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(Reference to Quantum Computing)



Linear Algebra



You can review these topics from 

David McMahon – Ch 2, Ch 3 and Ch 4

Bernard Zygelman – Ch1 and Ch 2



Complex Vector Space

The vector spaces encountered in physics are mostly real vector spaces 
and complex vector spaces. Classical mechanics and electrodynamics 
are formulated mainly in real vector spaces while quantum mechanics 
(and hence this course) is founded on complex vector spaces.

In the rest of this chapter, we briefly summarize vector spaces and matrices 
(linear maps), taking applications to quantum mechanics into account.



Outline

• Review of basics of linear algebra

• Concept of State or Vector or Ket

• Vector Space and Hilbert space 

• Linear Combination of Vectors

• Linear Independence 

• Uniqueness of spanning Space

• Basis and dimension

• Inner Produce

• Outer Product



Linear Algebra

• Quantum Theory is based on the construct: wave function and operators

• The state of a system is represented by its wave function, observables are represented 
by operator

• Wave functions satisfy the defining conditions for abstract ‘vectors’ and operators act on 
them as ‘linear transformation’

• Therefore, Linear algebra is the language of quantum computing

• The goal of this section is to create a foundation of introductory linear algebra 
knowledge, 

• upon which the reader can build during their study of quantum computing.



Probability Basics

Probability heavily used is quantum theory to predict the possible results of measurements

Probability 𝑝𝑖 of an event 𝑥𝑖 falls in the range 0 ≤ 𝑝𝑖 ≤ 1
0 – impossible
1 – certain to happen 

The probability of an event is simply the relative frequency of its occurrence

Suppose there are n total events, the jth event occur 𝑛𝑗 times, and we have σ𝑗=1
∞ 𝑛𝑗 = 𝑛 , 

then the probability that the jth even occur

𝑝𝑖 =
𝑛𝑗

𝑛

The sum of all the probabilities is 1 ෍

𝑗=1

∞

𝑝𝑗 =෍

𝑗=1

∞
𝑛𝑗

𝑛
=
1

𝑛
෍

𝑗=1

∞

𝑛𝑗 =
𝑛
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The average value of the distribution is referred to as the expectation value in quantum mechanics, given by

𝑗 =෍

𝑗=1

∞
𝑗𝑛𝑗

𝑛
=෍

𝑗=1

∞

𝑗𝑝𝑗
and variance of distribution is
(Standard deviation) 

(∆𝑗)2 = 𝑗2 − 𝑗 2



Quantum Mechanics Toolbox

• Basic unit of information is called a bit (like Yes/No, on/off, stop/go etc.)

• All digital computing machines are constructed from individual bits

• Integer value 0 and 1 denote the value of a bit

• The qubit is a similar but distinct concept

Bits and Qubits

0 → | ۧ0

1 → | ۧ1
Possible states of a qubitPossible states of a classical bit



Basic Principals of Quantum Mechanics

• According to the principles of quantum mechanics, systems are set to a definite 
state only once they are measured.

• Before a measurement, systems are in an indeterminate state; after we measure 
them, they are in a definite state

• If we have a system that can take on one of two discrete states when measured, 
we can represent the two states in Dirac notation as | ۧ0 and | ۧ1

• We can then represent a superposition of states as a linear combination of these 
states, such as

ۧ = 𝛼 ۧ0 + 𝛽| ۧ1 Where 𝛼2 + 𝛽2 = 1 ۧ|𝜓 =
1

2
| ۧ0 +

1

2
| ۧ1

with definite values of  and  and  generally complex numbers



Postulates of Quantum Mechanics
Before we deal with ‘exact postulates of QM’ let us consider them in reference to array of five lamps 

QM - Following a measurement (observation) we observe only one of out of 32 possible ON/OFF 
configuration immediately after the measurements. CM – measurements will  give you the same state 

Looks obvious! 

Postulate - I

Postulate – II a

32 possible states of array of 5 lamps are vectors in a linear vector space

According to this postulate and ‘+’ of linear vector space,                                      is also a vector in this space, a possible state!| ۧ11010 + | ۧ00101

|Φ ≡
|00000 + |00001 + |00010 + |00011 + |00100 + |00101 + |00110
+ |00111 + |01000 + |01001 + |01010 + |01011 + |01100 + |01101
+ |01110 + |01111 + |10000 + |10001 + |10010 + |10011 + |10100
+ |10101 + |10110 + |10111 + |11000 + |11001 + |11010 + |11011
+ |11100 + |11101 + |11110 + |11111,

The quantum state      , expressed as a linear combination of other states, is sometime called superposition principle | ۧ

Postulate – II b A complete physical description of this quantum register is 
encapsulated by a vector in this vector space.| ۧ

System do exist in linear combination of theses states!

But can not be observed/measured

Upon measurement/observation system 
will collapse into ‘one of these ’states

Which and Why ?



Hilbert Space
Hilbert Space is a vector space

are linearly independentThen set of vectors

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean 

space. It extends the methods of vector algebra and calculus from the two-dimensional Euclidean plane and 

three-dimensional space to spaces with any finite or infinite number of dimensions.

Linearly Independent vectors Like Unit vectors ( Ƹ𝑖, Ƹ𝑗, ෠𝑘) in 2-D or 3-D, 
are they linearly independent? 

We pointed out that if |α is a vector so is c |α where c is a scalar quantity. 
In Hilbert space the scalar c is generally a complex number. 

𝑐1| ۧ𝛼1 + 𝑐2 ۧ𝛼2 + 𝑐3 ۧ𝛼3 ……………………𝑐𝑛| ۧ𝛼𝑛Consider linear 
combination of n vector

If sum equals to the null vector 0 ONLY if 𝑐1 = 𝑐2 = 𝑐3…………… = 𝑐𝑛 = 0

| ۧ𝛼1 , ۧ𝛼2 , ۧ𝛼3 …………………… | ۧ𝛼𝑛

Nothing new !
Except the # of dimensions

(at least up to now)

Can you write 

Ƹ𝑖 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 Ƹ𝑗 & ෠𝑘

A space that admits n linear independent vectors, but not n+1, is called an n-dimensional space

In general, a Hilbert space allows infinite dimension but we are primarily concerned, in this text, 
with Hilbert spaces spanned by a finite and denumerable set of basis vectors.

Hilbert space of array of five lamps has 32 dimension; 32 independent possible states
NO

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/David_Hilbert
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Linear_algebra
https://en.wikipedia.org/wiki/Calculus
https://en.wikipedia.org/wiki/Plane_(geometry)
https://en.wikipedia.org/wiki/Dimension


Quantum Mechanics Toolbox

Imagine if you have a set of lamps, how many ways 
you can have ON/OFF arrangements of lamps 

Binary Arithmetic

| ۧ11010 One of 32 (=25) possible states 

If we have array of five lamps, in ON/OFF state, say ON, ON, OFF, ON,OFF

| ۧ11010 + | ۧ00101 = | ۧ11111 Does NOT make any sense!

Binary of number ‘26’ - 11010

In QM we write ‘this state’ of set/register of lamps it as

Depends upon number of lamps

How many possibilities for 5 and 7 set of lamps ?

Possible combinations of n-bits – 2n

Binary of 26

States can be added? like binary numbers
Two arrangements of ON/OFF All ON

Array of lamps in two different states at the same time Is it possible ?



Quantum Mechanics Toolbox

• Numbers in base 2    (1101, 01100111, 1011000111, …….) 

