PHYS 512

Assignment – 03 (Quantum | Computing)

Due Sunday Oct 04 – 11:59 pm (NO late submission)

Solution

Q.1 Ket and Bra, Orthonormality

Consider the following two kets:

$$|\psi\rangle = \begin{pmatrix} -3i\\ 2+i\\ 4 \end{pmatrix}, \qquad |\varphi\rangle = \begin{pmatrix} 2\\ -i\\ 2-3i \end{pmatrix}$$

- (i) Find the bra $\langle \varphi |$
- (ii) Find $(|\psi\rangle)^*$
- (iii) Are $|\psi\rangle$ and $|\varphi\rangle$ are orthogonal?
- (iv) Briefly explain, why the product $|\psi\rangle|\varphi\rangle$ and $\langle\varphi|\langle\psi|$ do not make sense?

Solution

(i)

$$\langle \varphi | = (2 \quad i \quad 2 + 3i)$$

(ii)

$$(|\psi\rangle)^{\dagger} = \langle \psi | = \begin{pmatrix} 3i & 2-i & 4 \end{pmatrix}$$

(iii)

$$\langle \varphi | \psi \rangle = (2 \quad i \quad 2+3i) \begin{pmatrix} -3i \\ 2+i \\ 4 \end{pmatrix} = 7+8i \neq 0$$
, Therefore given states are not orthogonal

(iV) Such matrix multiplication is not possible

Q.2 Ket, Bra and inner product

Consider following quantum states

$$|\psi\rangle = 3i|\varphi_1\rangle - 7i|\varphi_2\rangle$$
, $|\chi\rangle = -|\varphi_1\rangle + 2i|\varphi_2\rangle$

Where $|\varphi_1\rangle$ and $|\varphi_2\rangle$ are orthonormal. Calculate the inner (scaler) product $\langle \psi | \chi \rangle \langle \chi | \psi \rangle$. Are they equal?

Solution

$$\langle \psi | \chi \rangle = (\langle \varphi_1 | (-3i) + \langle \varphi_2 | 7i) [-|\varphi_1 \rangle + 2i | \varphi_2 \rangle] = -14 + 3i$$
$$\langle \chi | \varphi \rangle = (\langle \varphi_1 | + \langle \varphi_2 | (-2i)) [3i | \varphi_1 \rangle - 7i | \varphi_2 \rangle] = -14 - 3i$$

Q.3 Hermitian

Check the hermicity of operators $(\hat{A} + \hat{A}^{\dagger})$, $i(\hat{A} + \hat{A}^{\dagger})$, $i(\hat{A} - \hat{A}^{\dagger})$,

Solution

$$(\hat{A} + \hat{A}^{\dagger})^{\dagger} = (\hat{A} + \hat{A}^{\dagger})$$
Therefore it is Hermitian

$$\left[i(\hat{A}+\hat{A}^{\dagger})\right]^{\dagger}=-i(\hat{A}+\hat{A}^{\dagger})$$
 NOT Hermitian

$$\left[i(\hat{A}-\hat{A}^{\dagger})\right]^{\dagger}=-i(-\hat{A}+\hat{A}^{\dagger})=\ i(\hat{A}-\hat{A}^{\dagger})$$
 Therefore it is Hermitian

Q.4 Outer product

Consider the two States

$$|\psi\rangle = i|\varphi_1\rangle + 3i|\varphi_2\rangle - |\varphi_3\rangle, \qquad |\chi\rangle = |\varphi_1\rangle - i|\varphi_2\rangle + 5i|\varphi_3\rangle$$

Where $|\varphi_1\rangle$, $|\varphi_2\rangle$, and $|\varphi_3\rangle$ are orthogonal and normalized.

