

Assignment – 02 - PHYS 514
Due Thursday 29 January – 12:00 mid night
(Late submission will not be accepted)

Submit solutions of problem # 1, 4, and 5 ONLY

Please submit your solution via BB or email. Ensure that your **full name and student ID** are included on your submission

Q.1 [Lagrange and Euler-Lagrange Equation]

- (a) Write down the Lagrange equation of LC circuit in terms of q and \dot{q} .
- (b) Using following Euler-Lagrange equation

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0$$

Show that

$$\ddot{q} = -\Omega^2 q$$

Where $\Omega = \frac{1}{\sqrt{LC}}$

- (c) Find conjugate momentum for (position) coordinate q (using Lagrange of part a)
- (d) Find the Hamiltonian of the LC circuits.

Q.2 [Hamiltonian of LC Oscillator]

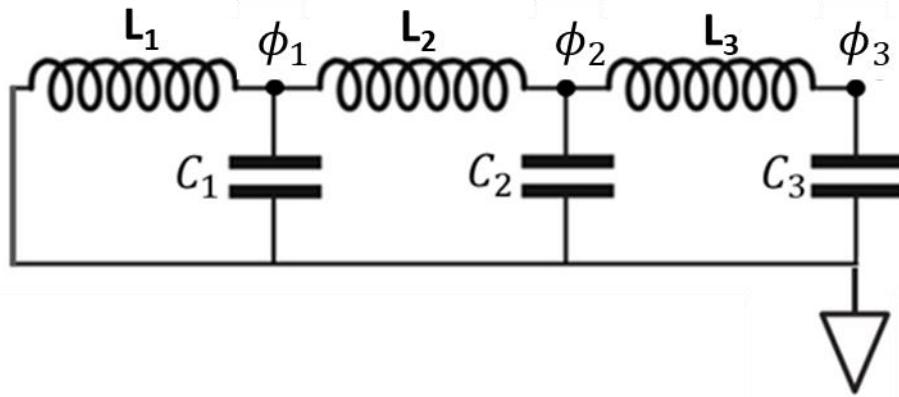
- (a) Show that the

$$\hat{H} = \frac{1}{2C} \hat{Q}^2 + \frac{1}{2L} \hat{\phi}^2$$

can be expressed as

$$\hat{H} = \frac{\hbar\Omega}{2} [a^\dagger a + a a^\dagger]$$

Where $a = i \frac{1}{\sqrt{2C\hbar\Omega}} \hat{Q} + \frac{1}{\sqrt{2L\hbar\Omega}} \hat{\phi}$ and $a^\dagger = -i \frac{1}{\sqrt{2C\hbar\Omega}} \hat{Q} + \frac{1}{\sqrt{2L\hbar\Omega}} \hat{\phi}$


Q.3 [Expectation values of Q and ϕ]

Using ‘ladder operation’ expression for Q , find expectation value for Q ($\langle \hat{Q} \rangle$) and Q^2 ($\langle \hat{Q}^2 \rangle$) for vacuum (zero photon) state.

Q.4 [Zero Point Fluctuation (ZPF)]

Calculate the zero-point fluctuation in charge, Q_{ZPF} for an LC oscillator circuit. Calculate the Φ_{ZPF} as well. Assume $L = 50 \text{ nH}$ and $C = 70 \text{ pF}$. Express Q_{ZPF} in terms of number of electrons (i.e. Q_{ZPF}/e).

Q.5 [Lagrange and Hamiltonian of Quantum Circuit]

- Write down the Lagrange of the above circuit in-terms of nodal flux ϕ
- Find the momentum conjugate, Q , to the flux ϕ (1, 2, and 3)
- Write down the commutation relation between Q and ϕ
- Find the Hamiltonian of the above circuit
(Hint: $H = \sum_{i=1}^3 Q_i \dot{\phi}_i - L$)
- Write down the Hamilton's equations of motion