• Numbers in base 10 (5, 67, 893, …….)

• Convert the binary number 110011101 to a base 10 number 

Binary Arithmetic

| ۧ00

Possible states of a three qubits system: 23 = 8

Possible states (combination) of a two qubits system: 22 = 4

| ۧ01 | ۧ10 | ۧ11

| ۧ000 | ۧ001 | ۧ010 | ۧ011 | ۧ100 | ۧ101 | ۧ110 | ۧ111

Similarly you can write possible states of n= 4, 5, 6 and so on number of qubit system

Binary numbers can be added or subtracted like base 10 numbers

Possible combinations of n-bits – 2n



Linear Vector Space
Mathematically and conceptually very different from 2-D and 3-D ‘Real’ vector

Consider a set of objects 𝜶, 𝜷, 𝜸, … .. We say that these objects belong to a linear
vector space V provided that

(i) There exists an operation, which we denote by the + sign, so that if 𝜶, 𝜷 are
any two members of the vector space V then so is the quantity 𝜶 + 𝜷.

(ii) For scalar c, there exists a scalar multiplication operation defined so that if β
is a vector in V then so is c𝜷 = 𝜷𝑐. If a, b are scalars a b 𝜷 = a(b 𝜷).

(iii) Scalar multiplication is distributive, i.e. c(𝜶 + 𝜷) = c α + c 𝜷, also for scalar
a, b, (a + b)α = aα + bα.

(iv) The + operation is associative, i.e. α + (𝜷 + 𝜸) = (𝜶 + 𝜷) + 𝜸.

(v) The + operation is commutative, i.e. 𝜶 + 𝜷 = 𝜷 + 𝜶.

(vi) There exists a null vector 0 which has the property 0 + α = α for very vector α in V .

(vii) For every α in V there exists an inverse vector −α that has the property α+( −α) = 0.



State Vector

ۧ = 𝛼 ۧ0 + 𝛽| ۧ1 Where 𝛼2 + 𝛽2 = 1

𝛼 and 𝛽are called probability amplitudes; NOT probabilities 

Generally 𝛼 and 𝛽 are complex numbers and they can be negative as well !

Probability of finding system in state ۧ|0 𝑖𝑠 𝑃 ۧ|0 = 𝛼2 and in state ۧ|1 𝑃 ۧ|1 = 𝛽2

Generally speaking, if an event has N possible outcome and label the probability of finding ‘i ‘ by Pi, then 

෍

𝑖=1

𝑁

𝑃𝑖 = 𝑃1 + 𝑃2 +⋯𝑃𝑁 = 1 That is why  𝛼2 + 𝛽2 = 1

𝛼2 = 𝛼 2 = 𝛼 𝛼∗

𝛽2 = 𝛽 2 = 𝛽 𝛽∗

Remember 

For a complex number z

𝑧 = 𝑥 + 𝑖𝑦

𝑧2 = 𝑧 2 = 𝑧 𝑧∗

𝑧2 = 𝑥 + 𝑖𝑦 𝑥 − 𝑖𝑦

𝑧2 = 𝑥2 + 𝑦2

𝑧2 = 𝑥 2 − −𝑖𝑦 2



Hilbert Space (Vector Space)

State vector in 2 D vector space

ۧ = 𝛼 ۧ0 + 𝛽| ۧ1

In matrix form | ൿ = 𝛼
1

0
+ 𝛽

0

1
=

𝛼

𝛽

State vector in n-D vector space

| ۧ𝑎 =

𝑎1
𝑎2

𝑎𝑛

| ۧ = 1

3
| ۧ0 + 2

3
| ۧ1 | ۧ =

ൗ1 3

ൗ2
3

= 
1

3

1
2

Example

Basis and Dimensions

When a set of vectors is linearly independent and they span a space, the set is known a ‘basis’

Like Ƹ𝒊, Ƹ𝒋, ෡𝒌 in 3-D Euclidean space 

In matrix form

| ۧ0 =
1
0

| ۧ1 =
0
1

States in 
Matrix form



Different Basis Set

| ۧ0 and | ۧ1 is common basis set  

| ۧ+ and | ۧ− is another common set of basis 

| ۧ0 and | ۧ1 are orthogonal to each other  0 1 = 0

| ۧ+ and | ۧ− are also orthogonal to each other  + − = 0

+ − = 0 + + = 1 Orthonormality of | ۧ0 and | ۧ1Prove that  

Solve it yourself !

Problem -01

+ 0 =?Evaluate 



In | ۧ0 , | ۧ1 basis a quantum state | ۧ𝜓 is (matrix form) 

| ۧ𝜓 =

1 − 𝑖

2
1 + 𝑖

2

(a) Express | ۧ𝜓 in ket notation in | ۧ0 , | ۧ1 basis

(b) Express | ۧ𝜓 in ket notation in | ۧ+ , | ۧ− basis

Solve it yourself !

Problem -02



Hilbert Space (Vector Space)
A spanning set of vectors for a given space ‘V’ is not unique

State vector in 2 D vector space

ۧ = 𝛼 ۧ0 + 𝛽| ۧ1

In matrix form | ۧ = 𝛼
1

0
+ 𝛽

0

1
=

𝛼

𝛽

| ۧ0 =
1
0

𝑎𝑛𝑑 | ۧ1 =
1
0

Spans ℂ2, the vector space in which qubit lives

| ۧ𝑈1 = ۧ| + =
1

2

1
1

𝑎𝑛𝑑 | ۧ𝑈2 = ۧ| − =
1

2

1
−1

This set also spans the space ℂ2; ⇒ | ۧ𝑈1 and | ۧ𝑈2
can be used to represent a state | ۧ𝜓 of qubit

Like set of orthogonal axis are not 
unique in 2D and 3D Euclidean space

Now consider new basis 

ۧ| + =
1

2

1
1

ۧ| + =
1

2

1
0

+
0
1

ۧ| + =
1

2
| ۧ0 + | ۧ1

Consider 

ۧ| + =
1

2
| ۧ0 +

1

2
| ۧ1

Multiple basis set can be used!

Similarly show that

ۧ| − =
1

2
| ۧ0 −

1

2
| ۧ1



Dirac’s Ket and Bra Notations

The inner, or scalar product is a Hilbert space structure that provides a 
measure of the degree of “overlap” between two vectors. 

Like dot-product in 2/3-D Euclidian space

Remember Hilbert space can be of 
infinite dimension - fairly abstract

Dot-product concept is useful to 
grasp the basic concept of inner 
product BUT DO NOT Stick to it

Vectors in Hilbert space represented by  | ۧ Called ‘ket’ notation

Vector in Dual Space 
(like mirror image of vector in Hilbert space)

|ۦ Called ‘bra’ notation

Every ket has bra counterpart in a space called ‘dual space”

ۦ = 𝑐1
∗ൻ𝛼1 + 𝑐2

∗ൻ𝛼2 +𝑐3
∗ൻ𝛼3 ……… . 𝑐𝑛

∗ൻ𝛼𝑛|Ket to bra| ۧ = 𝑐1| ۧ𝛼1 + 𝑐2 ۧ𝛼2 + 𝑐3 ۧ𝛼3 ……………𝑐𝑛| ۧ𝛼𝑛

Expansion coefficients are complex conjugate 

| ۧ + |ۦ Ket and bra can not be added

|ۦ ۧ

| ۧ |ۦ

Called inner product – to evaluate complex number

Called outer product – not a scaler or vector – an operator  



Dirac’s Ket and Bra Notations
Inner Product 

|ۦ ۧ Called inner product – to evaluate complex number

Inner product provides a measure of overlap between the vector  | ۧΦ and | ۧ

|ۦ ۧ = |ۦ ۧ *

|ۦ ۧ = |ۦ ۧ * must be real and  ۦ| ۧ ≥ 0

They are complex conjugate of each other 

|ۦ ۧ = || ۧ| || as length of a vector, also called ‘norm’

