%  $|1\rangle$  in Z basis




## Simulation for Q2 & Q3



https://lab.quantumflytrap.com/u/ibralyousef/demjKzNBRcScI45LWjuXeA?mode=beamled to the control of the contro

# Simulation for Q4



https://physics.nfshost.com/demos/Sterngerlach/