- (i) Calculate $|\psi\rangle\langle\chi|$ and $|\chi\rangle\langle\psi|$. Are they equal?
- (ii) Find Hermitian conjugate of $|\psi\rangle\langle\chi|$

Solution

$$|\psi\rangle\langle\chi| = \begin{pmatrix} 1\\ -i\\ 5i \end{pmatrix}(-i - 3i - 1) = \begin{pmatrix} i - 1 & 5\\ 3i - 3 & 15\\ -1 & -i & 5i \end{pmatrix}$$
$$|\chi\rangle\langle\psi| = \begin{pmatrix} -i\\ -3i\\ -1 \end{pmatrix}(1 - i - 5i) = \begin{pmatrix} -i & -3i & -1\\ -1 & -3 & i\\ 5 & 15 & -5i \end{pmatrix}$$
$$(|\psi\rangle\langle\chi|)^{\dagger} = |\chi\rangle\langle\psi| = \begin{pmatrix} -i & -3i & -1\\ -1 & -3 & i\\ 5 & 15 & -5i \end{pmatrix}$$

Consider the following operator:

$$\hat{A} = \begin{pmatrix} 0 & 0 & \frac{2}{1+i} \\ 0 & 0 & 0 \\ 1+i & 0 & 0 \end{pmatrix},$$

- (v) Operator \hat{A} is Hermitian?
- (vi) Operator \hat{A} is unitary?

(Clearly show all the working for Hermitian and unitary)

Solution

(i)

$$\hat{A} = \begin{pmatrix} 0 & 0 & \frac{2}{1+i} \\ 0 & 0 & 0 \\ 1+i & 0 & 0 \end{pmatrix} \Rightarrow \hat{A} = \begin{pmatrix} 0 & 0 & 1-i \\ 0 & 0 & 0 \\ 1+i & 0 & 0 \end{pmatrix} \text{ now clearly A is Hermitian}$$

$$(ii) \hat{A} \hat{A}^{\dagger} = \begin{pmatrix} 0 & 0 & 1-i \\ 0 & 0 & 0 \\ 1+i & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1-i \\ 0 & 0 & 0 \\ 1+i & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1-i^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1-i^2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Not an Identity matrix, therefore A is NOT unitary

Q.6 Cauchy-Schwartz and Triangle inequality

Consider the following two states:

$$|\psi\rangle = -3|0\rangle - 2i|1\rangle$$
, $|\phi\rangle = |0\rangle + 5|1\rangle$

Show that these two states obeys

- (i) Cauchy-Schwartz inequality: $|\langle \psi || \phi \rangle|^2 \le \langle \psi |\psi \rangle \langle \phi || \phi \rangle$
- (ii) Triangle inequality: $\sqrt{\langle (\psi + \phi)|\psi + \phi \rangle} \le \sqrt{\langle \psi||\psi \rangle} + \sqrt{\langle \phi||\phi \rangle}$

Solution

$$\langle \psi | \varphi \rangle = (\langle 0 | (-3) + \langle 1 | 2i)(-3 | 0 \rangle - 2i | 1 \rangle) = -3 + 10i$$

$$\langle \psi | \psi \rangle = 13$$

$$\langle \varphi | \varphi \rangle = 26$$

$$\langle (\psi + \varphi) | (\psi + \varphi) \rangle = (\langle 0 | (-2) + \langle 1 | (5 + 2i))(-2 | 0 \rangle + (5 - 2i) | 1 \rangle) = (-2)^2 + (5 + 2i)(5 - 2i) = 33$$

Q.7 Find new states

Consider following three quantum states

$$|\psi_1\rangle = |0\rangle, \qquad |\psi_2\rangle = -\frac{1}{2}|0\rangle - \frac{\sqrt{3}}{2}|1\rangle, \qquad |\psi_3\rangle = -\frac{1}{2}|0\rangle + \frac{\sqrt{3}}{2}|1\rangle$$

Find new states $|\tilde{\psi}_1\rangle$, $|\tilde{\psi}_2\rangle$, and $|\tilde{\psi}_3\rangle$ that are normalized, superposition states of $|0\rangle$ and $|1\rangle$ and orthogonal to $|\psi_1\rangle$, $|\psi_2\rangle$, and $|\psi_3\rangle$, respectively.