If ۦ| ۧ = 1 vector is of unit length or normalized

| ۧ = 𝑐1| ۧ𝛼1 + 𝑐2 ۧ𝛼2 ۦ = 𝑑1
∗ൻ𝛼1 + 𝑑2

∗ൻ𝛼2|

For given vectors 

and

The inner product 
|ۦ ۧ = ( 𝑑1

∗ൻ𝛼1 + 𝑑2
∗ൻ𝛼2|)((𝑐1| ۧ𝛼1 + 𝑐2 ۧ𝛼2 )

|ۦ ۧ = 𝑐1𝑑1
∗ൻ𝛼1| ۧ𝛼1 + 𝑐1𝑑2

|𝛼2ۦ∗ ۧ𝛼1 + 𝑐2𝑑1
∗ൻ𝛼1| ۧ𝛼2 +𝑐2𝑑2

∗ൻ𝛼2| ۧ𝛼2

Orthogonality  condition ൻ𝛼𝑖| ൿ𝛼𝑗 = 𝛿𝑖𝑗Complete it using 



| ۧ = 3𝑖
5
| ۧ0 +

4
5
| ۧ1

(a) What is the prob that the state | ۧ collapse to | ۧ1

Is the state normalized? 

𝛼2 + 𝛽2 = 1

3𝑖

5

−3𝑖

5
+

4

5

4

5
=

9

25
+
16

25
= 1

𝑃| ۧ1 =
4

5

4

5
=
16

25

2nd option is to take the inner product of | ۧ with | ۧ1

𝑃| ۧ1 = 1 𝜓 2

𝑃| ۧ1 = 3𝑖
5 |1ۦ ۧ0 +

4
5 |1ۦ ۧ1

2

𝑃| ۧ1 =
4

5

2

=
16

25

|1ۦ ۧ0 = 0

|1ۦ ۧ1 = 1
We know

(b) What is the prob that the state | ۧ collapse to | ۧ𝜑

| ۧ𝜑 = 1

2
| ۧ0 +

(1−𝑖)
2 | ۧ1

Where 

𝑃| ۧ𝜑 = 𝜑 𝜓 2

𝑃| ۧ𝜑 = 1

2
+|0ۦ

(1−𝑖)
2 |1ۦ

3𝑖
5 | ۧ0 +

4
5 | ۧ1

2

𝑃| ۧ𝜑 =

Complete it yourself!

Problem -03



(d) What is the probability that the state | ۧ𝜓 collapse into state | ۧ𝜒

Problem -04

Solve it yourself!



Dirac’s Ket and Bra Notations

Few more rules 

|)|𝑢ۦ ۧ𝛼𝑣 + 𝛽𝑤 ) = 𝛼ൻ𝑢| ۧ𝑣 + 𝛽ۦ𝑢| ۧ𝑤

𝛼𝑢ۦ + 𝛽𝑣 | ۧ𝑤 = 𝛼∗ൻ𝑢| ۧ𝑤 + 𝛽∗ۦ𝑣| ۧ𝑤

| ۧ𝑢 † = |𝑢ۦ

Quantum Mechanics is ‘Linear’



Dirac’s Ket and Bra Notations
Postulate – III a |Φ ≡

|00000 + |00001 + |00010 + |00011 + |00100 + |00101 + |00110
+ |00111 + |01000 + |01001 + |01010 + |01011 + |01100 + |01101
+ |01110 + |01111 + |10000 + |10001 + |10010 + |10011 + |10100
+ |10101 + |10110 + |10111 + |11000 + |11001 + |11010 + |11011
+ |11100 + |11101 + |11110 + |11111,

32 vectors (all possible states of array of 
five lamps) form a basis that spans the 
Hilbert space of the array of five lamps

According to this postulate any of these vectors (states), 
for example  | ۧ11011 , is orthogonal to all other vectors 
(states) in set of 32. Basis vector are orthonormal

| ۧ = 𝑐1| ۧ𝛼1 + 𝑐2 ۧ𝛼2 + 𝑐3 ۧ𝛼3 ……………𝑐𝑛| ۧ𝛼𝑛

| ۧ =෍

𝑖=1

𝑛

𝑐𝑖| ۧ𝛼𝑖

If | ۧ has unit length i.e. ۦ| ۧ = 1

|ۦ ۧ =෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑐𝑗
∗𝑐𝑖 ർ𝛼𝑗 | ۧ𝛼𝑖 =෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑐𝑗
∗𝑐𝑗𝛿𝑖𝑗 =෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑐𝑖
2 = 1Orthonormality 

Orthogonality is a very important concept, 
mathematically and in physical systems

Ket and bra in 
summation form 

|ۦ = ෍

𝑗=1

𝑛

𝑐𝑗
∗ |𝛼𝑖ۦ

Remember |𝑐𝑖|
2 is 

probability of finding 

| ۧ and state | ۧ𝛼𝑖

Sum of all probabilities = 1



Dirac’s Ket and Bra Notations

Taking inner product of | ۧ𝛼𝑚 with  | ۧ

ൻ𝛼𝑚| ۧ =෍

𝑗=1

𝑛

𝑐𝑗ൻ𝛼𝑚| ൿ𝛼𝑗 =෍

𝑗=1

𝑛

𝑐𝑗𝛿𝑚𝑗 = 𝑐𝑚 Using Orthonormality 

Before you process please check above in 3-D space! For more intuitive understanding 

Remember inner product is like dot product in 2-/3-D

| ۧ = 𝑐1| ۧ𝛼1 + 𝑐2 ۧ𝛼2 + 𝑐3 ۧ𝛼3 ……………𝑐𝑛| ۧ𝛼𝑛

………similarly, the Hilbert space vector  

is a linear combination of orthonormal  basis vector | ۧ𝛼𝑖

Using orthomormality we can find 𝑐𝑖

𝑐1 = ൻ𝛼1| ۧ 𝑐2 = ൻ𝛼2| ۧ ………… . 𝑐𝑛 = ൻ𝛼𝑛| ۧ

Consider a vector in 2-/3-D

റ𝐴 = 𝐴1 Ƹ𝑖 + 𝑖𝐴2 Ƹ𝑗 + 𝐴3 ෠𝑘1

To find 𝐴1 , take dot 
product of A with Ƹ𝑖

Ƹ𝑖. Ԧ𝐴 = Ƹ𝑖. (𝐴1 Ƹ𝑖 + 𝐴2 Ƹ𝑗 + 𝐴3 ෠𝑘) = 𝐴1

More about inner product



Dirac’s Ket and Bra Notations
Outer Product 

Dyadic in Euclidean space – a bilinear expression such as Ƹ𝑖 Ƹ𝑗 (or any one of other eight combinations)

Dyadic can be positioned before or after a vector Ƹ𝑖 Ƹ𝑗 റ𝐴 = Ƹ𝑖 Ƹ𝑗. റ𝐴 = Ƹ𝑖𝐴𝑦 റ𝐴 Ƹ𝑖 Ƹ𝑗 = ( റ𝐴. Ƹ𝑖) Ƹ𝑗 = Ƹ𝑗𝐴𝑥

Remember this table is only for intuitive  purpose , Actually Hilbert space is different from Euclidean space!



Dirac’s Ket and Bra Notations

Postulate – III b |Φ ≡
|00000 + |00001 + |00010 + |00011 + |00100 + |00101 + |00110
+ |00111 + |01000 + |01001 + |01010 + |01011 + |01100 + |01101
+ |01110 + |01111 + |10000 + |10001 + |10010 + |10011 + |10100
+ |10101 + |10110 + |10111 + |11000 + |11001 + |11010 + |11011
+ |11100 + |11101 + |11110 + |11111,

Array of five lamps is in state | ۧ than a 
measurement yields the lamps configuration 
corresponding to one of 32 states with probability 

𝑝𝑖 = 𝑐𝑖
2 = 𝑖ۦ | ۧ 2 Where| ۧ𝑖 is one of the 32 states of array of lamps  

The condition ۦ| ۧ =1 insures that  σ𝑖 𝑝𝑖 = 1

Consider a data of 1000 experiments fro array of five lamps

| ۧ =
101

1000
| ۧ00000 +

209

1000
| ۧ01000 +

321

1000
| ۧ10001 +

369

1000
| ۧ11000

In Hilbert space ‘expansion coefficients’ 𝑐𝑖’s are complex numbers 

If coefficient 𝒄𝒊 is replaces by 
(remember 𝑐𝑖

2 = 𝑝𝑖 prob. Measure) 

𝑐𝑖 → 𝑐𝑖𝑒
𝑖𝛽 where  is called phase

Probability remain the same 

Where are 𝑐𝑖
′𝑠

Therefore, if I know the probability (i.e. 𝑐𝑖
2) I can write expression for state vector | ۧ

Note: It is impossible to find the coefficients 𝑐𝑖’s, but 𝒄𝒊
𝟐can be 



State of Array of five lamps in Quantum Mechanics

|Φ ≡
|00000 + |00001 + |00010 + |00011 + |00100 + |00101
+ |00110 + |00111 + |01000 + |01001 + |01010 + |01011
+ |01100 + |01101+ |01110 + |01111 + |10000 + |10001
+ |10010 + |10011 + |10100 + |10101 + |10110 + |10111
+ |11000 + |11001 + |11010 + |11011 + |11100 + |11101
+ |11110 + |11111,

| ۧ = 𝑐1| ۧ𝛼1 + 𝑐2 ۧ𝛼2 + 𝑐3 ۧ𝛼3 ……………𝑐𝑛| ۧ𝛼𝑛
In QM 
notation

Where| ۧ𝛼1 is | ۧ00000 ……| ۧ𝛼𝑛=32 is | ۧ11111 .  

𝑐1
2is probability of finding ‘array’ in state | ۧ𝛼1

Quantum Mechanics is a probabilistic theory (Postulate III b) where full knowledge 

of the system i.e. | ۧ , does not guarantee a definite outcome for a measurement 

On measurements system collapse to a state, and remains in that state. Any 
consequent measurements will measure the system in same (previous) state   

If we DO NOT measure (look at lamps) the system (array of 5 lamps), system can be in any of 32 possible states, however, 
once you measure (look at lamps) lamps will remain in that state. (If you DONOT look at the Moon, Moon is not there!!!!!)



Direct and Kronecker Product

The Direct or Tensor product

To explore the Hilbert space in general we need to introduce the direct or tensor product.

We build higher-dimensional Hilbert space from direct products of single qubit Hilbert spaces 

Remember single qubit belongs to 2-D Hilbert space 

The ket | ۧ0 and | ۧ1 are possible basis vectors as we require them to be linearly independent and orthonormal.

In this Hilbert space (of a qubit, with bases vector | ۧ0 and | ۧ1 ) any state vector | ۧΨ can be expressed as linear of these basis

Direct product of two kets | ۧ𝑎 and | ۧ𝑏 is given by  | ۧ𝑎 ⊗ | ۧ𝑏

If both kets | ۧ𝑎 and | ۧ𝑏 are single qubit basis kets | ۧ𝑎 ⊗ | ۧ𝑏 ≡ | ۧ0 ⊗ | ۧ0 , | ۧ0 ⊗ | ۧ1 ,         | ۧ1 ⊗ | ۧ0 , | ۧ1 ⊗ | ۧ1

Further remember  | ۧ𝑎 ⊗ | ۧ𝑏 ≠ | ۧ𝑏 ⊗ | ۧ𝑎

Theorem 1.3 Given a Hilbert space of dimension d that is spanned by basis vectors | ۧ𝑏 , and the single qubit 
vector | ۧ𝑎 for 𝑎 ∈ 0, 1, the direct product | ۧ𝑎 ⊗ | ۧ𝑏 for all a, b are basis vectors in a Hilbert space of dimension 
2d. The dual vector for 



Direct and Kronecker Product

To explore the Hilbert space in general we need to introduce the direct or tensor product.

Theorem 1.3 Given a Hilbert space of dimension d that is spanned by basis vectors | ۧ𝑏 , and the single qubit 
vector | ۧ𝑎 for 𝑎 ∈ 0, 1, the direct product | ۧ𝑎 ⊗ | ۧ𝑏 for all a, b are basis vectors in a Hilbert space of dimension 
2d. The dual vector for 

𝑐| ۧ𝑎 ⊗ | ۧ𝑏 is 𝑐∗ۦ𝑏| ⊗ |𝑎ۦ For all values of a, b.

Above theorem allow inner product with all vectors in the direct product Hilbert space