Solution

Let

$$|\tilde{\psi}_1\rangle = a|0\rangle + b|1\rangle$$
, where $a^2 + b^2 = 1$ (new states is normalized)

$$|\tilde{\psi}_2\rangle = c|0\rangle + d|1\rangle$$
, where $c^2 + d^2 = 1$ (new state is normalized) $|\tilde{\psi}_3\rangle = e|0\rangle + f|1\rangle$, where $e^2 + f^2 = 1$ (new state is normalized)

Using above normalization and following orthogonal conditions $\langle \psi_1 | \tilde{\psi}_1 \rangle = 0 \quad \langle \psi_2 | \tilde{\psi}_2 \rangle = 0 \quad \langle \psi_3 | \tilde{\psi}_3 \rangle = 0$ To find the values of a, b, c, d, e, and f

Q.8 Direct Product/ combining quantum states

Show that the state

$$|\psi\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle,$$

Can be expressed in-terms of $|++\rangle$ and $|--\rangle$ basis, i.e.

$$|\psi\rangle = \frac{1}{\sqrt{2}}|++\rangle + \frac{1}{\sqrt{2}}|--\rangle$$

Solution

$$|00\rangle = |0\rangle \otimes |0\rangle = \frac{1}{2}[(|+\rangle + |-\rangle) \otimes (|+\rangle + |-\rangle)] = \frac{1}{2}[|++\rangle + |+-\rangle + |-+\rangle + |--\rangle]$$

Similarly

$$|11\rangle = |1\rangle \otimes |1\rangle = \frac{1}{2}[(|+\rangle - |-\rangle) \otimes (|+\rangle - |-\rangle)] = \frac{1}{2}[|++\rangle - |+-\rangle - |-+\rangle + |--\rangle]$$

Therefore

$$|00\rangle + |11\rangle = [|++\rangle + |--\rangle]$$

$$\Rightarrow |\psi\rangle = \frac{1}{\sqrt{2}}|++\rangle + \frac{1}{\sqrt{2}}|--\rangle$$

Q.9 Expectation value

Consider the a states which is given in terms of three orthonormal vectors $|\varphi_1\rangle$, $|\varphi_2\rangle$, and $|\varphi_3\rangle$ as follows

$$|\psi\rangle = \frac{1}{\sqrt{15}}|\varphi_1\rangle + \frac{1}{\sqrt{3}}|\varphi_2\rangle + \frac{1}{\sqrt{5}}|\varphi_3\rangle$$

Where $|\phi_n\rangle$ are eigenstates to an operator \hat{B} such that $\hat{B}|\phi_n\rangle=(3n^2-1)|\phi_n\rangle$ with n=1,2,3

- (i) Find the norm of the state $|\psi\rangle$.
- (ii) Find the expectation value of \hat{B} for the state $|\psi\rangle$.
- (iii) Find the expectation value of \hat{B}^2 for the state $|\psi\rangle$.

Solution

(i) Norm of state:(you did it many times)