| ۧΨ = 𝑐1| ۧ𝑎 ⊗ | ۧ𝑏 + 𝑐2| ۧ𝑐 ⊗ | ۧ𝑑

Assume | ۧ𝑎 , | ۧ𝑏 , | ۧ𝑐 , | ۧ𝑑 are single qubit states

| ۧΦ = 𝑑1| ۧ𝑎 ⊗ | ۧ𝑏 + 𝑑2| ۧ𝑐 ⊗ | ۧ𝑑

|Ψۦ ۧΦ = 𝑐1
|𝑏ۦ∗ ⊗ |𝑎ۦ + 𝑐2

|𝑑ۦ∗ ⊗ |𝑐ۦ 𝑑1| ۧ𝑎 ⊗ | ۧ𝑏 + 𝑑2| ۧ𝑐 ⊗ | ۧ𝑑

Ψۦ ۧΦ = 𝑐1
∗𝑑1ۦ𝑏| ۧ𝑏 𝑎ۦ ۧ𝑎 + 𝑐1

∗𝑑2ۦ𝑏| ۧ𝑑 𝑎ۦ ۧ𝑐 + 𝑐2
∗𝑑1ۦ𝑐| ۧ𝑎 𝑑ۦ ۧ𝑏 + 𝑐2

∗𝑑2ۦ𝑐| ۧ𝑐 |𝑑ۦ ۧ𝑑

|Ψۦ ۧΦ = 𝑐1
∗𝑑1 + 𝑐2

∗𝑑2 Using orthonormality condition

(𝑐| ۧ𝑎𝑏 ) 𝑐∗ۦ𝑏𝑎|

| ۧΨ = 𝑐1| ۧ𝑎𝑏 + 𝑐2| ۧ𝑐𝑑

| ۧΦ = 𝑑1| ۧ𝑎𝑏 + 𝑑2| ۧ𝑐𝑑

|Ψۦ ۧΦ = 𝑐1
|𝑏𝑎ۦ∗ + 𝑐2

|𝑑𝑐ۦ∗ 𝑑1| ۧ𝑎𝑏 + 𝑑2| ۧ𝑐𝑑

|Ψۦ ۧΦ = 𝑐1
∗𝑑1 ൻ𝑏𝑎| ۧ𝑎𝑏 + 𝑐1

∗𝑑1ۦ𝑏𝑎| ۧ𝑐𝑑 +

𝑐2
∗𝑑1 ൻ𝑑𝑐| ۧ𝑎𝑏 + 𝑐2

∗𝑑1ۦ𝑑𝑐| ۧ𝑐𝑑



|Ψۦ ۧΦ = 𝑐1
∗𝑑1 ൻ𝑏𝑎| ۧ𝑎𝑏 + 𝑐1

∗𝑑1ۦ𝑏𝑎| ۧ𝑐𝑑 + 𝑐2
∗𝑑1 ൻ𝑑𝑐| ۧ𝑎𝑏 + 𝑐2

∗𝑑1ۦ𝑑𝑐| ۧ𝑐𝑑

|Ψۦ ۧΦ = 𝑐1
∗𝑑1 𝑏 𝑏 𝑎 𝑎 + 𝑐1

∗𝑑1 𝑏 𝑑 𝑎 𝑐 + 𝑐2
∗𝑑1 𝑑 𝑏 𝑐 𝑎 + 𝑐2

∗𝑑1 𝑑 𝑑 𝑐 𝑐

= 1
= 1=0 =0

Problem -05

ۧ|Ψ =
1

2
| ۧ100 +

1

2
| ۧ111 ۧ|𝜑 =

1 + 𝑖

2
| ۧ100 +

1 − 𝑖

2
| ۧ101

Find ۦ𝜑| ۧ𝜓 =?

Solve it yourself!



11 00 =?

1110 0011 =?

ۧ|1𝑠𝑡, 2𝑛𝑑, 3𝑟𝑑, 4𝑡ℎ……ۦ…… .4𝑡ℎ, 3𝑟𝑑, 2𝑛𝑑, 1𝑠𝑡|

1110 0111 =?

Problem -06

Where | ۧ0 and | ۧ1 are orthonormal basis 



Problem -07

Consider following two states 
of five lamp system

ۧ = ۧ10101 ۧ𝜑 = ۧ11111 Are they orthogonal to each other? 

𝜓 𝜑 =?

Can five lamps collapse above two states at the same time? 

Using ket-bra notation

𝜓 𝜑 =? Using matrix notation ۧ𝜑 = ۧ11111 =

0.
.
.
1 32 row

ۧ𝜑 = ۧ10101 =

0.
1
.
0

15 row
𝜓 𝜑 = 0 0 1 0 0

0.
.
.
1

= 0



Outer Product and Operators

Dirac’s bra-ket formalism to construct an outer product 

Dirac’s distributive axioms for outer products

| ۧ = 𝑐1| ۧ𝛼1 + 𝑐2 | ۧ𝛼2 and Consider states | ۧ = 𝑑1| ۧ𝛼1 + 𝑑2| ۧ𝛼2

| ۧ |ۦ = (𝑐1| ۧ𝛼1 + 𝑐2| ۧ𝛼2 ) (𝑑1
|𝛼1ۦ∗ + 𝑑2

|𝛼2ۦ∗

| ۧ |ۦ = 𝑐1𝑑1
∗| ۧ𝛼1 |𝛼1ۦ + 𝑐1𝑑2

∗ ۧ𝛼1 |𝛼2ۦ + 𝑐2𝑑1
∗ ۧ𝛼2 |𝛼1ۦ + 𝑐2𝑑2

∗| ۧ𝛼2 |𝛼2ۦ

Consider the outer product 𝐗 = | ۧ |ۦ
𝐗 ۧ 𝑎𝑛𝑑 ۦ 𝑿 are valid operations

ۧ 𝐗 𝑎𝑛𝑑 𝐗ۦ are NOT  valid operations

𝐗 ۧ = ۧ ۦ | ۧ = | ۧ |ۦ) ۧ ) = 𝑐 ۧ Where c = |ۦ) ۧ )

ۦ 𝐗 = ۦ ۧ ۦ = ۦ) ۧ| |ۦ( = |d Where dۦ = |ۦ) ۧ )

Remember generally ‘c’ and ‘d’- the 
inner products are complex numbers

Outer product 𝐗 = | ۧ |ۦ act on vector | ۧ and transform it to  ۧ𝑐| in Hilbert space

Outer product 𝐗 = | ۧ |ۦ act on vector ۦ| and transform it to ۦ|d in dual space

Outer products are 
‘operators’ in Hilbert space

How outer product 
operator can act on state

Operator can change the 
sate of quantum system



Outer Product and Operators

𝐗 ۧ = ۧ ۦ | ۧ = | ۧ |ۦ) ۧ ) = 𝑐 ۧ

ۦ 𝐗 = ۦ ۧ ۦ = ۦ) ۧ| |ۦ( =  |dۦ

When outer product (X) act on ket result is also a ket

When outer product (X) act on bra result is also a bra

Operators are objects that maps vectors to other vectors in Hilbert space 

Now according to 𝐗 ۧ = ۧ ۦ | ۧ = | ۧ |ۦ) ۧ ) = 𝑐 ۧ

The dual of transformed vector of 𝐗| ۧ is ൻ|𝑐∗ where 𝑐∗ = |ۦ ۧ Therefore 𝐗| ۧ ≠ |𝐗ۦ

Additional properties 



Operators
Operators map, or transform, a vector in Hilbert 

space to another vector in that same space

A special class of mapping, generated by operator X, have the following property. For some state vector | ۧΦ

𝐗| ۧΦ = 𝜙| ۧΦ Where 𝜙 is scaler

An equation of this type is called eigenvalue equation. The vector | ۧΦ is called an eigenvector and the constant 𝜙 is 
called eigenvalue associated with that eigenvector 

In Quantum Mechanics an ‘operator’ represent measurable



Matrix Representation
State vector in 2 D vector space

ۧ = 𝛼 ۧ0 + 𝛽| ۧ1

Therefore sate 
in matrix form 

| ൿ = 𝛼
1

0
+ 𝛽

0

1
=

𝛼

𝛽

|0ۦ = 1 0 𝑎𝑛𝑑 |1ۦ = (0 1)

Spans ℂ2, the vector space in which qubit lives

| ۧ𝜑 =
𝑎
𝑏

𝑎𝑛𝑑 | ۧ𝜓 =
𝑐
𝑑

| ۧ0 =
1
0

𝑎𝑛𝑑 | ۧ1 =
1
0

States of a qubit 
in matrix form

Inner 
product

𝜑 𝜓 = 𝑎∗ 𝑏∗
𝑐
𝑑

= 𝑎∗𝑐 + 𝑏∗𝑑

| ۧ𝜑 =

𝑎1
⋮
𝑎𝑛

𝑎𝑛𝑑 | ۧ𝜓 =
𝑏1
⋮
𝑏𝑛

Now consider 
state  in 2-D 

State in dimension 𝜑 𝜓 = 𝑎1
∗ … 𝑎𝑛

∗
𝑏1
⋮
𝑏𝑛

= 𝑎1
∗𝑏1 … 𝑎𝑛

∗𝑏𝑛

Inner product

Inner 
product

Inner product

𝜑 𝜓 =෍

𝑖=1

𝑛

𝑎1
∗𝑏𝑖



Matrix Representation of Operators
State vector in 2 D vector space

ۧ = 𝑐 ۧ0 + d| ۧ1 | ൿ = 𝑐
1

0
+ 𝑑

0

1
=

𝑐

𝑑

|0ۦ = 1 0 𝑎𝑛𝑑 |1ۦ = (0 1)

| ۧ𝜑 =
𝑎
𝑏

𝑎𝑛𝑑 | ۧ𝜓 =
𝑐
𝑑

| ۧ0 =
1
0

𝑎𝑛𝑑 | ۧ1 =
1
0

Outer product 
in matrix form

| ۧ𝜑 |𝜓ۦ =
𝑎
𝑏 𝑐∗ 𝑑∗ =

𝑎𝑐∗ 𝑎𝑑∗

𝑏𝑐∗ 𝑏𝑑∗
Matrix representation 

of an operator

We define 

Let us check! 𝑿| ۧ0 =
𝑎𝑐∗ 𝑎𝑑∗

𝑏𝑐∗ 𝑏𝑑∗
1

0
=

𝑎𝑐∗

𝑏𝑐∗

ۧ𝜑 = 𝑎 ۧ0 + b| ۧ1

| ۧ𝜑 |𝜓ۦ ۧ0 = 𝑐∗| ۧ𝜑 𝑐∗| ۧ𝜑 =𝑐∗
𝑎
𝑏

=
𝑎𝑐∗

𝑏𝑐∗
OR



Adjoint, Hermitian and Unitary Operators

For operator 𝐗 and ket | ۧΦ , the dual of  𝐗| ۧΦ is given by the expression the ۦ𝛷|𝑿†, 𝑿†is called the 
adjoint or conjugate transpose, operator to 𝐗

Hermitian operator 𝐗 that have the property  𝐗 = 𝑿†

X is Unitary operator if 𝑿† = 𝑿−𝟏

From matrix algebra we know 𝐗𝑿−𝟏 = 𝑿−𝟏 𝐗 = 𝑰 ⇒ 𝐗𝑿†= 𝑿† 𝐗 = 𝑰

However usually we represent unitary operators by U ⇒ 𝐔𝑼†= 𝑼†𝑼 = 𝑰

Where ‘I’ is unit operator 𝐈| ۧΦ = | ۧΦ For all| ۧΦ in Hilbert space 

Both Hermitian and Unitary operator play central role in Quantum Computing and Information (QIC) applications 

Identity/unitary  operator 



Adjoint of operators and ket-bra

†

𝑨 =
𝑎 𝑏
𝑐 𝑑

Adjoint of A = 𝑨† =
𝑎∗ 𝑐∗

𝑏∗ 𝑑∗

𝐴 = 𝐴† =
𝑎 𝑏 − 𝑖𝑐

𝑏 + 𝑖𝑐 𝑑

Where a, b, c, and d 
are real numbers 







Hermitian Operators (Theorems)

Theorem 1.2 If the eigenvalues of Hermitian operator are distinct, then the corresponding eigenvectors are 
mutually orthogonal. If some of the eigenvalues are not distinct, or degenerate, then a linear combination of 
that subset of eigenvectors can be made to be mutually orthogonal.

Theorem 1.1 The eigenvalues of a Hermitian operator are real numbers.

𝐇| ۧΦ𝒏 = 𝜙𝒏| ۧΦ𝒏

If every value of 𝜙𝒏 is different then corresponding 
| ۧΦ𝒏 must be mutually orthogonal

𝐇| ۧΦ𝟏 = 𝜙𝟏| ۧΦ𝟏

𝐇| ۧΦ𝟐 = 𝜙𝟏| ۧΦ𝟐

| ۧΦ𝟏 and | ۧΦ𝟐 are not orthogonal



Postulates of Quantum Mechanics



Operators
Like Differential, Integral, Sum, Difference etc. operators, we have an idea of operators in Q.M 

When operators act on a state of a quit it may change it. e.g.

ൿመ𝐴|𝜓 = ۧ|𝜙 |𝜇ۦ መ𝐴 = |𝜈ۦ

Operators are linear መ𝐴 𝛼| ۧ𝜓1 + β| ۧ𝜓2 = 𝛼 መ𝐴| ۧ𝜓1 + β መ𝐴| ۧ𝜓2

ൿመ𝐼|𝜓 = ۧ|𝜓መ𝐼 is identity operator 

Important postulate of Quantum theory is that there is an operator that corresponds to each physical observable  



Eigen Operator and Eigen States 

ൿመ𝐴|𝜓 = 𝑎 ۧ|𝜓

Eigen vector 

Eigen valueEigen operator

ൿመ𝐴|𝜆𝑖 = 𝜆𝑖 ۧ|𝜆𝑖



Pauli Matrices

In Q.M dynamical variables like position, momentum , angular momentum, energy etc. are called ‘observables’

In Q.M, for each observable there are operator corresponds to each physical variable 

Four Pauli Operators 

𝜎𝑜 = 𝐼 =
1 0
0 1

𝜎1 = 𝜎𝑥 = 𝑿 =
0 1
1 0

Set of operators that plays a important role in Quantum Computation 

𝜎2 = 𝜎𝑦 = 𝒀 =
0 −𝑖
𝑖 0

𝜎3 = 𝜎𝑧 = 𝒁 =
1 0
0 −1

𝜎𝑜 ۧ|0 = ۧ|0 ; 𝜎𝑜 ۧ|1 = ۧ|1

𝜎1 ۧ|0 = ۧ|1 ; 𝜎1 ۧ|1 = ۧ|0

𝜎2 ۧ|0 = −𝑖 ۧ|0 ; 𝜎2 ۧ|1 = ۧ𝑖|0

𝜎3 ۧ|0 = ۧ|0 ; 𝜎3 ۧ|1 = − ۧ|1

Identity operator

All Pauli matrices play important role in generating operators in the Hilbert space of a Qubit



Most general Self-adjoint (Hermitian) Matric

𝑎 𝑏 − 𝑖𝑐
𝑏 + 𝑖𝑐 𝑑

2 x 2 general Hermitian matrix Where a, b, c, d are real numbers

We can re-write above said self-adjoint/Hermitian matrix  

𝑎 𝑏 − 𝑖𝑐
𝑏 + 𝑖𝑐 𝑑

= 𝑏𝝈𝑥 + 𝑐𝝈𝑦 + 𝛼𝝈𝑧 + 𝛽𝕝 Where 𝛼 =
𝑎−𝑑

2
, 𝛽 =

𝑎+𝑑

2
, 𝑎𝑛𝑑 𝕝 is the 2 x 2 identity matrix. 

Therefore, arbitrary 2 x 2 Hermitian matrix can be represented by a linear 
combination of three (/four) Pauli matrices and the identity matrix. 

Verify above using 𝐴, 𝐵 = 𝐴𝐵 − 𝐵𝐴

The four (Pauli) matrices form a basis for the linear 
vector  space of all 2 x 2 Hermitian matrices.