(ii) Expectation value of operator B

$$\begin{split} \langle \psi | \hat{B} | \psi \rangle &= \left(\left| \varphi_1 \right| \frac{1}{\sqrt{15}} + \langle \varphi_2 \right| \frac{1}{\sqrt{3}} + \langle \varphi_3 | \frac{1}{\sqrt{5}} \right) + \hat{B} \left(\frac{1}{\sqrt{15}} | \varphi_1 \rangle + \frac{1}{\sqrt{3}} | \varphi_2 \rangle + \frac{1}{\sqrt{5}} | \varphi_3 \rangle \right) \\ \langle \psi | \hat{B} | \psi \rangle &= \left(\left| \varphi_1 \right| \frac{1}{\sqrt{15}} + \langle \varphi_2 | \frac{1}{\sqrt{3}} + \langle \varphi_3 | \frac{1}{\sqrt{5}} \right) + \left(\frac{1}{\sqrt{15}} \hat{B} | \varphi_1 \rangle + \frac{1}{\sqrt{3}} \hat{B} | \varphi_2 \rangle + \frac{1}{\sqrt{5}} \hat{B} | \varphi_3 \rangle \right) \\ \langle \psi | \hat{B} | \psi \rangle &= \left(\left| \varphi_1 \right| \frac{1}{\sqrt{15}} + \langle \varphi_2 | \frac{1}{\sqrt{3}} + \langle \varphi_3 | \frac{1}{\sqrt{5}} \right) + \left(\frac{2}{\sqrt{15}} | \varphi_1 \rangle + \frac{11}{\sqrt{3}} | \varphi_2 \rangle + \frac{26}{\sqrt{5}} | \varphi_3 \rangle \right) \\ \langle \psi | \hat{B} | \psi \rangle &= \left(\frac{2}{15} + \frac{11}{3} + \frac{26}{5} \right) = 9 \end{split}$$

(iii) Similarly you can find the expectation value of operator B^2

Q.10 Define the mixed expression

In the following expression, where is an operator, specify the nature of each expression (i.e. specify whether it is an operator, a ket, or a bra); then find it Hermitian conjugate.

- (i) $\langle \psi | \hat{A} | \psi \rangle \langle \psi |$
- (ii) $\hat{A}|\psi\rangle\langle\varphi|$
- (iii) $(|\varphi\rangle\langle\varphi|\hat{A}) i(\hat{A}|\psi\rangle\langle\psi|)$

Solution

- (i) Bra
- (ii) Operator
- (iii) Operator

To find the Hermitian of each expression, use the following rule(s)

$$[ABC]^{\dagger} = C^{\dagger}B^{\dagger}A^{\dagger}$$
$$[\hat{A}|\psi\rangle]^{\dagger} = \langle\psi|\hat{A}^{\dagger}$$
$$[\langle\psi|\varphi\rangle]^{\dagger} = \langle\varphi|\psi\rangle$$

Q.11 Combining quantum states

Consider following two quantum states in computational basis

$$|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{i}{\sqrt{2}} |1\rangle,$$

$$|\varphi\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{i}{\sqrt{2}}|1\rangle$$

Compute the following

- (i) $|\psi\rangle\otimes|\varphi\rangle$
- (ii) $\langle \psi | \otimes \langle \varphi |$
- $(iii)(\sigma_x \otimes I)(|\psi\rangle \otimes |\varphi\rangle)$
- (iv) $(\sigma_x \otimes \sigma_x)(|\psi\rangle \otimes |\varphi\rangle)$

Solution

(i)
$$|\psi\rangle\otimes|\varphi\rangle = \left[\frac{1}{\sqrt{2}}\left|0\rangle - \frac{i}{\sqrt{2}}\right|1\rangle\right]\otimes\left[\frac{1}{\sqrt{2}}\left|0\rangle + \frac{i}{\sqrt{2}}\right|1\rangle\right]$$

$$|\psi\rangle\otimes|\varphi\rangle=\frac{1}{2}\left|00\rangle+\frac{i}{2}\right|01\rangle-\frac{i}{2}|10\rangle+\frac{1}{2}|11\rangle$$

(ii)

Similarly you can find $\langle \psi | \otimes \langle \varphi |$

(iii)
$$(\sigma_x \otimes I)(|\psi\rangle \otimes |\varphi\rangle)$$

$$\sigma_x \otimes I = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \equiv (4x4 \ matrix)...$$
 (1)

$$|\psi\rangle\otimes|\varphi\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} \end{pmatrix} \equiv (4x1 \ matrix)....(2)$$

Xply equation (1) with (2), to get the final answer

(iv) Like above you can solve this part as well