The Pauli matrices serve as generators 
of all 2 x 2 unitary matrices 



Operators in Matrix Form

Matrix form of operator 
is base dependent



መ𝐴 =
0 መ𝐴 0 0 መ𝐴 1

1 መ𝐴 0 1 መ𝐴 1
መ𝐴 =

00 መ𝐴 00 00 መ𝐴 01

01 መ𝐴 00

00 መ𝐴 11

11 መ𝐴 00 11 መ𝐴 01 11 መ𝐴 11

Problem -08

Express following Pauli 
operators in matrix form

𝜎𝑥 ۧ|0 = ۧ|1 ; 𝜎𝑥 ۧ|1 = ۧ|0

𝜎𝑦 ۧ|0 = −𝑖 ۧ|0 ; 𝜎𝑦 ۧ|1 = ۧ𝑖|0

𝜎𝑧 ۧ|0 = ۧ|0 ; 𝜎3 ۧ|1 = − ۧ|1

Express CNOT operator 
in matrix form, where

CNOT ۧ|00 = ۧ|00
CNOT ۧ|01 = ۧ|01

CNOT ۧ|10 = ۧ|11
CNOT ۧ|11 = ۧ|10

Express Hadamard H 
gate in matrix form 

H ۧ|0 = ۧ| +
H ۧ|1 = ۧ| −

Similar matrix for 
three/four qubit gate 

For single qubit operator in matrix For two qubit operator in matrix



Eigen Values and eigen state 

For a given operator A how to find eigen values and Eigen state

መ𝐴 − 𝜆 መ𝐼 det መ𝐴 − 𝜆 መ𝐼 = 0



Find the Eigen values and 
Eigen states for operator A

መ𝐴 − 𝜆 መ𝐼 =
0 0 𝑖
0 1 0
−𝑖 0 0

−
𝜆 0 0
0 𝜆 0
0 0 𝜆

=
−𝜆 0 𝑖
0 1 − 𝜆 0
−𝑖 0 −𝜆

−𝜆 0 𝑖
0 1 − 𝜆 0
−𝑖 0 −𝜆

= 0 −𝜆 −𝜆 1 − 𝜆 − 0 − 0 + 𝑖[ 0 − (−𝑖)(1 − 𝜆 ] = 0

𝜆2 1 − 𝜆 − 1 − 𝜆 = 0 1 − 𝜆 𝜆2 − 1 = 0

𝜆 = −1, 1, 1Therefore eigen values are

Now for each eigen value we will find eigen vector from characteristic equation

Problem -09



Let ۧ|𝜑1 =
𝑎
𝑏
𝑐

ൿመ𝐴|𝜑1 = ۧ𝜑1|𝜑1
0 0 𝑖
0 1 0
−𝑖 0 0

𝑎
𝑏
𝑐

= (−1)
𝑎
𝑏
𝑐

𝑖𝑐
𝑏
−𝑖𝑎

=
𝑎
𝑏
𝑐

𝑖𝑐 = −𝑎

−𝑖𝑎 = −𝑐

𝑏 = −𝑏 ۧ|𝜑1 =
𝑎
0
𝑖𝑎

𝑏 = 0

ۧ|𝜑1 must be normalized 𝑎 𝑎 + 0 + 𝑖𝑎 −𝑖𝑎 = 1 𝑎2 + 𝑎2 = 1 𝑎 =
1

2

ۧ|𝜑1 =
1

2

1
0
𝑖

Eigen state for eigen value of ‘-1’Therefore 



Let ۧ|𝜑2 =
𝑎
𝑏
𝑐

ൿመ𝐴|𝜑2 = ۧ𝜑2|𝜑2

0 0 𝑖
0 1 0
−𝑖 0 0

𝑎
𝑏
𝑐

= (1)
𝑎
𝑏
𝑐

𝑖𝑐
𝑏
−𝑖𝑎

=
𝑎
𝑏
𝑐

𝑖𝑐 = 𝑎

−𝑖𝑎 = 𝑐

𝑏 = 𝑏 ۧ|𝜑1 =
𝑎
𝑏
−𝑖𝑎

ۧ|𝜑1 must be normalized 𝑎 𝑎 + (𝑏)(𝑏) + −𝑖𝑎 𝑖𝑎 = 1

2𝑎2 + 𝑏2 = 1
𝑎 =

1

2

ۧ|𝜑2 =
1

2

1
0
−𝑖

Eigen state for eigen value of ‘+1’

if

b = 0

𝑎 = 0 b = 1

ۧ|𝜑3 =
1

2

0
1
0



Simple if you know the eigen values of an operator, then matrix form of the operator 
is simply a diagonal matrix – diagonal elements are simply the eigen values 







𝑇𝑟 𝐴 = 2𝑖 + 4





𝐴2 = 𝜓 𝐴2 𝜓

Δ𝐴 = 𝐴2 − 𝐴 2

Expectation value of A

Expectation value of A2

Uncertainty in measurement of A





The Bloch Sphere
A vector representing the state of a quantum system could look something like arrow, 
enclosed inside the Bloch sphere, which is the so-called "state space" of all possible 
points to which our state vectors can "point"

Our state vectors are allowed to rotate anywhere on the surface of the 
sphere, and each of these points represents a different quantum state.

x, y, z are just for reference, actually Qubit lives 
in Hilbert space NOT in 2D or 3D Euclidean space

ۧ = 𝛼 ۧ0 + β| ۧ1 =
𝛼
𝛽

  = 𝛼∗ 𝛽∗
𝛼
𝛽 = 𝛼2 + 𝛽2

  = 𝛼2 + 𝛽2 = 1 when state is normalized

𝛼 and 𝛽 are complex numbers 

𝛼 = 𝑥0 + 𝑖𝑥1 and 𝛽 = 𝑥2 + 𝑖𝑥3

𝛼 and 𝛽 are complex numbers, therefore

Where all x’s are real numbers

If ۧ|𝜓 is a normalized sate, then  𝑥0
2 + 𝑥1

2 + 𝑥2
2 + 𝑥3

2 = 1

This equation describe a 3-sphere embedded in a 4-D space 



The Bloch Sphere
A vector representing the state of a quantum system could look something like arrow, 
enclosed inside the Bloch sphere, which is the so-called "state space" of all possible 
points to which our state vectors can "point"

If ۧ|𝜓 is a normalized sate, then  𝑥0
2 + 𝑥1

2 + 𝑥2
2 + 𝑥3

2 = 1 This equation describe a 3-sphere embedded 
in a 4-D space with center at origin 

Standard parameterization of a unit 2-sphere in spherical coordinate 
system. Here  and  are polar and azimuthal angles, respectively



The Bloch Sphere
A vector representing the state of a quantum system could look something like arrow, 
enclosed inside the Bloch sphere, which is the so-called "state space" of all possible 
points to which our state vectors can "point"

Normalized state ۧ|𝜓 on Bloch sphere can be written as

ۧ = 𝛼 ۧ0 + β| ۧ1 =
𝛼
𝛽Remember in ket-bra notation it was 

ۧ| = 𝑒𝑖𝛽
𝑐𝑜𝑠𝜃/2

𝑒𝑖𝜙𝑠𝑖𝑛𝜃/2
= 𝑒𝑖𝛽 ۧ𝑐𝑜𝑠𝜃/2|0 + 𝑒𝑖𝜙𝑠𝑖𝑛𝜃/2| ۧ1

Let us check the Blue state vector ۧ|𝟎

𝜃 = 0, what about 𝜙=?

ۧ| = ۧ𝑐𝑜𝑠𝜃/2|0 + 𝑒𝑖𝜙𝑠𝑖𝑛𝜃/2| ۧ1 = ۧ𝑐𝑜𝑠0|0 + 𝑒𝑖𝜙𝑠𝑖𝑛0| ۧ1 = ۧ|𝟎

Let us find the state vector of location ‘P’

𝜃 =/2, what about 𝜙=0

ۧ| = ۧ𝑐𝑜𝑠𝜃/2|0 + 𝑒𝑖𝜙𝑠𝑖𝑛𝜃/2| ۧ1 = ۧ𝑐𝑜𝑠𝜋/4|0 + 𝑒𝑖0𝑠𝑖𝑛𝜋/4| ۧ1 =
1

2
ۧ|0 +

1

2
ۧ|1

P



The Bloch Sphere
A vector representing the state of a quantum system could look something like arrow, 
enclosed inside the Bloch sphere, which is the so-called "state space" of all possible 
points to which our state vectors can "point"

Find the state vector of location ‘Q’, ‘R’, ‘S’

ۧ| = 𝑒𝑖𝛽
𝑐𝑜𝑠𝜃/2

𝑒𝑖𝜙𝑠𝑖𝑛𝜃/2
= 𝑒𝑖𝛽 ۧ𝑐𝑜𝑠𝜃/2|0 + 𝑒𝑖𝜙𝑠𝑖𝑛𝜃/2| ۧ1

P

Q

R

S

(‘R’ is a point where –ve x-axis cuts the Bloch sphere) 

The  sate vector | ۧ0 , | ۧ1 , and at points P, Q, R, S plays very important 
role in Quantum Computing and Information processing 

𝑒𝑖𝛽 is called overall phase factor and can not be measured. State of a Qubit can 
be specified by ‘a point’ on the block sphere, ignoring the ‘overall’ phase factor  



Back up



ۧ|𝑢 = ۧ| + ≡
1

2
ۧ|0 +

1

2
ۧ|1

Let us consider new states (very useful in Quantum Information processing) 

ۧ|𝑣 = ۧ| − ≡
1

2
ۧ|0 −

1

2
ۧ|1

In matrix form ۧ|𝑢 = ۧ| + ≡
1

2

1
1

ۧ|𝑣 = ۧ| − ≡
1

2

1
−1

ۧ𝑐1|𝑢 + 𝑐2 ۧ|𝑣 ≡
1

2

𝑐1 + 𝑐2
𝑐1 − 𝑐2

=
0
0

Only if 𝑐1 = 𝑐2 = 0

Therefore ۧ|𝑢 𝑎𝑛𝑑 ۧ|𝑣 are linearly independent

Verify linear independence 
using inner product



𝜎1 = 𝜎𝑥 = 𝑿 ≡ ۧ+ + − ۧ− −ۦ 𝜎1 =
1

2
1 1
1 1

−
1

2
1 −1
−1 1

=
0 1
1 0

Now let us find Pauli matrix from basis ۧ| + and ۧ| −



Direct and Kronecker Product
The Direct or Tensor product

Direct product of two kets | ۧ𝑎 and | ۧ𝑏 is given by  | ۧ𝑎 ⊗ | ۧ𝑏

If both kets | ۧ𝑎 and | ۧ𝑏 are single qubit basis kets | ۧ𝑎 ⊗ | ۧ𝑏 ≡ | ۧ0 ⊗ | ۧ0 , | ۧ0 ⊗ | ۧ1 ,         | ۧ1 ⊗ | ۧ0 , | ۧ1 ⊗ | ۧ1

Above four outer product vectors are orthonormal?

|0ۦ) ⊗ (|0ۦ ۧ0 ⊗ ۧ0 = |0ۦ ۧ0 |0ۦ ۧ0 = 1

|0ۦ) ⊗ (|0ۦ ۧ0 ⊗ ۧ1 = |0ۦ ۧ1 |0ۦ ۧ0 = 0

Yes, above states are mutually orthogonal 

| ۧ𝑎 ⊗ | ۧ𝑏 ≡ | ۧ0 ⊗ | ۧ0 , | ۧ0 ⊗ | ۧ1 ,     | ۧ1 ⊗ | ۧ0 , | ۧ1 ⊗ | ۧ1 | ۧ𝑎𝑏 ≡ | ۧ00 , | ۧ01 ,         | ۧ10 , | ۧ11

We can simplify the notation

|Ψۦ ۧΦ = 𝑐1
|𝑏ۦ∗ ⊗ |𝑎ۦ + 𝑐2

|𝑑ۦ∗ ⊗ |𝑐ۦ 𝑑1| ۧ𝑎 ⊗ | ۧ𝑏 + 𝑑2| ۧ𝑐 ⊗ | ۧ𝑑 |Ψۦ ۧΦ = 𝑐1
|𝑏𝑎ۦ∗ + 𝑐2

|𝑑𝑐ۦ∗ 𝑑1| ۧ𝑎𝑏 + 𝑑2| ۧ𝑐𝑑

Make sure you know how to Xply

ൻ001|𝑎 ۧ𝑐𝑏 = |0ۦ ۧ𝑏 |0ۦ ۧ𝑐 |1ۦ ۧ𝑎



Direct and Kronecker Product
The outer product with multiple qubits

Multi-qubit operators |𝑎 ۧ𝑏 = | ۧ𝑎 ⊗ | ۧ𝑏 | ۧ𝑐𝑑 = | ۧ𝑐 ⊗ | ۧ𝑑

|𝑎 ۧ𝑏 |𝑐𝑑ۦ = ۧ𝑎 ⊗ ۧ𝑏 |𝑑ۦ ⊗ |𝑐ۦ ≡ | ۧ𝑎 |𝑐ۦ ෩⨂ | ۧ𝑏 |𝑑ۦ ෩⨂ is called the Kronecker product

When this operator on a state | ۧΨ | ۧΨ = 𝑐1| ۧ01 + 𝑐2| ۧ10

(|𝑎 ۧ𝑏 |(|𝑐𝑑ۦ ۧΨ = ۧ𝑎 ⊗ ۧ𝑏 |𝑑ۦ ⊗ |𝑐ۦ 𝑐1| ۧ01 + 𝑐2| ۧ10

|𝑎 ۧ𝑏 |(|𝑐𝑑ۦ ۧΨ = 𝑐1(| ۧ𝑎 |𝑐ۦ ෩⨂ | ۧ𝑏 (|𝑑ۦ ۧ|01 + 𝑐2(| ۧ𝑎 |𝑐ۦ ෩⨂ | ۧ𝑏 |𝑑ۦ ۧ|10

(|𝑎 ۧ𝑏 |(|𝑐𝑑ۦ ۧΨ = | ۧ𝑎 |𝑐ۦ ෩⨂ | ۧ𝑏 |𝑑ۦ 𝑐1| ۧ01 + 𝑐2| ۧ10

|𝑎 ۧ𝑏 |(|𝑐𝑑ۦ ۧΨ = |𝑎 ۧ𝑏 [𝑐1ൻ𝑐| ۧ0 |𝑑ۦ ۧ1 +𝑐2ۦ𝑐| ۧ1 |𝑑ۦ ۧ0 ] = |𝑎 ۧ𝑏 [𝑐1ൻ𝑐𝑑| ۧ10 + 𝑐2ۦ𝑐𝑑| ۧ10 ]

(|𝑎 ۧ𝑏 |(|𝑐𝑑ۦ ۧΨ = (|𝑎 ۧ𝑏 |𝑐𝑑ۦ 𝑐1 ۧ01 + 𝑐2 ۧ10 = |𝑎 ۧ𝑏 [𝑐1ۦ𝑐𝑑| ۧ01 + 𝑐2ۦ𝑐𝑑| ۧ10


